
Quentin Zervaas

Practical Web 2.0
Applications with PHP

9063CH00CMP3 11/19/07 8:39 PM Page i

Practical Web 2.0 Applications with PHP

Copyright © 2008 by Quentin Zervaas

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-906-8

ISBN-10 (pbk): 1-59059-906-3

ISBN-13 (electronic): 978-1-4302-0474-9

ISBN-10 (electronic): 1-4302-0474-5

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ben Renow-Clarke
Technical Reviewer: Jeff Sambells
Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,

Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto
Copy Editors: Andy Carroll, Kim Wimpsett
Assistant Production Director: Kari Brooks-Copony
Production Editor: Liz Berry
Compositor: Diana Van Winkle
Proofreader: Lisa Hamilton
Indexer: Broccoli Information Management
Artist: Diana Van Winkle
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

9063CH00CMP3 11/19/07 8:39 PM Page ii

Contents at a Glance

About the Author . xv

About the Technical Reviewer . xvi

Introduction . xvii

■CHAPTER 1 Application Planning and Design . 1

■CHAPTER 2 Setting Up the Application Framework . 9

■CHAPTER 3 User Authentication, Authorization, and Management 45

■CHAPTER 4 User Registration, Login, and Logout . 73

■CHAPTER 5 Introduction to Prototype and Scriptaculous 123

■CHAPTER 6 Styling the Web Application . 171

■CHAPTER 7 Building the Blogging System . 219

■CHAPTER 8 Extending the Blog Manager . 265

■CHAPTER 9 Personalized User Areas . 297

■CHAPTER 10 Implementing Web 2.0 Features . 335

■CHAPTER 11 A Dynamic Image Gallery . 371

■CHAPTER 12 Implementing Site Search . 427

■CHAPTER 13 Integrating Google Maps . 469

■CHAPTER 14 Deployment and Maintenance . 519

■INDEX . 547

iii

9063CH00CMP3 11/19/07 8:39 PM Page iii

9063CH00CMP3 11/19/07 8:39 PM Page iv

Contents

About the Author . xv

About the Technical Reviewer . xvi

Introduction . xvii

■CHAPTER 1 Application Planning and Design . 1

What Is Web 2.0? . 2

Database Connectivity . 2

Web Site Templates . 3

Web Site Features . 3

Main Home Page and User Home Page . 3

User Registration . 4

Account Login and Management . 4

User Blogs . 4

Web Site Search . 4

Application Management . 5

Other Aspects of Development . 5

Search-Engine Optimization . 5

PHPDoc-Style Commenting . 5

Security . 7

Application Logging . 7

Maintainability and Extensibility . 7
Version Control and Unit Testing . 8

Summary . 8

■CHAPTER 2 Setting Up the Application Framework . 9

Web Server Setup . 9
Operating System . 10

Installing the Apache HTTP Server . 10

Installing MySQL 5 . 11

Installing PHP 5.2.3 . 11

v

9063CH00CMP3 11/19/07 8:39 PM Page v

■CONTENTSvi

Application Filesystem Structure . 12

Web Root Directory . 12

Data Storage Directory . 12

PHP Classes Directory . 13

Templates Directory . 13

Full Directory Structure . 13

Installing the Zend Framework . 14

Configuring the Web Server . 15

Creating a Virtual Host in Linux . 15

Creating a Virtual Host in Windows . 17

Restarting Your Web Server . 17

Setting Up the Database . 17

Using the Model-View-Controller Pattern . 18

Separating Application Logic from Presentation Logic 19

Directing All Requests to index.php . 21

Introduction to the Zend_Controller Class . 22

How Requests Work with Zend_Controller . 23

Creating the IndexController . 25

Defining Application Settings . 27

Connecting to the Database . 29

Testing the Database Connection . 30

The Smarty Template Engine . 30

Why Not Use a Different Template Engine? . 33

Downloading and Installing Smarty . 34

Automatic View Rendering with Zend_Controller 36

Integrating Smarty with the Web Site Controllers 39

Adding Logging Capabilities . 41

Writing to the Log File . 43

Summary . 44

■CHAPTER 3 User Authentication, Authorization, and Management 45

Creating the User Database Table . 45

Timestamps . 47

User Profiles . 48

Introduction to Zend_Auth . 49

Instantiating Zend_Auth . 50

Authenticating with Zend_Auth . 52

Introduction to Zend_Acl . 54

A Zend_Acl Example . 55

9063CH00CMP3 11/19/07 8:39 PM Page vi

Combining Zend_Auth, Zend_Acl, and Zend_Controller_Front 57

Managing User Records with DatabaseObject . 61

The DatabaseObject_User Class . 62

Using DatabaseObject_User . 64

Managing User Profiles . 66

Using Profile_User . 67

Integrating Profile_User with DatabaseObject_User 69

Summary . 72

■CHAPTER 4 User Registration, Login, and Logout . 73

Adding User Registration to the Application . 73

Creating the Form Processor for User Registration 74

Displaying the Registration Form and Processing Registrations . . . 81

Adding CAPTCHA to the User Registration Form 88

Adding E-mail Functionality . 95

Implementing Account Login and Logout . 100

Creating the Login Template . 101

Adding the Account Controller Login Action 102

Logging Successful and Failed Login Attempts 105

Logging Users Out of Their Accounts . 107

Dealing with Forgotten Passwords . 108

Resetting a User’s Password . 109

Functions for Resetting Passwords . 112

Implementing Account Management . 116

Creating the Account Home Page . 116

Updating the Web Site Navigation . 118

Allowing Users to Update Their Details . 120

Summary . 121

■CHAPTER 5 Introduction to Prototype and Scriptaculous 123

Downloading and Installing Prototype . 123

Prototype Documentation . 124

Selecting Objects in the Document Object Model 124

The $() Function . 124

The getElementsByClassName() Function . 125

The $$() Function . 128

The getElementsBySelector() Function . 129

Prototype’s Hash Object . 129

■CONTENTS vii

vii

9063CH00CMP3 11/19/07 8:39 PM Page vii

Other Element Extensions . 130

Showing and Hiding Elements . 131

Retrieving Dimensions of Elements . 131

Managing Classes of Elements . 131

Manipulating Strings with Prototype . 133

Ajax Operations in Prototype . 134

Ajax Request Options . 134

Ajax Callback Functions . 135

JavaScript Object Notation (JSON) . 138

An Ajax.Request Example . 140

Event Handling in Prototype . 145

Observing an Event . 145

Finding Out Which Element an Event Occurred On 146

Canceling an Event . 147

Creating JavaScript Classes in Prototype . 147

Creating a Class . 147

Binding Function Calls to Objects . 148

From Prototype to Scriptaculous . 151

Prebuilt Controls . 151

Drag and Drop . 152

Visual Effects . 152

DOM Element Builder . 153

JavaScript Unit Testing . 153

Downloading and Installing Scriptaculous . 154

Combining Prototype, Scriptaculous, Ajax, and PHP
in a Useful Example . 154

Creating the Main HTML Page: index.php . 156

Styling the Application: styles.css . 157

Creating and Populating the Database: schema.sql 158

Managing the List Items on the Server Side: items.php 159

Processing Ajax Requests on the Server Side: processor.php . . . 161

Creating the Client-Side Application Logic: scripts.js 163

Summary . 169

■CHAPTER 6 Styling the Web Application . 171

Adding Page Titles and Breadcrumbs . 171

The Breadcrumbs Class . 172

Generating URLs . 174

Setting the Title and Trail for Each Controller Action 178

Creating a Smarty Plug-In to Output Breadcrumbs 180

Displaying the Page Title . 182

■CONTENTSviii

9063CH00CMP3 11/19/07 8:39 PM Page viii

809b8b6f91d5ff50033254241f3132ed

Integrating the Design into the Application . 183

Creating the Static HTML . 184

Moving the HTML Markup into Smarty Templates 188

Constructing the CSS . 192

Specifying Media Types and Loading the CSS File 192

Creating the Application CSS . 193

Creating a Print-Only Style Sheet . 198

The Full Application Style Sheet . 201

Styling the Application Web Forms . 204

Loading Prototype and Scriptaculous . 207

Implementing Client-Side Form Validation . 208

Adding JSON Support to CustomControllerAction 209

Modifying the Form Processor . 209

Modifying the Registration Controller Action 210

Creating the JavaScript Form Validator . 212

Loading the UserRegistrationForm Class . 216

Summary . 217

■CHAPTER 7 Building the Blogging System . 219

Creating the Database Tables . 219

Setting Up DatabaseObject and Profile Classes . 221

Creating the DatabaseObject_BlogPost Class 221

Creating the Profile_BlogPost Class . 223

Creating a Controller for Managing Blog Posts . 223

Extending the Application Permissions . 223

The BlogmanagerController Actions . 225

Linking to Blog Manager . 226

Creating and Editing Blog Posts . 228

Creating the Blog Post Submission Form Template 228

Instantiating FormProcessor_BlogPost in editAction() 231

Implementing the FormProcessor_BlogPost Class 233

Generating a Permanent Link to a Blog Post 240

Filtering Submitted HTML . 243

Creating a New Blog Post . 247

Previewing Blog Posts . 248

Creating the Preview Action . 249

Implementing the Preview Template . 249

Requesting Confirmation for User Actions . 252

■CONTENTS ix

9063CH00CMP3 11/19/07 8:39 PM Page ix

Updating the Status of a Blog Post . 254

Completing setstatusAction() . 254

Notifying the User . 256

Summary . 262

■CHAPTER 8 Extending the Blog Manager . 265

Listing Blog Posts on the Blog Manager Index . 265

Fetching Blog Posts from the Database . 266

Assigning Recent Posts and the Monthly Summary
to the Template . 274

Displaying Recent Posts in the Template . 276

Displaying the Monthly Summary . 279

Ajaxing the Blog Monthly Summary . 283

Creating the Ajax Request Output . 284

The BlogMonthlySummary JavaScript Class 285

Installing the BlogMonthlySummary Class . 287

Notifying the User About the Content Update 287

Integrating a WYSIWYG Editor . 291

Downloading and Installing FCKeditor . 292

Configuring FCKeditor . 293

Loading FCKeditor in the Blog Editing Page 294

Summary . 296

■CHAPTER 9 Personalized User Areas . 297

Controlling User Settings . 297

Presenting Customizable Settings to Users 298

Processing Changes to User Settings . 299

Creating Default User Settings . 301

The UserController Class . 302

Routing Requests to UserController . 303

Handling Requests to UserController . 309

Displaying the User’s Blog . 313

Displaying the Blog Index Page . 313

Displaying Individual Blog Posts . 318

Generating Blog Archive Links . 322

Displaying the Monthly Archive . 324

Populating the Application Home Page . 326

Loading Recent Public Posts . 326

Implementing the Application Home Page . 327

Summary . 333

■CONTENTSx

9063CH00CMP3 11/19/07 8:39 PM Page x

■CHAPTER 10 Implementing Web 2.0 Features . 335

Tags . 336

Implementing Tagging . 336

Managing Blog Post Tags . 340

Displaying a User’s Tags on Their Blog . 344

Displaying a Tag Space . 347

Displaying Tags on Each Post . 351

Web Feeds . 351

Data Formats for Web Feeds . 352

Creating an Atom Feed with Zend_Feed . 352

Adding the Feed to UserController . 353

Linking to Your Feed . 355

Other Feed Options . 357

Microformats . 358

An Example of Using Microformats . 358

Why Use Microformats? . 360

Microformatting Your Tags . 362

Allowing Users to Create a Public Profile . 363

Allowing Users to Create a Public Profile . 363

Displaying a User’s Profile . 366

Summary . 369

■CHAPTER 11 A Dynamic Image Gallery . 371

Storing Uploaded Files . 372

Creating the Database Table for Image Data 373

Controlling Uploaded Images with DatabaseObject 373

Uploading Files . 374

Setting the Form Encoding . 375

Adding the Form . 375

Specifying the File Input Type . 377

Setting the Maximum File Size . 378

Handling Uploaded Files . 379

Sending Images . 387

Resizing Images . 390

Creating Thumbnails . 390

Linking the Thumbnailer to the Image Action Handler 395

■CONTENTS xi

9063CH00CMP3 11/19/07 8:39 PM Page xi

Managing Blog Post Images . 399

Automatically Loading Blog Post Images . 399

Displaying Images on the Post Preview . 401

Deleting Blog Post Images . 403

Using Scriptaculous and Ajax to Delete Images 406

Deleting Images when Posts Are Deleted . 411

Reordering Blog Post Images . 412

Displaying Images on User Blogs . 417

Extending the GetPosts() Function . 417

Displaying Thumbnail Images on Blog Index 418

Displaying Images on the Blog Details Page 420

Displaying Larger Images with Lightbox . 422

Summary . 425

■CHAPTER 12 Implementing Site Search . 427

Introduction to Zend_Search_Lucene . 427

Comparison to MySQL Full-Text Indexing . 428

Zend_Search_Lucene Field Types . 429

Field Naming . 430

Indexing Application Content . 430

Indexing Multiple Types of Data . 431

Creating a New Zend_Search_Lucene_Document 431

Retrieving the Index Location . 433

Building the Entire Index . 434

Indexing and Unindexing a Single Blog Post 435

Triggering Search Index Updates . 439

Creating the Search Tool . 442

Adding the Search Form . 442

Handling Search Requests . 443

Querying the Search Index . 444

Displaying Search Results . 448

Types of Searches . 451

Adding Autocompletion to the Search Tool . 452

Providing Search Suggestions . 452

Creating an Action Handler to Return Search Results 453

Retrieving Search Suggestions . 454

Loading the SearchSuggestor Class . 457

Displaying Search Suggestions . 457

Adding Mouse Navigation to Results . 460

Adding Keyboard Navigation to Results . 462

Summary . 467

■CONTENTSxii

9063CH00CMP3 11/19/07 8:39 PM Page xii

■CHAPTER 13 Integrating Google Maps . 469

Google Maps Features . 469

Geocoding . 469

Displaying Maps . 470

Controlling Maps . 473

Planning Integration . 473

Limitations of Google Maps . 473

Browser Compatibility . 474

Documentation and Resources . 474

Creating a Google Maps API Key . 474

Adding Location Storage Capabilities . 475

Creating the Database Table . 475

Creating the DatabaseObject_BlogPostLocation Class 475

Modifying Blog Posts to Load Locations . 477

Creating Our First Map . 478

Creating a New Blog Manager Controller Action 479

Displaying Your First Google Map . 481

Managing Locations on the Map . 487

Handling Location Management Ajax Requests 487

Creating the Address Lookup Form . 492

Extending the BlogLocationManager JavaScript Class 493

Using BlogLocationManager . 508

Displaying the Map on Users’ Public Blogs . 509

Outputting Locations Using the Geo Microformat 509

Creating the BlogLocations Class . 511

Updating the Blog Post Display Template . 514

Summary . 516

■CHAPTER 14 Deployment and Maintenance . 519

Application Logging . 519

E-mailing Critical Errors to an Administrator 519

Using Application Logs . 523

Site Error Handling . 524

Objectives of Error Handling . 526

Handling Predispatch Errors . 526

Application Runtime Errors . 531

Web Site Administration . 535

Administrator Section Features . 535

Implementing Administration . 536

■CONTENTS xiii

9063CH00CMP3 11/19/07 8:39 PM Page xiii

Application Deployment . 538

Different Configurations for Different Servers 538

Deploying Application Files with Rsync . 542

Backup and Restore . 543

Exporting a Database . 543

Importing a Database . 544

Summary . 545

■INDEX . 547

9063CH00CMP3 11/19/07 8:39 PM Page xiv

About the Author

■QUENTIN ZERVAAS is a web developer based in Adelaide, South Australia, where he has been
self-employed since 2003. After receiving his bachelor’s degree in computer science from the
University of Adelaide in 2001, Quentin worked for several web development firms before
branching out on his own, developing a wide range of custom web applications for customers
all around the world.

Quentin has recently started a new company called Recite Media (http://www.recite.
com.au) with two partners. Recite Media develops web applications primarily for other devel-
opment or design companies to resell. Its flagship product, Recite CMS, is being used by
some of Australia’s largest companies.

Quentin also runs and writes for his PHP development resource site, PhpRiot (www.phpriot.com),
which provides a number of useful articles on a wide variety of PHP-related topics.

After completing his role as the technical reviewer for Beginning Ajax with PHP: From
Novice to Professional (Apress, 2006), he decided to undertake writing this book.

xv

9063CH00CMP3 11/19/07 8:39 PM Page xv

About the Technical Reviewer

■JEFFREY SAMBELLS is a graphic designer and self-taught web application developer best
known for his unique ability to merge the visual world of graphics with the mental realm of
code. After obtaining his bachelor’s of technology degree in graphic communications manage-
ment with a minor in multimedia, Jeffrey originally enjoyed the paper-and-ink printing
industry, but he soon realized the world of pixels and code was where his ideas would prosper.

Jeffrey has previously published articles related to print design and has contributed to
award-winning graphical and Internet software designs. His latest book, AdvancED DOM
Scripting: Dynamic Web Design Techniques (friends of ED, 2007), was an instant success. In
late 2005, Jeffrey also became a PHP 4 Zend Certified Engineer; he updated the certification to
PHP 5 in September 2006 to become one of the first PHP 5 Zend Certified Engineers. Jeffrey
also maintains a blog at http://jeffreysambells.com where he discusses his thoughts about
everything from web development to photography.

He currently lives and plays in Ontario, Canada, with his wife, Stephanie; his daughter,
Addison; and their little dog, Milo.

xvi

9063CH00CMP3 11/19/07 8:39 PM Page xvi

Introduction

Many of today’s web development books and articles cover single aspects of the development
life cycle, delving only into specific features rather than looking at the whole picture.

In this book, we will develop a complete web application. Although we will be using various
third-party libraries and tools to aid in development, we will be developing the application from
start to finish.

The focus of this book is on Web 2.0, a catchphrase that has been in use for a few years
now and is typically used to refer to web sites or web applications that have particular charac-
teristics. Some of these characteristics include the following:

• Correctly using HTML/XHTML, CSS, and other standards

• Using Ajax (Asynchronous JavaScript and XML) to provide a responsive application
without requiring a full refresh of pages

• Allowing syndication of web site content using RSS

• Adding wikis, blogs, or tags

Although not everybody is an advocate of the “Web 2.0” phrase, the term does signify
forward progress in web development. And although not everybody has the need to provide
a wiki or a blog on their web site, the other characteristics listed (such as correct standards
usage) provide a good basis for a web site and should be used by all developers, regardless of
how they want their web site or application categorized.

I wrote this book because I want to share with other users how I build web sites. Having
been a web developer for ten years now (full-time for the past seven), I have a solid under-
standing of a wide range of web-related topics and have much to offer newer developers or
developers looking to expand their own knowledge.

Who This Book Is For
This book has been written primarily for intermediate to expert PHP programmers. Although
programmers of all levels will benefit from this book, we do jump in to the deep end very
quickly, so some prior knowledge of PHP is assumed.

Having said that, if you’re relatively new to PHP, you will definitely benefit from this book
because it will formalize some of the techniques you have already learned and will show you
some different ways of approaching various problems.

In this book, I have made the assumption that you are familiar with HTML and CSS,
although since most of the code developed in this book is PHP and JavaScript, an advanced
knowledge of HTML and CSS is not critical. All JavaScript code is explained thoroughly, which,
in combination with the Prototype JavaScript library we will be using, makes the listings rela-
tively straightforward.

xvii

9063CH00CMP3 11/19/07 8:39 PM Page xvii

How This Book Is Structured
We will start the book by determining which features to implement in our web application
and then implement each one as we progress through the book. Each chapter will add a new
set of features to the application, until reaching the final chapter where we look at strategies
for deploying the application.

The specific type of application we develop in this book (a multiuser blogging system) is
not particularly important; rather, it is used simply as a tool to show you the process of devel-
oping a web application. Each chapter is specifically designed to demonstrate particular
aspects of development that may arise regardless of the type of application:

• Chapter 1, Application Planning and Design. We begin the book by looking at what
defines Web 2.0, as well as looking briefly at the features that will be implemented in
the application. Additionally, this chapter covers various aspects of the web develop-
ment life cycle that should be considered when planning and implementing web
applications.

• Chapter 2, Setting Up the Application Framework. In this chapter, we begin to imple-
ment the web application. This process begins by correctly setting up the environment
(that is, installing the correct web server software) and then by creating the initial file
structure of the site. In addition to connecting to the database with PHP, we will handle
user requests with the Zend Framework and manage HTML code using the Smarty
Template Engine.

• Chapter 3, User Authentication, Authorization, and Management. This chapter gives
the first look at using a database. We look at how to easily manage database data when
we implement the user system. Additionally, we look at how a role-based permissions
system works and then implement it into the application.

• Chapter 4, User Registration, Login, and Logout. Continuing from Chapter 3, this
chapter shows how to implement a user registration system. Since this is the first time
the book deals with user-submitted data, this chapter looks at how to correctly deal
with such data when we create the registration and login forms.

• Chapter 5, Introduction to Prototype and Scriptaculous. Since we make heavy use of
JavaScript and Ajax in later chapters, we move away from the main application in this
chapter while we explore two of the most useful JavaScript libraries available. Prototype
helps programmers develop easily maintainable cross-platform JavaScript code, while
Scriptaculous simplifies the process of adding appealing visual effects to web pages.

• Chapter 6, Styling the Web Application. In this chapter, we step back slightly from the
web application in that we focus more on the user experience rather than on the main
application features. We first look at implementing various navigational items (which
also gives us a first taste of developing custom Smarty plug-ins), and we then complete
the chapter by implementing a simple and clean web design into the application.

■INTRODUCTIONxviii

9063CH00CMP3 11/19/07 8:39 PM Page xviii

• Chapter 7, Building the Blogging System. This chapter moves on to beginning the
implementation of the blogging system. In this chapter, we give users the ability to add,
edit, and delete their blog posts. One of the key concepts covered is how to correctly
allow user-submitted HTML while keeping the site safe and secure for visitors.

• Chapter 8, Extending the Blog Manager. This chapter largely builds on what was
implemented in Chapter 7. A comprehensive Ajax example is included in this chapter
that we will use to help users manage their blogs. We also integrate an open source
What You See Is What You Get (WYSIWYG) editor into a blog post creation form.

• Chapter 9, Personalized User Areas. At this point in the book, users can create a new
account as well as manage their very own blogs. In this chapter, we make their blogs
public in the application. We give each user a public home page within our application
web site in which all of their blog posts are shown. This chapter shows how to imple-
ment more advanced URL schemes, as well as shows you how to enable users to
customize their own experience by managing their own profiles and settings.

• Chapter 10, Implementing Web 2.0 Features. Although several of the features we
define as Web 2.0 (such as standards compliancy and Ajax) apply throughout web
applications, a few concrete features are often defined as being part of the Web 2.0
movement. In this chapter, we will look at some of these, including microformats,
web feeds (RSS and Atom), and tagging.

• Chapter 11, A Dynamic Image Gallery. In this chapter, we expand the capabilities of
the blogging system by allowing users to upload photos for each of their blog posts.
This allows us to see how to correctly handle not only file uploads but also image-
specific issues, such as dynamically generating thumbnails.

• Chapter 12, Implementing Site Search. This chapter is essentially split into two parts:
creating search indexes based on user blog posts and then allowing site visitors to
search for posts. Indexing data can be a complicated topic, but by using the tools pro-
vided by the Zend Framework, the task is made simpler. After implementing the basic
search functionality, we extend it to use an intuitive Ajax-based autocompleter, similar
to that of Google Suggest.

• Chapter 13, Integrating Google Maps. You as a developer can use many freely available
web services on the Internet to improve your own web site. In this chapter, we extend
the blog capabilities further to allow users to add locations to their blog posts using
Google Maps. We create an advanced sample implementation of Google Maps that
combines the Google Maps API with our database using Ajax, as well as learn how to
manage map data in real-time.

• Chapter 14, Deployment and Maintenance. In this, the final chapter, we cover a num-
ber of miscellaneous topics related to developing a polished application. This is partly
an extension of some functionality implemented in Chapter 2 but also introduces sev-
eral new ideas (such as application deployment).

■INTRODUCTION xix

9063CH00CMP3 11/19/07 8:39 PM Page xix

Prerequisites
A number of third-party applications and libraries are used in this book. We discuss down-
loading and installing each of these as required, but for your reference, the following are used:

• PHP 5.2.3

• Apache 2.2 on Linux (and its variants) or Windows (earlier versions of Apache may
also work)

• MySQL 5 or PostgreSQL 8

• Prototype 1.5.1.1

• Scriptaculous 1.7.1 beta 3

• Zend Framework 1.0.2 or newer

• Smarty Template Engine 2.6.18

• FCKeditor 2.4.3 (an open source JavaScript WYSIWYG editor)

In addition to these applications and libraries, in this book I use several custom PHP
classes that I have implemented. Each of these is available in the application source, which
can be downloaded as per the following instructions.

Downloading the Code
All code listings in this book are available from the book’s web site at http://www.myphpbook.com.
The source code for this book is also available to readers at http://www.apress.com on this book’s
page on the Apress web site. You can download the full web application as it stands at the end of
any of the chapters.

Additionally, I’ve included a number of bonus add-ons in the source code, including an
administration area and a blog post commenting system.

Contacting the Author
If you have any questions about the code in this book, your first stop should be the book’s web
site at http://www.myphpbook.com. This web site contains answers to frequently asked ques-
tions as well as various other web development resources.

Alternatively, you can contact me directly at quentin.zervaas@apress.com. Please ensure
your questions relate directly to the content of the book. It is likely I will publish your ques-
tions and the answers on the FAQ section of the book’s web site.

■INTRODUCTIONxx

9063CH00CMP3 11/19/07 8:39 PM Page xx

Application Planning and Design

In this book we will be creating a blogging web application that will allow us to cover not only
all of the different PHP and database considerations involved, but also a number of different
Web 2.0 principles (such as Ajax and tagging). The blogging application will allow users to create
and manage their own blog. Each user will have their own public page on which their blog posts
are published.

Figure 1-1 shows how the application will be structured. As you can see, we will use a data-
base to store application data, and we will create separate logical areas in the application to
manage each feature as required. Additionally, one of the core aspects of Web 2.0 applications is
using standards-compliant XHTML and CSS. We will focus on developing clean markup and
well-structured JavaScript classes to ensure maximum compatibility and accessibility.

Figure 1-1. The basic structure of our web application

There are a number of different aspects of the application that we must cover, including
database connectivity, template management, user authentication and permissions, and con-
sumption of third-party web services.

In this chapter we will look at all features of the web application from a “black box” point
of view. Each specific feature will be broken down in its respective chapter; here we will look at
the application as a whole and discuss various options that need to be considered.

In essence, this chapter can be viewed as an informal design document, including an
analysis of all required features and a look at design from a high-level. In developing the web
application, we will be using both custom-written code as well as various third-party libraries
(such as Prototype for JavaScript development, Smarty for template management in PHP, and
the Zend Framework for several other features).

1

C H A P T E R 1

9063Ch01CMP2 10/20/07 1:47 PM Page 1

What Is Web 2.0?
So exactly what defines a web site as being “Web 2.0”? There are many different opinions on
this, making it difficult to pinpoint an exact definition; however, some of the features typically
associated with Web 2.0 sites are as follows:

• Using standards-compliant HTML and CSS. This allows sites to work across many plat-
forms and helps with accessibility. This includes the use of microformats to generate
friendly HTML that can be used across a variety of platforms (as we will see in Chapter 10).

• Using Ajax to provide a rich user interface. By performing trivial operations in the
background using XMLHttpRequest, web pages can be more functional and intuitive.

■Note XMLHttpRequest is a JavaScript API that allows a background HTTP request to occur while a user
is viewing a web page. This means that the current page can be updated based on a response from the
server without the user navigating to another page on the web site. The phrase “making an Ajax request”
(or similar) typically refers to performing an HTTP request in the background using XMLHttpRequest.

• Sharing data using web feeds and web services. Users like to aggregate many feeds to
easily receive content updates from their favorite sites using web feeds (such as RSS or
Atom). Additionally, web services can enable one site to use data from other sites (for
instance, we will display maps on our site using Google Maps).

• Incorporating social networking tools. Blogs and forums can enable users to commu-
nicate with each other.

While none of these features or aspects of development are new, we use the Web 2.0 term
to describe the current generation of web sites that make good use of HTML and CSS while
perhaps improving their interface with Ajax and social-networking tools. These are sites that
“do things right.” However, that’s not to say that a site that uses any of these features is neces-
sarily a good site.

Database Connectivity
In this application, we will need to save a number of different types of data, including

• User accounts

• User settings

• User-submitted data (such as blog posts, images, tags)

We will make use of a database abstraction layer to insert, update, and delete data from the
database. This allows us to develop PHP code that will work regardless of the type of underlying
database server. Within this book we will make use of MySQL, but if you want to use PostgreSQL
instead, it would simply be a matter of changing the application’s database connection settings.

CHAPTER 1 ■ APPLICATION PLANNING AND DESIGN2

9063Ch01CMP2 10/20/07 1:47 PM Page 2

We will be using the Zend Framework’s Zend_DB class to handle the database abstraction.
This is essentially an interface to the PDO extension for PHP 5. We will cover the installation of
all required software in Chapter 2.

■Note In this book, all “database code” (i.e., PHP code that interacts with the database) will be self-
contained within its relevant class or function. This means that if you want to use a different database
abstraction layer (such as PEAR DB, ADOdb, or your own custom layer), it will be fairly straightforward to
implement in place of Zend_Db.

Web Site Templates
One of the reasons PHP has become so popular is that you can easily include PHP code
directly within the HTML code you want to output. This makes developing simple and small
web applications very easy; however, this typically doesn’t scale well. When an application
grows large, it becomes difficult either to add new functionality within a bunch of HTML
markup or to change the site design by sifting through the PHP code.

To deal with this, we aim to separate our application logic from our display logic. Essen-
tially, this means the code that does the hard work (such as processing forms, reading data
from the database, or checking user permissions) is performed in one place, while the HTML
that will be output to the end user is stored in its own template file.

In Chapter 2 we will look at Model-View-Controller (MVC), which is a design pattern
specifically describing this separation of application and display logic. We will be using the
Smarty Template Engine to manage the display of templates, as this is a very popular and
powerful template engine (Smarty will essentially make up the “view” portion of MVC, as we
will see in Chapter 2).

Web Site Features
So far we have only looked at peripheral aspects of web application development, so let’s take
a look at some specifics. Let’s look at what the end users of the web application would see.

Main Home Page and User Home Page
The home page of our web application will display blog posts from all users in a single journal.
Registered users will be able to decide whether or not their posts are public and therefore are
displayed on the home page.

In addition to the main home page, each user will have a public home page. This will dis-
play all of their blog posts in a single listing.

CHAPTER 1 ■ APPLICATION PLANNING AND DESIGN 3

9063Ch01CMP2 10/20/07 1:47 PM Page 3

User Registration
We will need to create an account registration tool so new users can sign up and create a blog
with our web application.

Essentially, this tool will need to do the following:

• Validate their details (we will use Ajax to help us with this).

• Use CAPTCHA to prevent automated registrations.

■Note A CAPTCHA is typically an image made up of a series of random characters that must be entered by
the user when submitting a form. This technique is used to differentiate between humans and computers. It
is discussed further in Chapter 4.

• Create their account in the database.

• E-mail them to confirm their account details.

Account Login and Management
Once a user has created and confirmed their account, they will be able to log in to their
account. This part of the application will allow them to do several things:

• Manage their blog (see the next section).

• Update their account details (such as their e-mail address).

• Log out from their account.

User Blogs
The blog functionality is the core feature of the application, and we will use it to demonstrate
a wide variety of web development and Ajax programming concepts. There are many features
we must implement to make a useful blogging system. Users must be able to do the following:

• Add, edit, and delete blog posts.

• Tag posts.

• Upload images to blog posts, and display an image gallery for the user’s account.

• Tie geographical data (maps) to the blogs.

Web Site Search
A keyword search tool is vital in any content-based web site. As such, we need to provide users
with a way of searching for any content that appears on the site.

CHAPTER 1 ■ APPLICATION PLANNING AND DESIGN4

9063Ch01CMP2 10/20/07 1:47 PM Page 4

It needs to be easy to use and efficient, and it must provide meaningful results. To make
it easier to use, we will develop an auto-completing search box (similar to that of Google
Suggest—see http://www.google.com/webhp?complete=1).

Application Management
Administration of a web site or application is very important, and it is often overlooked or
underdeveloped. An administration area is used to perform day-to-day management of the
web application, such as viewing web site statistics or posting news to the site.

It often doesn’t receive the attention it deserves because it requires spending development
time (which means money) on an area of the site that the target demographic never sees.

In Chapter 14 we will look at various strategies for application deployment, management,
and maintenance. Because this area is not for “public consumption,” advanced features and a
rich interface aren’t as important as they are on the main area of the site, and we won’t be
focusing on the development of this area. However, we will look at the features you should
consider when developing an administration area for the blogging application.

Other Aspects of Development
In addition to the specific features of our web application, there are some other aspects we
must consider in the development process. No chapters are specifically devoted to any of
these topics, but they do form the basis for content that is covered throughout the book.

Search-Engine Optimization
While we are not looking to achieve high search-engine rankings with this particular web
application (after all, it’s not a real-world web site we are developing), we will still aim to
develop our code in a way that is optimal for search engines. This means that if you choose to
extend the application developed in this book, a strong basis for search-engine ranking will
have been formed.

Specifically, this means the following:

• Using friendly URLs. A friendly URL is basically a URL that doesn’t contain a lot of
extraneous characters. For example, if you had a document called “About Us,” a URL
such as http://www.example.com/about-us would be user friendly, while a URL such as
http://www.example.com/documents.php?id=1234 would not be so friendly.

• Correctly using HTML markup (such as headings, paragraphs, and tables).

• Correctly using HTTP status codes and content types (where relevant).

PHPDoc-Style Commenting
All classes we develop will be commented using PHPDoc-style comments, allowing us to
easily build API documentation for all our classes. PHPDoc is based on Sun’s Javadoc system,
which is a simple method of commenting all functions, arguments, variables, and packages so
developers can easily reuse them.

CHAPTER 1 ■ APPLICATION PLANNING AND DESIGN 5

9063Ch01CMP2 10/20/07 1:47 PM Page 5

While this is not essential for the development of our web application, it is a good habit to
get into when developing. Additionally, you may find it useful when following code examples
in this book to have a PHPDoc comment block before each function.

■Note The code displayed in this book typically won’t include any PHPDoc comments since listings will
be described in the text; however, they will be included in the downloadable code for this web application
where possible.

PHPDoc works by placing a block of comments before each function, class, or variable
definition. It is not mandatory in all situations—only where you feel it is necessary.

Each comment block begins with a description, and then is followed by a series of one or
more optional parameters. For example, when adding PHPDoc comments to a function, you
specify the input parameters and return value data. Obviously, the PHPDoc comments you
would write for a variable definition would contain different information.

The following code shows an example of a PHPDoc comment for a simple user-defined
function:

<?php
/**
* mySimpleFunction
*
* A simple function to return a friendly message
* to the user based on their name and age
*
* @param string $name The name of the user
* @param int $age The age of the user
* @return string The generated welcome message
*/
function mySimpleFunction($name, $age)
{

$str = sprintf('Hello %s, your age is %d', $name, $age);
return $str;

}
?>

The first thing to note is how the block of comments begins. The /** token indicates to
the PHPDoc parser that a PHPDoc comment block is beginning.

The first line of the block is a short description. My own personal preference here is to
simply use the name of the function, class, or variable.

The next section in the comment block is a longer description. Here I try to describe what
the function, class, or variable does from a black-box perspective. That is, what it does, not
how it works. Any specific functionality considerations or funky logic that takes place is dealt
with in standard comments within the code.

CHAPTER 1 ■ APPLICATION PLANNING AND DESIGN6

9063Ch01CMP2 10/20/07 1:47 PM Page 6

■Note Although it is not required, the usual convention is to include an asterisk at the beginning of each
line of the /** … */ block. This is primarily to improve readability and to easily identify entire PHPDoc
blocks.

The final section of the comment block contains the various PHPDoc parameters used by
the parser to link the API documentation together better and to provide you with useful docu-
mentation. Each parameter begins with @, directly followed by the name of the parameter.
Following that is the information required for that particular parameter.

In this example, you can see the @param and @return parameters. @param is used to specify
aspects of the function arguments: first, the type of argument (in this case, our first argument
is a string); next, its name (which in this case is $name); and finally, a brief description of what
the input data should contain. The @return parameter is used to give information about the
data returned from the function: the type of data is specified, followed by a brief description
of what the return data contains.

For more information about phpDocumentor, read the “phpDocumentor Guide to Creat-
ing Fantastic Documentation” at http://www.phpdoc.org/tutorial.php.

Security
We will be looking closely at the security of our web site, as this very important aspect of web
development is often overlooked or implemented incorrectly.

For instance, we will focus on making sure attacks such as SQL injection, cross-site scripting
(XSS), and cross-site request forgeries (CSRF) do not occur. This is especially important in sites
that not only make use of JavaScript and Ajax, but also make heavy use of user-submitted data.
We achieve this by correctly filtering submitted data while correctly “escaping” user-
submitted data when it is returned to users’ browsers.

Application Logging
An aspect of development that ties in closely to both the security and performance considera-
tions is that of logging. We will maintain a log file within our application to record significant
events. For example, we will record a log entry whenever somebody tries to log in but provides
incorrect information.

Maintainability and Extensibility
In addition to using some well-known third-party classes and libraries, we will also be devel-
oping our own custom classes in such a way that they can easily be expanded upon in the
future.

In the next section, we will consider the use of unit testing. Note that unit testing aids
greatly in developing applications that can easily be extended (as well as aiding in extending
the application); however, this exceeds the scope of the book. You should keep unit testing in
mind for your own future application development if you don’t already use it.

CHAPTER 1 ■ APPLICATION PLANNING AND DESIGN 7

9063Ch01CMP2 10/20/07 1:47 PM Page 7

Some of the ways we will make our code easily maintainable and extensible include

• Using a template engine to separate application logic from display logic.

• Using database abstraction to handle database server interaction.

• Making heavy use of the object oriented programming (OOP) features in PHP 5 to
organize code.

Version Control and Unit Testing
There are two other reasonably important aspects of the web development process that we
won’t be covering in this book, but that you should at least be aware of: version control and
unit testing. While they are important, they don’t directly concern the concepts and libraries
we will be looking at in this book.

Almost all web development projects I undertake use some form of version control (typi-
cally Subversion). This allows me to track any and all changes made to the files, and it also aids
with code deployment. If you’re not familiar with Subversion, I encourage you to use it for your
own development projects. You can download it from http://subversion.tigris.org, and you
can download the free O’Reilly book on Subversion from http://svnbook.red-bean.com.

Unit testing is another important tool that should be used when developing your own
web sites (or when developing libraries you can use in multiple applications). A unit test is a
script designed to test the functionality of a class (or of an entire package, or just individual
methods inside a class).

You can perform automated testing using multiple unit tests, which will assist in finding
regression bugs if they occur (that is, bugs that occur incidentally as a result of changing code
that previously worked).

All of the code provided in this book has been tested, so including unit tests with all of the
code would be somewhat redundant. For your own unit testing, you can use a package such as
Simple Test (http://www.lastcraft.com/simple_test.php).

Summary
In this chapter, we have looked at the required features of our Web 2.0 application, and briefly
at how they will be implemented. From here on in, we will work on the actual application
development, starting with the initial setup in Chapter 2.

CHAPTER 1 ■ APPLICATION PLANNING AND DESIGN8

9063Ch01CMP2 10/20/07 1:47 PM Page 8

Setting Up the Application
Framework

In the last chapter, we covered the features that we will be implementing in our web applica-
tion. Before we can get started on these features, however, we must set up our development
environment. In this chapter, we will be completing a number of tasks, beginning with setting
up the required server software.

Following that, we will create a filesystem structure that will serve as the basis for our web
application. There are a number of different types of files in our web application, and we will
keep them as organized as possible. For example, we need one directory for the web server to
use as the base directory from which to serve files, we need another directory to hold custom
and third-party PHP libraries, and we need another to hold web site templates.

Next, we will set up the database. The actual creation of database schema and various
queries will be covered in later chapters, but here we will write the PHP code required to con-
nect to the database.

Then we will write code to handle client requests to our web site. We will use the Model-
View-Controller design pattern to handle requests, and we will look more closely at this model
in this chapter.

Finally, we will install the Smarty Template Engine into our application and set up some
basic templates. We will expand on these templates as we continue through this book, but the
material provided here should explain the basics of Smarty.

Also in this chapter, we will create a configuration file for our web application. This file
allows you to deploy the web applications to different servers easily. For example, we will be
storing database connection settings in this file, meaning that you can switch databases or the
database password simply by modifying this file.

Web Server Setup
Setting up a web server correctly can be a complex task, and I cannot cover all scenarios in
this book. However, I will cover the setup used for all code in this book.

I have used a somewhat typical LAMP setup (Linux/Apache/MySQL/PHP), broken down
as follows:

• Operating system: Linux

• Web server: Apache 2.2

• Database server: MySQL 5

• Server-side scripting language: PHP 5.2.3 9

C H A P T E R 2

9063Ch02CMP4 11/4/07 12:23 PM Page 9

Operating System
The code in this book has been developed and tested on Linux, FreeBSD, and Microsoft Win-
dows XP. There are no differences in code required for any of these platforms. Note also that
references to Linux can typically also include similar platforms such as FreeBSD and Mac OS X.

For Windows there are slight differences in the configuration of the web server, as well as
in the application configuration file we will develop later in this chapter. Each of these differ-
ences is noted in the relevant places.

Installing the Apache HTTP Server
Apache HTTP Server 2.2 is the web server of choice for this book—it is the latest stable release
of Apache at the time of writing. This web server is available for Linux and Windows. Since I
can’t guarantee all PHP code in this book will work correctly on IIS, you should use Apache if
you are using Windows. Alternatively, you may choose to use an older version of Apache (such
as 1.3 or 2.0). There should be no problems with doing so, but this cannot be guaranteed.

You can download Apache 2.2 from http://httpd.apache.org. We will use a typical con-
figuration, enabling all modules (including mod_rewrite, which we require in order to use
Zend_Controller). You may also wish to include extra options that aren’t included by default
(such as SSL).

To install Apache on Windows, you can download the installer from the Apache web site,
which will take you through the installation step by step.

The easiest way to install Apache (as well as PHP and MySQL) on Linux is to use the
packaging system that comes with your operating system (such as Ports on FreeBSD).
However, if you do not use a packaging system, you can install Apache 2.2.4 on Linux by
downloading the httpd-2.2.4.tar.gz file (or a newer version if one is available) and using
the following commands:

tar -zxf httpd-2.2.4.tar.gz
cd httpd-2.2.4
./configure --enable-modules=all
make
make install

Note that by default this will install Apache into the /usr/local/apache2 directory.
Assuming each of these steps were successful, the Apache files should now be installed.

You can configure the web server by editing the /usr/local/apache2/conf/httpd.conf file.
Once that has been done, you can start the web server by issuing the following command:

/usr/local/apache2/bin/apachectl start

If there is an error in the configuration, you will be notified. Alternatively, you can issue
the configtest command instead of start with apachectl to ensure that the configuration is
correct.

We will look at the Apache configuration required for our web application in the “Config-
uring the Web Server” section later in this chapter.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK10

9063Ch02CMP4 11/4/07 12:23 PM Page 10

Installing MySQL 5
Next you must install MySQL 5. You can download it from http://dev.mysql.com/downloads.

Just like Apache, the Windows version of MySQL 5 is very straightforward to install as it
uses an installer. If you are installing on Linux, it is recommended that you download the
binary distribution, as MySQL can be a slow program to compile from source. I recommend
installing MySQL to the /usr/local directory, although you may prefer a different setup.

Assuming you have downloaded the 5.0.41 version, the commands to install MySQL on
Linux are as follows:

cd /usr/local
tar -zxf /path/to/mysql-5.0.41-linux-i686.tar.gz
ln -s mysql-5.0.41-linux-i686 mysql
cd mysql
./configure

Setting up the server using a symbolic link to /usr/local/mysql allows you to upgrade the
server version in the future much more easily.

Once you have run the configure script, you can start the MySQL server with the following
command:

./bin/mysqld_safe &

Note that this assumes you are already in the /usr/local/mysql directory.
It is now recommended that you add /usr/local/mysql/bin to your system path so you

can easily load MySQL programs when required (such as mysql, mysqladmin, and mysqldump).

Installing PHP 5.2.3
The code developed in this book is designed to run on PHP 5.2.3 (or later). We will be using
many PHP 5-specific features, so you will not be able to run the code in this book on PHP 4.
Strictly speaking, you can use a version of PHP 5 earlier than 5.2.3, but it is best to use the lat-
est available version. Note that the Zend Framework requires a minimum PHP version of 5.1.4.

Download PHP 5.2.3 (or later) from the PHP web site
(http://www.php.net/downloads.php), and use the following commands to compile a fresh
version of PHP. Note that these commands only include the minimum options required for
compatibility with the code in this book.

tar -zxf php-5.2.3.tar.gz
cd php-5.2.3
./configure --with-apxs2 \

--with-gd --with-curl \
--with-mysql --with-pdo-mysql \
--with-jpeg-dir --with-png-dir \
--with-freetype-dir --with-zlib

make
make install

Once these commands have successfully executed, PHP should be compiled and
installed, including the PEAR library in /usr/local/lib/php.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 11

9063Ch02CMP4 11/4/07 12:23 PM Page 11

■Note Please ensure that your version of PHP is built with the GD library enabled, as we will use it in this
book for generating CAPTCHA images (Chapter 4) and for resizing uploaded images (Chapter 11).

When you run the make install command, the Apache httpd.conf file will be modified
to load the PHP library; however, you may still need to add the following lines to ensure that
Apache recognizes files with the extension .php as PHP files:

AddType application/x-httpd-php .php
AddType application/x-httpd-php-source .phps

This second line is optional, but it is included with the PHP documentation, so I have
included it here.

You should also modify the DirectoryIndex directive in httpd.conf so index.php files are
treated as index files. You can simply add index.php to this command so it looks something
like the following:

DirectoryIndex index.php index.html

Application Filesystem Structure
Let’s now take a look at the filesystem structure we will be using for the web application. The
precise naming and organization of the directories in the web application is not in itself criti-
cal—it is simply important that everything is easy to find and manage.

In this book, we will develop the entire application within a directory called /var/www/
phpweb20 (with “phpweb20” referring to the title of this book). You can, of course, use whichever
directory on your own server that you choose, although we will refer back to this directory name
on several occasions.

Web Root Directory
We need to define a root directory for the web server to access. This is the directory specified
in the Apache configuration, and it is where Apache looks for files when a user requests a page
in the web site. I will call this directory htdocs (the full path is /var/www/phpweb20/htdocs).

Most of the files in our application will exist outside of this directory (such as PHP classes
and web site templates), which prevents users from directly accessing these files.

Data Storage Directory
Next, we need a directory for storing application data (that is, data in addition to that in the
database). Here we will store log files (both from Apache, and those we create ourselves), files
uploaded by users, as well as any other temporary data.

I will call this directory data, and it will contain a number of subdirectories for each of the
different types of data stored. These subdirectories are logs, uploaded-files, and tmp.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK12

9063Ch02CMP4 11/4/07 12:23 PM Page 12

PHP Classes Directory
We next need a directory called include, which will be used to store all PHP functions and
libraries. Any third-party scripts we use (such as Smarty) will also be stored in this directory
in addition to our own code. Application controllers (scripts that define the different actions
users can perform on the web site) will be stored in a directory called Controllers in the
include directory.

When we create the Apache virtual host for our application (in the “Configuring the Web
Server” section of this chapter), we will include the include directory in the PHP include_path
directive, so our application will know where to find this code.

Templates Directory
Finally, we need a directory to hold all the web site templates. We could put these directly
inside either the htdocs directory or the include directory; however, they are not PHP code
(although they do contain display logic), and they shouldn’t be directly accessible (although
they do contain HTML markup). We will put them in a directory called templates.

Full Directory Structure
Putting this all together, the directory structure of our web application will look like this:

/
|- /data
| |- /logs
| |- /uploaded-files
| |- /tmp
|- /htdocs
|- /include
| |- /Controllers
|- /templates

To create this structure in Linux, you would issue the following commands:

mkdir /var/www/phpweb20
cd /var/www/phpweb20
mkdir data
mkdir data/logs
mkdir data/uploaded-files
mkdir data/tmp
mkdir htdocs
mkdir include
mkdir include/Controllers
mkdir templates

When you view the directory listing, you should see the following:

ls
data/ htdocs/ include/ templates/

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 13

9063Ch02CMP4 11/4/07 12:23 PM Page 13

■Note You will need sufficient permissions to create this directory structure. You may instead prefer to
keep the code for this book in your home directory. I chose to use /var/www since it is a commonly used
area on web servers to hold web sites, and it is short and easy to refer back to when required. (On a typical
Windows setup, you won’t need any special permissions to create the required directories.)

Installing the Zend Framework
The Zend Framework is an open-source library of PHP 5 components that can be used to
solve tasks that commonly arise in everyday web development. It is actively contributed to
by a large number of developers, and it is backed by Zend (the company that writes the Zend
Engine, which has powered PHP since PHP 4). We will be using this framework in our applica-
tion, as it allows us to focus on developing a Web 2.0 application, rather than getting bogged
down in the details of building an entire application infrastructure.

These are some of the components we will be using:

• Zend_Auth and Zend_Acl: Used to authenticate users when they try to log in and to check
their permissions (see Chapter 3)

• Zend_Controller: Used to handle client requests and direct the requests to the appro-
priate classes (see later this chapter)

• Zend_Db: Used to interact with the application MySQL database

• Zend_Mail: Used to send e-mails to users

• Zend_Validate and Zend_Filter: Used to check and sanitize user-submitted data in forms

• Zend_Search: Used for full-text searching

We will use more components, but, as you can see, we will be making heavy use of the
framework.

Download the Zend Framework from http://framework.zend.com. In this book, I used
version 1.0.2, but you should use the most up-to-date version available. Use these commands
to extract the library to the include directory:

cd /var/www/phpweb20
wget http://framework.zend.com/releases/ZendFramework-1.0.2/
ZendFramework-1.0.2.tar.gz
tar -zxf ZendFramework-1.0.2.tar.gz
mv ZendFramework-1.0.2/library/Zend include

The last command moves the actual library files from the extracted archive into the appli-
cation directory. The additional files in the archive include documentation and unit testing
and are not really required. You may wish to remove the downloaded files once you have
installed the framework, as they are no longer needed.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK14

9063Ch02CMP4 11/4/07 12:23 PM Page 14

Configuring the Web Server
A typical development setup is to use your normal computer (such as your Windows or Mac OS
machine) to write your code, while running the web server on another server. In such a case, you
need to access the web server over a network. For example, I use a Windows machine for my
day-to-day work, while my web server is a FreeBSD machine elsewhere in the office.

■Tip I aim to keep my development web server configured identically to my production server, as this
helps to eliminate any unforeseeable issues that may arise when deploying my code (such as different
versions of linked libraries).

For the purposes of this book, I assume the web application is accessible using the web
address http://phpweb20. In order to access my web server using this hostname, I make a fake
DNS entry in my Windows host file so my browser will resolve the phpweb20 hostname to
192.168.0.80. This is the entry I add in my Windows hostname file (c:\windows\system32\
drivers\etc\hosts in Windows XP):

192.168.0.80 phpweb20

■Note Setting up a host as described here is not related to the development of the web application, but
rather allows you to access it in your web browser. Creating fake hostnames is a simple trick for develop-
ment purposes, eliminating the need for a DNS server or a real domain. Once you deploy your application
live, you will need to use a real hostname so other people can access your web site.

If you have control over a real DNS server, you may instead prefer to create your own
hostname. (Just keep in mind that I continually refer to phpweb20 throughout this book.)

■Note You could use IP-based hosting, which would allow you to simply access http://192.168.0.80.
Since name-based hosting in Apache is arguably the most common setup, I’ve chosen instead to use the
method described previously (that is, setting up a fake hostname). Obviously, using a real hostname is better,
but I’ve tried to simplify matters by not requiring it for this book.

Creating a Virtual Host in Linux
To configure the web server, we must first create the <VirtualHost> entry for Apache. I like to
store this configuration data in its own file within my application directory, and then use the
Include directive from the main Apache httpd.conf file. This means changes can be made to
the local configuration, and the main configuration will pick up the changes automatically
when the server is restarted. Listing 2-1 shows the contents of the /var/www/phpweb20/
httpd.conf file.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 15

9063Ch02CMP4 11/4/07 12:23 PM Page 15

Listing 2-1. Virtual Host Configuration for Apache on Linux (httpd.conf)

<VirtualHost 192.168.0.80>
ServerName phpweb20
DocumentRoot /var/www/phpweb20/htdocs

<Directory /var/www/phpweb20/htdocs>
AllowOverride All
Options All

</Directory>

php_value include_path .:/var/www/phpweb20/include:/usr/local/lib/pear
php_value magic_quotes_gpc off
php_value register_globals off

</VirtualHost>

In your main httpd.conf file (commonly found in /usr/local/apache2/conf/httpd.conf
for a default Linux install), you would add the following line:

Include /var/www/phpweb20/httpd.conf

■Note For this VirtualHost directive to work, you must have previously included the NameVirtualHost
192.168.0.80 in your main web server configuration before loading this virtual host.

There may be other directives you wish to add to your configuration, but this is a pretty
standard configuration. It allows you to override configuration per directory as required with a
.htaccess file (because of the AllowOverride directive), and it tells the PHP module where to
look for included files. In this example, it will first look in the current directory, then in the
/var/www/phpweb20/include directory, then finally in the PEAR library. Note that the specific
location of PEAR may change depending on your Linux distribution or operating system.

■Note As a general rule, the PHP register_globals setting should be set to off. If this setting is on, the
form, URL, session, and cookie variables will be made into global variables, which is generally a bad thing.
The problem is that for many years the default was to have this setting enabled, so some web servers will
have it enabled while others won’t. All code in this book will work with register_globals turned off, just
as all code you develop should (unless there’s a particular reason to do otherwise). The same applies to the
magic_quotes_gpc setting, which is used to automatically escape submitted data. While it is not necessar-
ily a bad thing in general, all the code we develop will escape data as required; this setting should not be
relied upon and is therefore disabled.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK16

9063Ch02CMP4 11/4/07 12:23 PM Page 16

Creating a Virtual Host in Windows
Creating a virtual host in Windows is similar to the process in the previous section, except that
the paths must be adjusted. Note also that the PHP include_path directive uses a semicolon as
the separator rather than a colon, since a colon is used to indicate a drive label.

Listing 2-2 shows the Windows equivalent of Listing 2-1. Once again, you will need to
include it in the main web server configuration file, typically found in C:\Program Files\Apache
Software Foundation\Apache2.2\conf\httpd.conf on Windows.

Listing 2-2. Web Server Configuration for Apache on Windows (httpd.conf)

<VirtualHost *:80>
ServerName phpweb20
DocumentRoot "c:/www/phpweb20/htdocs"

<Directory "c:/www/phpweb20/htdocs">
AllowOverride None
Options All

</Directory>

php_value include_path ".;c:/www/phpweb20/include;c:/program files/php/pear"
php_value magic_quotes_gpc off
php_value register_globals off

</VirtualHost>

Restarting Your Web Server
After making changes to your web server configuration, you must restart your web server. In
Linux, the typical way to do this is with the following command:

apachectl restart

In Windows, you can restart Apache by going to Control Panel ➤ Administrative Tools ➤
Services and selecting restart on the Apache2 service.

Once your server has been restarted, you should be able to access http://phpweb20
directly in your browser (or by entering the server IP address directly, although if you’re using
a name-based virtual host system as described previously, this will not show files from the
application directory).

Setting Up the Database
The next thing we need to do is create the MySQL database that we will be using in the web
application. We will call this database phpweb20, and we will create a user called phpweb20 to
access this database.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 17

9063Ch02CMP4 11/4/07 12:23 PM Page 17

To create the database, load the MySQL client program (mysql) and issue the CREATE
DATABASE command as shown here:

mysql -u root

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.0.27-standard

mysql> CREATE DATABASE phpweb20;
Query OK, 1 row affected (0.00 sec)

mysql> use phpweb20
Database changed

Next, we must create the phpweb20 user and assign a password to the account:

mysql> grant all on phpweb20.* to phpweb20@localhost identified by 'myPassword';
Query OK, 0 rows affected (0.01 sec)

■Warning I use the password myPassword for this book, but if you plan on deploying this application and
using it as a real-world site, it is essential that you use a different password than the one created here, as
anybody who has read this book will be able to access your database if you don’t.

To ensure that the database and user have been correctly created, try exiting from the
MySQL client and connecting using the new details. To do so, type the following command
and then enter your password when prompted:

mysql -u phpweb20 -p phpweb20

We will next take a quick look at handling client requests, and then we will return to our
MySQL database and look at the PHP code for accessing the database.

Using the Model-View-Controller Pattern
The Model-View-Controller (MVC) design pattern is a commonly used method of designing
web applications. In simple terms, it separates the presentation of the application from the
underlying application logic.

The three parts of the pattern work as follows:

• Model: This represents the application logic. It performs the “hard work” of the applica-
tion, such as interacting with the database, processing credit card transactions, or
sending e-mails to users.

• View: The view represents the user interface. In the case of our application, this will
typically be HTML code. We will be using the Smarty Template Engine to manage the
view aspect of our application.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK18

9063Ch02CMP4 11/4/07 12:23 PM Page 18

• Controller: The controller joins the view to the model. That is, it responds to events
(such as when a user submits a web form), potentially updating the state of the applica-
tion by interacting with the model.

Figure 2-1 shows how the three parts of MVC fit together in a typical web application.

Figure 2-1. How the Model-View-Controller design pattern fits together in our application

We will be using the Zend_Controller class to handle the controller aspect of MVC. All
user requests will be handled by this class, which will then result either in a new web page
being displayed to the user (using Smarty), or in some update to the application (such as a
new blog post being written to the database).

Separating Application Logic from Presentation Logic
To better demonstrate how MVC works, let’s use the example of a simple news-article publish-
ing system both using MVC and not using it.

The most basic way to retrieve a series of news articles from a database and display them
would be to create a PHP script that connects to a database, queries the database, then loops
over the results and outputs some HTML for each article. The following code shows what such
a script might look like.

<?php
mysql_connect(...);
$result = mysql_query('select * from news order by article_date desc');

?>
<html>

<body>
<h1>News Articles</h1>

<?php while ($row = mysql_fetch_object($result)) { ?>
<h2><?php echo $row->headline ?></h2>

<p>
<?php echo $row->body ?>

</p>
<?php } ?>

</body>
</html>

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 19

9063Ch02CMP4 11/4/07 12:23 PM Page 19

In the preceding script, the application logic is the code that connects to the database
server and retrieves the rows from the news table. The presentation logic is the HTML code
that outputs the articles.

The problem with a script like this is that it can be hard to maintain, especially if you
change the way the news system works (for instance, if you wanted to rename the table to
news_articles). While it appears that you only need to change the code in place, consider
what would happen if you wanted to display your news articles on other pages also. You would
need to duplicate this code and then maintain it accordingly.

Now consider using the MVC pattern to implement this code. There are essentially two
key changes that would be made. The first would be to move the code that retrieves articles
from the database into a reusable component (either a PHP class or function). We would then
call this new function to retrieve the articles so they could be output using HTML. In MVC
terms, this new class or function is the model.

The second change would be to separate the call to retrieve the articles from the actual
HTML. While this change isn’t quite as important as the first change, it is still important as it
allows you to change your HTML code without having to worry about how the data used in the
HTML is generated. In MVC terms, this is separating the controller from the view.

Figure 2-2 shows how the previous code would be structured to use MVC.

Figure 2-2. The news article example represented in MVC

In the MVC version, you would effectively have three files. The model:

<?php
function get_articles()
{

mysql_connect(...);
$result = mysql_query('select * from news order by article_date desc');

$articles = array();
while ($row = mysql_fetch_objects($result)) {

$articles[] = $row;
}

return $articles;
}

?>

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK20

9063Ch02CMP4 11/4/07 12:23 PM Page 20

The controller:

<?php
$articles = get_articles();

display_template('articles.tpl');
?>

■Note display_template() is a fictional function that represents some mechanism used to render
templates.

And the view:

<html>
<body>

<h1>News Articles</h1>

<?php foreach ($articles as $row) { ?>
<h2><?php echo $row->headline ?></h2>

<p>
<?php echo $row->body ?>

</p>
<?php } ?>

</body>
</html>

While this example is fairly trivial, considering how the news articles are maintained
(that is, inserted, edited, or deleted) will highlight the advantages of MVC. It is a nightmare to
maintain code that mixes SQL insert statements directly within the HTML output for the cor-
responding page.

Directing All Requests to index.php
To implement our application using MVC, we will use the Zend_Controller class. First, though,
we must alter our web server configuration to direct all page requests to Zend_Controller,
even if the requested location is not a real file on the filesystem. All requests to files that do
exist on the filesystem (such as our images and CSS files) will be handled normally by Apache;
however, all other requests will be handled by the application bootstrap file (which will be
located in /var/www/phpweb20/htdocs/index.php).

The directives in Listing 2-3 should be placed in a file called .htaccess inside ./htdocs. Note
that these could be placed in the httpd.conf file we created earlier, but doing it here allows us to
make changes without restarting the web server. The RewriteRule directive in Listing 2-3 routes
any request that doesn’t correspond to an actual file or directory through index.php.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 21

9063Ch02CMP4 11/4/07 12:23 PM Page 21

■Note The AllowOverride directive in the Apache configuration we created earlier allows us to change
the configuration within a .htaccess file.

Listing 2-3. Routing All Web Site Requests Through the index.php File (.htaccess)

RewriteEngine on
RewriteCond %{SCRIPT_FILENAME} !-f
RewriteCond %{SCRIPT_FILENAME} !-d
RewriteRule ^(.*)$ index.php/$1

The first line in Listing 2-3 enables mod_rewrite for the directory in which .htaccess is
located (including subdirectories).

The second and third lines set up conditions for rewriting the request to index.php. The
second line says “if the requested file doesn’t correspond to a file relative to the web root then
use the rewrite rule,” while the third line says the same thing but for nonexistent directories.

The final line is then executed if either of the conditions is satisfied. The requested filename
is made available to index.php by adding it to the request string.

Introduction to the Zend_Controller Class
Let’s now begin with the Zend_Controller class. Since we have already installed the Zend
Framework, we can access this class easily. You will learn how to use this class in this section.

First, we will create the index.php file in the ./htdocs directory (to which requests are
routed using mod_rewrite). This file will drive our entire web site. Every single user request
will be handled by this file (aside from requests for files such as images or CSS). This file is the
bootstrap file.

■Note From here onwards in the book, when I use the filesystem path ./ I am referring to /var/www/
phpweb20. For example, the path /var/www/phpweb20/htdocs/index.php will now be referred to as
./htdocs/index.php.

All this bootstrap file needs to do is load and initialize the Zend_Controller_Front class,
then call the dispatch() method, which will call the necessary code to handle the request.
Note that Zend_Controller_Front is a singleton class, meaning that only one instance of the
class may exist. This is why the getInstance() method is used to instantiate it. Listing 2-4
shows the contents of the index.php file.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK22

9063Ch02CMP4 11/4/07 12:23 PM Page 22

Listing 2-4. Handling Client Requests Using Zend_Controller (index.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

$controller = Zend_Controller_Front::getInstance();
$controller->setControllerDirectory('../include/Controllers');
$controller->dispatch();

?>

We will use the registerAutoload() method from Zend_Loader to automatically load Zend
Framework classes. Doing this means you don’t have to use require_once for any of the Zend
Framework classes you use (apart from Zend_Loader).

■Note If you decide to use Zend Framework in any other apps that already use PHP’s class autoloading,
you will either have to modify your autoloader or manually include the Zend Framework library files. The file-
names correspond to classes simply by replacing underscores in the class name with a slash and appending
.php. For instance, Zend_Controller_Front can be included using require_once('Zend/Controller/
Front.php').

How Requests Work with Zend_Controller
If you were to run the code in Listing 2-4 (by visiting http://phpweb20), nothing useful would
happen—an error would be shown. At this point, we need to look at how requests work with
Zend_Controller.

■Note Depending on your PHP configuration, errors may in fact be logged to the filesystem rather than
displayed on screen, so be sure to look for a log file if you encounter unexpected behavior but no error mes-
sages. We will deal with error handling (such as “404 File Not Found”) in Chapter 14.

In Listing 2-4 we called the setControllerDirectory() method. This is used to specify the
directory that holds our web application’s controllers—that is, classes that are used to handle
requests to the application.

For example, you might have a controller called news, used for displaying both a summary
of all news articles on your site, and for displaying individual articles. To create this controller,
you would create a class called NewsController and save it in the Controllers directory
(./include/Controllers/NewsController.php).

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 23

9063Ch02CMP4 11/4/07 12:23 PM Page 23

When Zend_Controller routes a user request, it automatically looks in the controller
directory for a file called NameController.php, where Name corresponds to the controller name
specified. The name is automatically capitalized, meaning a controller named news corre-
sponds to a file called NewsController.php.

■Note The typical naming convention in PHP (including in the Zend Framework) is to capitalize each word
in a class name (regardless of whether each word is separated by an underscore). Conversely, class meth-
ods use camel caps, meaning all words in the method name begin with an uppercase letter except for the
first word. As an extra caveat, I prefer to capitalize all words for static class methods. This lets me know
instantly that the method is static without needing to understand the function.

Other conventions include using two underscores for PHP’s magic method (these names are built into
PHP, such as __get(), __set(), __unset(), and __isset()), while method names beginning with one
underscore indicate private or protected methods (which can only be called with the class or package
respectively).

To then access this controller in your application, you would visit http://phpweb20/news.
To view a specific news article, you might create an action called display, which would be
accessed at http://phpweb20/news/display. To create this action, you would define a method
called displayAction() inside of NewsController. Figure 2-3 shows how the URL is broken down
to correspond to a controller class name and an action handler function within that class.

Figure 2-3. Breaking down a URL into the controller and action

The following code demonstrates this. We won’t be using this particular class in our appli-
cation, but we will be creating similar classes.

<?php
class NewsController extends Zend_Controller_Action
{

public function indexAction()
{

echo 'News article index';
}

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK24

9063Ch02CMP4 11/4/07 12:23 PM Page 24

public function displayAction()
{

echo 'News article details';
}

}
?>

■Note In addition to displaying the string echoed in the preceding function, an error message would also
be displayed due to the way Zend_Controller automatically displays templates. We will look at this more
closely later in the “Automatic View Rendering with Zend_Controller” section of this chapter.

If we were to include this controller in our application (by saving it to ./include/
Controllers/NewsController.php), we would visit http://phpweb20/news/display to display
the “New article details” text. In this URL, news is the controller, and display is the action.

The default controller and action are both index. Here are some examples:

• http://phpweb20 is equivalent to http://phpweb20/index, as is
http://phpweb20/index/index

• http://phpweb20/news is equivalent to http://phpweb20/news/index

Creating the IndexController
At this point in our application development, we must create a controller for the root of the
site. That is, a controller called index that defines an action called index. Listing 2-5 shows the
contents of IndexController.php, which we will save to the ./include/Controllers directory.

■Note As mentioned previously, Zend_Controller looks for the controller file by capitalizing the first let-
ter of the controller name and appending Controller.php to it. So in this case, the index controller code
belongs inside a file called IndexController.php.

Listing 2-5. The Index Controller, Which Is Used for the Web Application Home Page
(IndexController.php)

<?php
class IndexController extends Zend_Controller_Action
{

public function indexAction()
{

echo 'Web site home';
}

}
?>

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 25

9063Ch02CMP4 11/4/07 12:23 PM Page 25

While this particular controller doesn’t yet do anything useful, we will be adding to it, as
well as creating new controllers as we move on in this book. In fact, not only will we extend this
controller, but we will add functionality that will extend to all controllers. To allow for this, we
will extend the Zend_Controller_Action class in a new class called CustomControllerAction.
Listing 2-6 shows the contents of CustomControllerAction.php, which should be stored in the
./include directory.

Listing 2-6. The Controller Action That All of Our Application Controllers Will Extend from
(CustomControllerAction.php)

<?php
class CustomControllerAction extends Zend_Controller_Action
{

public $db;

public function init()
{

$this->db = Zend_Registry::get('db');
}

}
?>

At this stage, we have only defined the init() function, which is automatically called by
Zend_Controller_Front when a controller is loaded. Currently it simply fetches the database
handle from the application registry and stores it in the db property. This allows us to refer
to $this->db from any of our controllers. If we want an init() function in any of the child
classes, we must also call parent::init() from that class so that the init() function in Listing
2-6 is also called.

■Note Listing 2-6 relies on the application database connection being in the variable registry that we will
use Zend_Registry to manage. We create the database connection and look at the Zend_Registry com-
ponent in the “Connecting to the Database” section.

We now need to modify our IndexController class to extend CustomControllerAction
instead of Zend_Controller_Action. Listing 2-7 shows the updated code for
IndexController.php.

Listing 2-7. Modifying the Index Controller to Use the New Controller Action
(IndexController.php)

<?php
class IndexController extends CustomControllerAction
{

public function indexAction()
{

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK26

9063Ch02CMP4 11/4/07 12:23 PM Page 26

echo 'Web site home';
}

}
?>

Defining Application Settings
Before we go any further in developing our application code, we’re going to define some appli-
cation settings. We will store these settings in a file called settings.ini, and we will use the
Zend_Config_Ini class to access them.

■Note Zend_Config also allows storage of settings in an XML file instead of an Ini file. The Zend_
Config_XML class would be used instead of Zend_Config_Ini. If you prefer, you can use the XML solution
instead, since it makes no real difference to the functionality of the application.

The initial settings we will be storing are the database connection details and application
path settings. We will not be implementing any mechanism to update these settings—if you
want to change application settings, you will need to edit the values in this file. We will add
further settings to this file as required.

Listing 2-8 shows the initial application settings we will be using (/var/www/phpweb20/
settings.ini). Update any of these values as you require.

Listing 2-8. The Initial Application Settings (settings.ini)

[development]

database.type = pdo_mysql
database.hostname = localhost
database.username = phpweb20
database.password = myPassword
database.database = phpweb20

paths.base = /var/www/phpweb20
paths.data = /var/www/phpweb20/data
paths.templates = /var/www/phpweb20/templates

logging.file = /var/www/phpweb20/data/logs/debug.log

The first line of this file defines a section in the file. It is possible to have multiple configura-
tions in the same file, and I have specified a section called development. You might also define
sections called staging and production in the same file, allowing you to use different database
details or a different path without having to edit the file when you deploy the application.

Initially the logging file will not exist, but assuming the write permissions are correctly set
on the logs directory, debug.log will automatically be created when required.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 27

9063Ch02CMP4 11/4/07 12:23 PM Page 27

■Note You must define at least one section in a configuration file when using Zend_Config, as the section
to load must be specified when the file is loaded.

Once settings.ini is set up, we need to load it in the index.php file using the Zend_
Config_Ini class. Listing 2-9 shows an updated version of index.php, now including both the
request handling code, as well as the code to load the configuration.

Listing 2-9. Using the Zend_Config_Ini Class to Load the Application Settings (index.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

$config = new Zend_Config_Ini('../settings.ini', 'development');
Zend_Registry::set('config', $config);

$controller = Zend_Controller_Front::getInstance();
$controller->setControllerDirectory($config->paths->base .

'/include/Controllers');
$controller->dispatch();

?>

■Tip In Chapter 14 we will implement error handling in this code to deal with fatal errors (such as being
unable to connect to the database server). In the meantime, Zend_Controller will suppress these errors,
making potential debugging difficult. You may wish to add $controller->throwExceptions(true) to
index.php after $controller has been created (and before the request is dispatched) to make identifying
any potential errors easier.

As you can see, the Zend_Config_Ini class is instantiated, passing the settings filename as
the first argument and the settings section as the second argument.

Following this, we use the Zend_Registry class. This allows us to store the $config object
in a global registry so we can easily access this object again throughout the script’s execution
without needing to reinstantiate Zend_Config_Ini. This is a technique we will also use with the
database connection.

Now, to access any of our configuration variables, we can simply use $config->key. For
instance, to access the database.password setting, we would use $config->database->password
in our code. Note that we have also updated the setControllerDirectory() call to use the path
we set in the config to find the controller classes for Zend_Controller.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK28

9063Ch02CMP4 11/4/07 12:23 PM Page 28

Connecting to the Database
Now that we have all of our database settings stored in the $config variable, we can easily cre-
ate our database connection. For this, we use the Zend_Db class. We must first build an array
with the database connection settings, and then call Zend_Db::factory() to find the appropri-
ate database handler.

What does this mean, exactly? In our configuration, we specified the database type as
pdo_mysql, and the factory() method will find the appropriate handler for this database type.
If you wanted to use PostgreSQL instead, you could simply update the database.type value in
settings.ini to pdo_pgsql, and if you had this driver installed with your PHP installation, it
would use that one instead.

The following example code will connect to a database using the pdo_mysql driver:

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

$params = array('host' => 'localhost',
'username' => 'phpweb20',
'password' => 'myPassword',
'dbname' => 'phpweb20');

$db = Zend_Db::factory('pdo_mysql', $params);
?>

Note that I have hard-coded the connection settings in this example; the code in our applica-
tion will call the appropriate settings we defined previously.

■Note Zend_Db doesn’t initiate a connection to the database until a query is actually executed, so, techni-
cally speaking, in this example no connection is actually made.

Our next step is to include the database connection code in our index.php file—there
are two key additions we must make. The first is to fetch the connection values from $config
instead of hard-coding them. The second is to write the $db object to the Zend_Registry so we
can use it throughout our application.

Listing 2-10 shows the updated index.php file, this time connecting to the database and
writing the $db object to the registry.

Listing 2-10. The index.php File, Now Connecting to the Application Database (index.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 29

9063Ch02CMP4 11/4/07 12:23 PM Page 29

// load the application configuration
$config = new Zend_Config_Ini('../settings.ini', 'development');
Zend_Registry::set('config', $config);

// connect to the database
$params = array('host' => $config->database->hostname,

'username' => $config->database->username,
'password' => $config->database->password,
'dbname' => $config->database->database);

$db = Zend_Db::factory($config->database->type, $params);
Zend_Registry::set('db', $db);

// handle the user request
$controller = Zend_Controller_Front::getInstance();
$controller->setControllerDirectory($config->paths->base .

'/include/Controllers');
$controller->dispatch();

?>

Testing the Database Connection
Now that we have written the database connection code, it is best to ensure that the connection
actually works. As mentioned previously, a connection is not actually made to the database
server until a query is executed, so to test the connection we need to execute a basic SQL query.
Add an extra line of code after creating the $db object in index.php as follows:

$db->query('select 1');

If you visit http://phpweb20 now, an error will be shown if the connection to the database
could not be made (such as Zend_Db_Adapter_Exception: SQLSTATE…). Remember to remove
this test query from your code afterwards.

■Note In Chapter 14 we will add code to handle application errors such as invalid database connections.

The Smarty Template Engine
Smarty is a template engine written for PHP that allows you to easily separate your application
output and presentation logic from your application logic. We looked at what this means ear-
lier in this chapter when covering the Model-View-Controller design pattern, but what does it
actually mean in terms of using Smarty?

Basically, anything we want to show to the user (that is, the HTML output) will be stored
in a template file (which we will denote with a file extension of .tpl). After a user request has

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK30

9063Ch02CMP4 11/4/07 12:23 PM Page 30

been processed, whether that means processing a form or fetching a list of news articles to
display, we will use Smarty to output that template file.

A template file contains a series of placeholders used to dynamically output content. So
in the case of displaying a list of news articles, the template file would loop over the articles
and provide HTML code for each one. In addition, prior to displaying the template, we must
tell the template about any data we want to be able to show in it. So in the case of news arti-
cles, we must assign the articles to the template prior to displaying the template.

To demonstrate this, I will return to the NewsController example we looked at above in
the “How Requests Work with Zend_Controller” section. The following example shows the
basic algorithm used to assign data to a template and then display that template. For this code
to work, we must set template_dir and compile_dir accordingly. These settings indicate the
filesystem paths where templates are stored and where compiled templates should be written,
respectively. This is covered in more detail in the “Downloading and Installing Smarty” section
later in the chapter.

<?php
class NewsController extends Zend_Controller_Action
{

public function indexAction()
{

require_once('Smarty/Smarty.class.php');

$articles = array('News Article 1',
'Another News Article',
'Even More News');

$smarty = new Smarty();
$smarty->template_dir = '/var/www/phpweb20/templates';
$smarty->compile_dir = '/var/www/phpweb20/data/tmp/templates_c';
$smarty->assign('news', $articles);
$smarty->display('news/index.tpl');

}
}

?>

The first thing to do is define some data to assign to the template. In this case, I’ve created
a simple array called $articles, which contains some fake news headlines. After instantiating
and configuring the $smarty object, I assign the $articles array to $smarty, and finally output
the news/index.tpl file. Based on the specified template_dir, the full path of this template
would be ./templates/news/index.tpl.

Now let’s see what the news/index.tpl template might look like. There’s a lot going on in
this template.

<h1>News</h1>

{if $news|@count == 0}
<p>

No news found!
</p>

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 31

9063Ch02CMP4 11/4/07 12:23 PM Page 31

{else}

{foreach from=$news item=article}
{$article|escape}

{/foreach}

{/if}

The first thing to note is that I haven’t included all of the normal HTML tags (such as the
document type and <html> and <body> tags). Typically we would include these tags, but I have
tried to keep the clutter out of this template.

Next is an if/else statement. Note that it is wrapped in curly braces. These are the default
delimiters for Smarty template code. Note also that if expressions in Smarty are not wrapped
in parentheses as they would be in PHP.

Note also that in this template, I use $news to refer to the article data. In the previous news
example, I assigned the $articles variables to the template using the name news.

When processing the data, I first check whether the $news array is empty by using the PHP
count() function. In fact, what I am doing is using a Smarty modifier. Modifiers are applied
using a vertical pipe. Essentially, the variable is passed to the modifier as its first argument.
Smarty comes with several built-in modifiers, but you can also use any PHP function as a
modifier. Because PHP’s count() accepts an array as an argument, I put the @ character before
count. If I didn’t, Smarty would loop over the array and pass each array element to count(),
rather than the array as a whole.

It is also possible to pass arguments to modifiers. For instance, if you wanted to retrieve
the first three characters of a string using substr(), you could do so using $myStr|substr:0:3,
which is equivalent to calling substr($myStr, 0, 3) in PHP. To output a variable, simply wrap
the variable in curly braces. So to output the first three characters of a string in the template,
you would use {$myStr|substr:0:3} in the template.

■Note You can also chain several modifiers together. In the preceding example, you could change the
output to display the first three characters of a string in uppercase by also applying strtoupper() as a
modifier. To do this, you would use {$myStr|substr:0:3|strtoupper}. Modifiers are applied in order
from left to right.

In the template, I next use the {foreach} tag to loop over the $news array. This behaves
almost identically to foreach() in PHP. The array is passed in using the from argument, and
the current element of the array is assigned to variable specified in the item argument. So in
the preceding example, the PHP equivalent of {foreach from=$news item=article} is foreach
($news as $article). If I also wanted the array key, I would specify the key argument:
{foreach from=$news item=article key=k} would be equivalent to foreach ($news as $k =>
$article) in PHP.

Now I output each element of the array inside of the foreach loop. I could simply use
{$article}, but I have improved this slightly by using the escape modifier (this is a Smarty
modifier, not a PHP function). This modifier should be frequently used when outputting data

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK32

9063Ch02CMP4 11/4/07 12:23 PM Page 32

inside of HTML documents, as it will escape HTML entities to make the document valid. In
other words, it will turn > into >, < into <, and & into &, among others.

Finally, I close the foreach loop using {/foreach}. Note how this is similar to how HTML
tags work. Similarly, the {if} clause is closed using {/if}.

Why Not Use a Different Template Engine?
Smarty is certainly not the only choice as far as template engines go. Most PHP developers will
have a different opinion as to which template engine to use. The concerns with Smarty gener-
ally consist of the following:

• The Smarty code is large (approximately 150KB of code for Smarty.class.php and
Smarty_Compiler.class.php combined) and expensive (in terms of processing power)
to use for every request on your web site.

• Why use a metalanguage to output content when PHP is designed to do exactly this?

Certainly, these are both valid concerns. We’ll take a quick look at each of these and prac-
tical ways to deal with them.

Improving Smarty Performance
First, let me say that in real terms, unless you have a high-traffic web site, and/or a slow web
server, the overhead caused by using Smarty will typically not be noticeable. Regardless, it is
always good to look at ways of improving the performance of your web applications.

Smarty compiles templates into native PHP code whenever they are changed. When a
web site is in production, templates will generally not be modified and therefore not be
recompiled. This means that the Smarty_Compiler.class.php class is not loaded, effectively
reducing the amount of code to be parsed by about 90KB.

Next, you can always use code accelerators (such APC or PHP Accelerator) to decrease the
overhead of loading the Smarty library. Additionally, you can cache the output from any or all
of your web pages (using Smarty’s caching functionality, or using something like Zend_Cache).

■Note The Alternative PHP Cache (APC) is free to download and can easily be installed using the PECL
installer. It is used for caching and optimizing PHP code on the web server, thereby improving server per-
formance. If you’re using Linux, you can simply type pecl install apc from the command line, add
extension="apc.so" to your php.ini, and then restart your web server. Check the output from
phpinfo() to confirm that it is correctly installed.

Using a Metalanguage for Templates
While using PHP code directly for templates is a perfectly viable solution, it can be very useful
to use a metalanguage for templates instead. Here are some of the advantages of using Smarty
templates over native PHP code:

• The code is shorter and more easily readable. For example, using {$foo} to output the
$foo variable provides less clutter than <?php echo $foo ?> or <?= $foo ?>.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 33

9063Ch02CMP4 11/4/07 12:23 PM Page 33

• Smarty provides built-in security features, which when activated will control what can
be done in a template. That is, it heavily restricts access to normal PHP functions. Tech-
nically speaking, using native PHP for templates could result in unrelated operations
taking place in a template (such as writing to a file or sending an e-mail). Take, for
example, a content management system (CMS). In addition to being able to update
web site content, a CMS will typically allow users to modify the web site templates.
Enforcing control over what can and can’t be contained in a template has huge benefits
in this type of situation, where user-submitted data is used.

• It can be less daunting for non-programmers to create templates. For example, if you
employ somebody to convert a web design into HTML and CSS, it will be simpler for
them to use Smarty than PHP.

• Smarty can be extended in so many ways that some really powerful effects can be
achieved. The most obvious example is in the use of modifiers. Another powerful (but
often overlooked) feature is creating custom blocks. For example, you could make a
custom Smarty block called roundedbox, which you could use to output content inside
a box with rounded corners. Although Firefox can provide this in CSS (using the
-moz-border-radius selector), it is not available in Internet Explorer (border-radius is
included in CSS3, not yet implemented in major browsers). You could then use tem-
plate code as follows in your template: {roundedbox} some content {/roundedbox}.
Since drawing rounded boxes without a native CSS solution requires the use of HTML
tables or nested divs, you can hide the implementation details away in the roundedbox
block handler.

Of course, it would be unfair to ignore the disadvantages of using a metalanguage for
templates. Here are some of the disadvantages of using Smarty templates over native PHP
code:

• There is extra overhead in parsing and compiling the templates in PHP code. Note,
however, that this is only ever done when a template is changed, and therefore the
overhead is almost zero in the long term.

• Users must learn an extra language, and while Smarty is really good at some things,
there are some drawbacks. For example, if you want to output an array into a three-
column table, you will generally end up with a clutter of {assign}, {math}, and
{section} tags. However, you can also extend to create built-in functions or include
a separate template to hide this clutter.

The Zend Framework does, in fact, provide a templating solution that uses native PHP files.
While we looked at the Zend_Controller component earlier in this chapter (the controller part of
MVC), there is also the Zend_View component (the view part of MVC). This component works
similarly to Smarty, except that the templates it uses are written in native PHP code. If you prefer
to use this instead of Smarty, you will need to adapt the templates we create accordingly.

Downloading and Installing Smarty
You can download the Smarty code from the Smarty web site (http://smarty.php.net). The
latest version at the time of writing is 2.6.18, but you should use the most current version. The

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK34

9063Ch02CMP4 11/4/07 12:23 PM Page 34

following commands can be used in Linux to download Smarty and move it to the application
include directory (./include).

cd /var/www/phpweb20
wget http://smarty.php.net/do_download.php?download_file=Smarty-2.6.18.tar.gz
tar -zxf Smarty-2.6.18.tar.gz
cd Smarty-2.6.18
mv libs ../include/Smarty
cd ../include/Smarty

The contents of the directory should look like this:

ls
Config_File.class.php Smarty_Compiler.class.php internals/
Smarty.class.php debug.tpl plugins/

■Note You may wish to remove the downloaded and extracted files that are left over after installing
Smarty, as they are no longer required.

In order to use Smarty, we need to configure the template_dir and compile_dir properties
of each instantiated Smarty object.

• template_dir is the location where all of our application templates are stored. We
earlier specified this when creating our directory structure and settings file to be
/var/www/phpweb20/templates.

• compile_dir is a directory where Smarty saves compiled templates. Since Smarty tem-
plates use their own metalanguage, Smarty compiles each template to native PHP code
in order to speed subsequent execution. Whenever a template file is modified, Smarty
automatically recompiles that template and saves it to the compile directory.

The compile_dir directory needs to be writable by the web server. We will be using the
/var/www/phpweb/data/tmp/templates_c directory for this (it is convention to use templates_c
as the directory name for compiled Smarty templates). We earlier created the ./data/tmp
directory, but we must now create the templates_c directory and give write permissions to it.
The following commands can be issued to do so:

cd /var/www/phpweb20/data/tmp/
mkdir templates_c
chmod 777 templates_c/

In order to render a template with Smarty, we would now use code similar to the follow-
ing. Note that the foo.tpl template doesn’t really exist (but if it did its full path would be
/var/www/phpweb20/templates/foo.tpl).

<?php
require_once('Smarty/Smarty.class.php');

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 35

9063Ch02CMP4 11/4/07 12:23 PM Page 35

$smarty = new Smarty();
$smarty->template_dir = '/var/www/phpweb20/templates';
$smarty->compile_dir = '/var/www/phpweb20/data/tmp/templates_c';
$smarty->display('foo.tpl');

?>

We shouldn’t be hard-coding these paths—we have them stored in our configuration file,
so we should use them. Let’s look at the same code using the paths from settings.ini. (Note
that I am assuming that the $settings variable has already been created and set up as in our
index.php bootstrap file.)

<?php
// assume that $config is already defined
require_once('Smarty/Smarty.class.php');

$smarty = new Smarty();
$smarty->template_dir = $config->paths->templates;
$smarty->compile_dir = $config->paths->data . '/tmp/templates_c';
$smarty->display('foo.tpl');

?>

Automatic View Rendering with Zend_Controller
When using Zend_Controller, a plug-in called ViewRenderer is automatically loaded, and it
displays a view script (that is, a template) based on the names of the requested controller and
action. This means that when we use Smarty we don’t have to instantiate the Smarty class or
call the display() method to output templates; ViewRenderer will do all of this for us.

In order for this to work, we must extend the Zend_View_Abstract class to interact with the
Smarty class. We will create a class called Templater, and we must then tell Zend_Controller
about this class in the index.php bootstrap file.

We will store this class in the application ./include directory in a file called Templater.php.
Additionally, we will create the ./include/Templater/plugins directory, in which we will store
any custom Smarty plug-ins that we write throughout this book. By storing all of our own exten-
sions in a separate directory, we can easily upgrade to the latest version of Smarty without
having to track which of our files need moving.

To create the required directories, use the following commands:

cd /var/www/phpweb20/include/
mkdir -p Templater/plugins

■Tip The -p argument to mkdir results in intermediate directories being created as required. That is, if the
Templater directory doesn’t exist, it will be created before creating the plugins directory.

We can now create the Templater class, in which we specify template_dir and compile_dir.
Additionally, we must tell Smarty to look in the Templater/plugins/ directory for plug-ins (in
addition to Smarty’s own plugins directory).

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK36

9063Ch02CMP4 11/4/07 12:23 PM Page 36

To implement this class, we must implement several key methods so that ViewRenderer
can interact with Smarty. The most important of these methods are as follows:

• getEngine(): This must return an instance of Smarty. Since this may be called multiple
times, we should cache the Smarty instance so it is only created once. We do this by cre-
ating the Smarty object in the constructor.

• __set(): This assigns a variable to the template. Essentially this means we can replace
$smarty->assign('foo', 'bar') with $this->view->foo = 'bar' in any controller
action.

• __get(): This returns a variable that has previously been assigned to a template.

• render(): This method renders a template. This is effectively the same as calling
$smarty->display(), except that this method should return the output (not display it
directly), so we must use fetch() instead of display() on the Smarty object.

Listing 2-11 shows the code for Templater.php, which in keeping with Zend Framework’s
class naming structure means we must store this class in the ./include directory.

Listing 2-11. Extending Smarty for Use with Our Web Application (Templater.php)

<?php
class Templater extends Zend_View_Abstract
{

protected $_path;
protected $_engine;

public function __construct()
{

$config = Zend_Registry::get('config');

require_once('Smarty/Smarty.class.php');

$this->_engine = new Smarty();
$this->_engine->template_dir = $config->paths->templates;
$this->_engine->compile_dir = sprintf('%s/tmp/templates_c',

$config->paths->data);

$this->_engine->plugins_dir = array($config->paths->base .
'/include/Templater/plugins',

'plugins');
}

public function getEngine()
{

return $this->_engine;
}

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 37

9063Ch02CMP4 11/4/07 12:23 PM Page 37

public function __set($key, $val)
{

$this->_engine->assign($key, $val);
}

public function __get($key)
{

return $this->_engine->get_template_vars($key);
}

public function __isset($key)
{

return $this->_engine->get_template_vars($key) !== null;
}

public function __unset($key)
{

$this->_engine->clear_assign($key);
}

public function assign($spec, $value = null)
{

if (is_array($spec)) {
$this->_engine->assign($spec);
return;

}

$this->_engine->assign($spec, $value);
}

public function clearVars()
{

$this->_engine->clear_all_assign();
}

public function render($name)
{

return $this->_engine->fetch(strtolower($name));
}

public function _run()
{ }

}
?>

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK38

9063Ch02CMP4 11/4/07 12:23 PM Page 38

Integrating Smarty with the Web Site Controllers
Finally, we need to make Zend_Controller use the Templater class instead of its default
Zend_View class. To do this, we must use the following code, which we will shortly add to the
application bootstrap file:

$vr = new Zend_Controller_Action_Helper_ViewRenderer();
$vr->setView(new Templater());
$vr->setViewSuffix('tpl');
Zend_Controller_Action_HelperBroker::addHelper($vr);

Note that we must call setViewSuffix() to indicate that templates finish with a file exten-
sion of .tpl. By default, Zend_View will use the extension .phtml. Listing 2-12 shows how the
controller part of index.php looks once this code has been added.

Listing 2-12. Telling Zend_Controller to Use Smarty Instead of its Default View Renderer
(index.php)

<?php
// ... other code

// handle the user request
$controller = Zend_Controller_Front::getInstance();
$controller->setControllerDirectory($config->paths->base .

'/include/Controllers');

// setup the view renderer
$vr = new Zend_Controller_Action_Helper_ViewRenderer();
$vr->setView(new Templater());
$vr->setViewSuffix('tpl');
Zend_Controller_Action_HelperBroker::addHelper($vr);

$controller->dispatch();
?>

■Note Viewing the web site now will still display the “Web site home” message. However, a Smarty error
will occur, since we haven’t yet created the corresponding template file for the index action of the index
controller.

Now, whenever a controller action is executed, Zend_Controller will automatically look
for a template based on the controller and action name. Let’s use the index action of the index
controller as an example, as shown in Listing 2-13.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 39

9063Ch02CMP4 11/4/07 12:23 PM Page 39

Listing 2-13. Our New Index Controller, Now Outputting the index.tpl File (IndexController.php)

<?php
class IndexController extends CustomControllerAction
{

public function indexAction()
{
}

}
?>

When you open http://phpweb20 in your browser, the action in Listing 2-13 will now be
executed, and the Templater class we just created will automatically render the template in
./templates/index/index.tpl.

Since the index.tpl template doesn’t yet exist, however, we must now create it. Again, we
will simply output the “Web site home” message, but we will also create header (header.tpl)
and footer (footer.tpl) templates that will be included in all web site templates. This allows
us to make modifications to the web site in one place and have them carry over to all pages in
the site.

To include the header.tpl and footer.tpl templates in index.tpl, we use Smarty’s
{include} tag. Listing 2-14 shows the contents of index.tpl, which can be found in
./templates/index/index.tpl.

Listing 2-14. The Template for the Index Action of the Index Controller (index.tpl)

{include file='header.tpl'}

Web site home

{include file='footer.tpl'}

If you try to view this page in your browser without creating the header.tpl and
footer.tpl files, an error will occur, so let’s now create these templates. Listing 2-15 shows the
contents of header.tpl, while Listing 2-16 shows footer.tpl. These files are both stored in the
./templates directory (not within a subdirectory, as they don’t belong to a specific controller).

Listing 2-15. The HTML Header File, Which Indicates a Document Type of XHTML 1.0 Strict
(header.tpl)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Title</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>
<body>
<div>

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK40

9063Ch02CMP4 11/4/07 12:23 PM Page 40

Listing 2-16. The HTML Footer File, Which Simply Closes Off Tags Opened in the Header
(footer.tpl)

</div>
</body>

</html>

As you can see, the header and footer are straightforward at this stage. We will develop
them further as we move along, such as by adding style sheets, JavaScript code, and relevant
page titles. The Content-Type <meta> tag was included here because the document will not val-
idate correctly without it (using the W3C validator at http://validator.w3.org). You may need
to specify a different character set than iso-8859-1, depending on your locale.

Note that I have specified a document type of XHTML 1.0 Strict. All HTML developed in
this book will conform to that standard. We can achieve this by correct use of cascading style
sheets, inclusion of JavaScript, and correctly escaping user-submitted data in the HTML (an
example of this is the Smarty escape modifier we looked at earlier in this chapter).

If you now load the http://phpweb20 address in your web browser, you will see the simple
“Web site home” message. If you view the source of this document, you will see that message
nested between the <div> open tag from header.tpl, and the </div> close tag from footer.tpl.
Note that the <div> is included as it violates the standard to have text directly inside the
<body> tag.

Adding Logging Capabilities
The final thing we will look at in this chapter is adding logging capabilities to our application.
To do this, we will use the Zend_Log component of the Zend Framework, which we will use in
various places in our application. For example, we will record an entry in the log every time a
failed login occurs in the members section.

Although it is possible to do some pretty fancy things with logging (such as writing entries
to a database, or sending e-mails to a site administrator), all we will do now is create a single
log file to hold log entries. This file can then be used to debug any possible problems that arise
not only during development of the web application, but also in its day-to-day operation.

We will store the log file in the /var/www/phpweb20/data/logs directory that we created
earlier. This directory must be writable by the web server:

cd /var/www/phpweb20/data/
chmod 777 logs

The procedure for using Zend_Log is to firstly instantiate the Zend_Log class, and then add
a writer to it. A writer is a class that does something with the log messages, such as writing
them to a database or sending them straight to the browser. We will be using the Zend_Log_
Writer_Stream writer to write log messages to the file specified in our settings.ini file (the
logging.file value).

The following code shows this procedure. First, a filesystem writer is created, which is
then passed as the only argument to the constructor of the Zend_Log class:

<?php
$writer = new Zend_Log_Writer_Stream('/path/to/log');
$logger = new Zend_Log($writer);

?>

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 41

9063Ch02CMP4 11/4/07 12:23 PM Page 41

We can now add this code to our index.php bootstrap file. We want to create the Zend_Log
object as soon as possible in the application, so we can record any problems that occur in the
application. Since we rely on the logging.file value from settings.ini, we can create our
logger as soon as this configuration file has been loaded.

■Note It is possible to have multiple writers for a single logger. For example, you might use Zend_Log_
Writer_Stream to write all log messages to the filesystem and use a custom e-mail writer to send log
messages of a critical nature to the system administrator. In Chapter 14 we will implement this specific
functionality.

Listing 2-17 shows the new version of index.php, which now creates $logger, an instance
of Zend_Log. The path of the log file is found in the $config->logging->file variable. Addition-
ally, it is written to the registry so it can be accessed elsewhere in the application.

Listing 2-17. The Updated Version of the Application Bootstrap File, Now with Logging
(index.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

// load the application configuration
$config = new Zend_Config_Ini('../settings.ini', 'development');
Zend_Registry::set('config', $config);

// create the application logger
$logger = new Zend_Log(new Zend_Log_Writer_Stream($config->logging->file));
Zend_Registry::set('logger', $logger);

// connect to the database
$params = array('host' => $config->database->hostname,

'username' => $config->database->username,
'password' => $config->database->password,
'dbname' => $config->database->database);

$db = Zend_Db::factory($config->database->type, $params);
Zend_Registry::set('db', $db);

// handle the user request
$controller = Zend_Controller_Front::getInstance();

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK42

9063Ch02CMP4 11/4/07 12:23 PM Page 42

$controller->setControllerDirectory($config->paths->base .
'/include/Controllers');

// setup the view renderer
$vr = new Zend_Controller_Action_Helper_ViewRenderer();
$vr->setView(new Templater());
$vr->setViewSuffix('tpl');
Zend_Controller_Action_HelperBroker::addHelper($vr);

$controller->dispatch();
?>

Writing to the Log File
To write to the log file, we call the log() method on the $logger object. The first argument is
the message we want to log, and the second argument is the priority level of the message.

The following is a list of the built-in log priorities (from the Zend Framework manual):

• Zend_Log::EMERG (Emergency: system is unusable)

• Zend_Log::ALERT (Alert: action must be taken immediately)

• Zend_Log::CRIT (Critical: critical conditions)

• Zend_Log::ERR (Error: error conditions)

• Zend_Log::WARN (Warning: warning conditions)

• Zend_Log::NOTICE (Notice: normal but significant condition)

• Zend_Log::INFO (Informational: informational messages)

• Zend_Log::DEBUG (Debug: debug messages)

■Note It is also possible to create your own logging priorities, but for development in this book we will only
use these built-in priorities.

So, if you wanted to write a debug message, you might use $logger->log('Test',
Zend_Log::DEBUG). Alternatively, you could use the priority name as the method on $logger,
which is essentially just a simple shortcut. Using this method, you could use $logger-
>debug('Test') instead.

As a test, you can add that line to your index.php file after you instantiate Zend_Log, as
follows:

<?php
// ... other bootstrap code

// create the application logger

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK 43

9063Ch02CMP4 11/4/07 12:23 PM Page 43

$logger = new Zend_Log(new Zend_Log_Writer_Stream($config->logging->file));
Zend_Registry::set('logger', $logger);
$logger->debug('Test');

// ... other bootstrap code
?>

Now, load http://phpweb20 in your browser and then check the contents of debug.log. You
will see something like this:

cat debug.log
2007-04-23T01:19:27+09:00 DEBUG (7): Test

As you can see, the message has been written to the file, showing the timestamp of when
it occurred, as well as the priority (DEBUG, which internally has a code of 7). Remember to
remove the line of code from index.php after trying this!

■Note It is possible to change the formatting of the log messages using a Zend_Log formatter. By default,
the Zend_Log_Formatter_Simple formatter is used. Zend Framework also comes with a formatter that
will output log messages in XML. Not all writers can have their formatting changed (such as if you write log
messages to a database—each event item is written to a separate column).

At this stage, we won’t be doing anything further with our application logger. However, as
mentioned, we will use it to record various events as we continue with development, such as
recording failed logins.

Summary
In this chapter we’ve begun to build our web application. After setting up the development
environment, we set up the application framework, which includes structuring the files in our
web application, configuring application settings, connecting to the database, handling client
requests, outputting web pages with Smarty, and writing diagnostic information to a log file.

In the next chapter, we will begin to implement the user management and administration
aspects of our web application. We will be making heavy use of the Zend_Auth and Zend_Acl
components of the Zend Framework.

CHAPTER 2 ■ SETTING UP THE APPLICATION FRAMEWORK44

9063Ch02CMP4 11/4/07 12:23 PM Page 44

User Authentication,
Authorization, and Management

In Chapter 2 we looked at the Model-View-Controller design pattern, which allowed us to
easily separate our application logic from the display logic, and we implemented it using
Zend_Controller_Front. We will now extend our application controller to deal with user
authentication, user authorization, and user management.

At this stage, you may be wondering what the difference between authentication and
authorization is.

• Authentication: Determines whether a user is in fact who they claim to be. This is typi-
cally performed using a unique username (their identity) and a password (their
credentials).

• Authorization: Determines whether a user is allowed to access a particular resource,
given that we now know who they are from the authentication process. Authorization
also determines what an unauthenticated user is allowed to do. In our application, a
resource is essentially a particular action or page, such as the action of submitting
a new blog post.

In this chapter, we will set up user authentication in our application using the Zend_Auth
component of the Zend Framework. This includes setting up database tables to store user
details. We will then use the Zend_Acl component to manage which resources in the applica-
tion each user has access to. Additionally, we must tie in our permissions system to work with
Zend_Controller_Front.

Creating the User Database Table
Since our application will hold user accounts for multiple users, we need to track each of these
user accounts. To do so, we will create a database table called users. This table will contain
one record for each user, and it will hold their username and password, as well as other impor-
tant details.

There will be three classes of users that access our web application: guests, members, and
administrators. A user visiting the application will be automatically classed as a guest until
they log in as a member. In order to distinguish members from administrators, the users table
will include a column that denotes the role of each user. We will use this column when imple-
menting the access control lists with Zend_Acl.

45

C H A P T E R 3

9063Ch03CMP4 11/13/07 9:37 PM Page 45

■Note In a more complex system, you might assign multiple roles to users; however, for the sake of sim-
plicity we will allow only one role per user. Any user classed as an administrator will also be able to perform
all functions that a member can. Additionally, you could also use another table to store user types, but once
again, for the sake of simplicity we will forego this and keep a static list of user types in our code.

The core data we will store for each user in the users table will be as follows:

• user_id: An internal integer used to represent the user.

• username: A unique string used to log in. In effect, this will be a public identifier for the
user. We will display the username on blog posts and other publicly available content,
rather than their real name, which many users prefer to keep anonymous.

• password: A string used to authenticate the user. We will store passwords as a hash using
the md5() function. Note that this means passwords cannot be retrieved; instead they
must be reset. We will implement all code required to do this.

• user_type: A string used to classify the user (either admin or member, although you will
easily be able to add extra user types in the future based on what you learn in this
book).

• ts_created: A timestamp indicating when the user account was created.

• ts_last_login: A timestamp indicating when the user last logged in. We will allow this
field to have a null value, since the user won’t have yet logged in when the record is
created.

Listing 3-1 shows the SQL commands required to create the users table in MySQL. All SQL
schema definitions are stored in the schema-mysql.sql file in the main application directory. If
you’re using PostgreSQL, you can find the corresponding schema in schema-pgsql.sql instead.

■Note How you choose to store the database schema for your own web applications is entirely up to you.
I’ve simply structured it this way so you can easily refer to it as required (and so you have easy access to it
when downloading the code for this book).

Listing 3-1. SQL Used to Create the Users Table in MySQL (schema-mysql.sql)

create table users (
user_id serial not null,
username varchar(255) not null,
password varchar(32) not null,

user_type varchar(20) not null,

ts_created datetime not null,

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 46

9063Ch03CMP4 11/13/07 9:37 PM Page 46

ts_last_login datetime,

primary key (user_id),
unique (username)

) type = InnoDB;

The user_id column is defined as type serial, which is the same as using bigint unsigned
not null auto_increment. I personally prefer using serial, as it is shorter and simpler to type,
and it also works in PostgreSQL.

The username column can be up to 255 characters in length, although we will put a restric-
tion on this length in the code. The password will be stored as an MD5 encrypted string, so
this column only needs to be 32 characters long.

Next is the user_type column. The length of this column isn’t too important, although any
new user types you add will be limited to 20 characters (this is only an internal name, so it
doesn’t need to be overly descriptive). This string is used when performing ACL checks.

Finally, there are the two timestamp columns. MySQL does in fact have a data type called
timestamp, but I chose to use the datetime type instead, as MySQL will automatically update
columns that use the timestamp type. In PostgreSQL, you need to use the timestamptz data
type instead (see the schema-pgsql.sql file for the table definition). The following “Time-
stamps” section provides more details about how timestamps work in PHP.

■Tip Listing 3-1 instructs MySQL to use the InnoDB table type when creating a table, thereby providing us
with SQL transaction capability and enforcing foreign key constraints. The default table type used otherwise
is MyISAM.

You must now create this table in your database. There are two ways to do this. First, you
can pipe the entire schema-mysql.sql file into your database using the following command:

mysql -u phpweb20 -p phpweb20 < schema-mysql.sql

When you type this command you will be prompted to enter your password. This will create
the entire database from scratch.

Alternatively, you can connect directly to the database, and copy and paste the table
schema using the following command:

mysql -u phpweb20 -p phpweb20

Since we will be building on the database as we go, I recommend the second method for
simply adding each new table as required.

Timestamps
The way dates and times are handled in PHP, MySQL, and PostgreSQL is often misunderstood.
Before we go any further, I will quickly cover some important points to be aware of when using
dates and times in MySQL.

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 47

9063Ch03CMP4 11/13/07 9:37 PM Page 47

MySQL does not store time zone information with its date and time data. This means that
your MySQL server must be set to use the same time zone as PHP; otherwise you may notice
odd behavior with timestamps. For example, if you want to use the PHP date() function to
format a timestamp from a MySQL table, be cautious—if you use the MySQL unix_timestamp()
function when retrieving that timestamp, the incorrect date will be retrieved if the time zones
do not match up.

There are three major drawbacks to using the date field types in MySQL:

• If you need to move your database to another server (let’s say you change web hosts),
the moved data will be incorrect if the server uses a different time zone. The server con-
figuration would need to be modified, which most web hosts will not do for you.

• Various issues can arise concerning when daylight savings starts and finishes (assum-
ing your location uses daylight savings).

• It is difficult to store timestamps from different time zones. You must convert all time-
stamps to the server time zone before inserting them.

If you think these aren’t problems that will occur often, you are probably right, although
here’s a practical example. A web application I wrote stored the complete schedule for a sports
league (among other things). Week to week, all games took place in different cities, and there-
fore in different time zones. For accurate scheduling data to be output on the web application
(for instance, “3 hours until game time”), the time zone data needed to be accurate.

PostgreSQL does not have the datetime data type. Instead, I prefer to use the timestamptz
column, which stores a date, time, and time zone. If you don’t specify the time zone when
inserting a value into this column, it uses the server’s time zone (for instance, both 2007-04-18
23:32:00 and 2007-04-18 23:32:00+09:30 are valid; the former will use the server’s time zone
and the latter will use +09:30).

In the sports schedule example, I used PostgreSQL, which allowed me to easily store the
time zone of the game. PostgreSQL’s equivalent of unix_timestamp(ts_column) is extract(epoch
from ts_column). Using timestamptz, this returns an accurate value that can be used in PHP’s
date() function. It also seamlessly deals with daylight savings.

User Profiles
You may have noticed that the users table (Listing 3-1) didn’t store any useful information
about the user, such as their name or e-mail address. To store this data, we will create an extra
table called users_profile.

By using an extra table to store this information, we can easily store an arbitrary amount
of information about the user without modifying the users table at all. For instance, we can
store their name, e-mail address, phone number, location, favorite food, or anything else.
Additionally, we can use this table to store preferences for each user.

Each record in the users_profile table corresponds to a single user profile value. That
is, one record will correspond to a user’s e-mail address, while another record will hold their
name. There is slightly more overhead in retrieving this data at runtime, but the added flexibil-
ity makes it well worth it. All that is required in this table is three columns:

• user_id: This column links the profile value to a record in users.

• profile_key: This is the name of the profile value. For instance, we would use the value
email here if the record holds an e-mail address.

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 48

9063Ch03CMP4 11/13/07 9:37 PM Page 48

• profile_value: This is the actual profile value. If the profile_key value is email, this
column would hold the actual e-mail address.

■Tip We use the text field type for profile_value because this allows us to store a large amount of
data if required. There is no difference in performance between the varchar and text types in MySQL and
PostgreSQL. In fact, MySQL internally creates a varchar field as the smallest possible text field based on
the specified precision.

Listing 3-2 shows the MySQL table definition for users_profile. We will implement code
to manage user profiles later in this chapter.

Listing 3-2. SQL Used to Create the users_profile Table in MySQL (schema-mysql.sql)

create table users_profile (
user_id bigint unsigned not null,
profile_key varchar(255) not null,
profile_value text not null,

primary key (user_id, profile_key),
foreign key (user_id) references users (user_id)

) type = InnoDB;

As mentioned previously, the serial column type (used for the user_id column in Listing 3-1)
is an alias for an auto-incrementing unsigned bigint column. Since the user_id column in this
table refers back to the users table, we manually use the bigint unsigned type because we don’t
want this column to auto-increment.

We use the user_id and profile_key columns as the primary key for the users_profile
table, as no profile values can be repeated for each user. However, a user can have several dif-
ferent profile values.

■Note If you’re using PostgreSQL, the int data type is used for user_id, as this is what the PostgreSQL
serial type uses. Once again, the PostgreSQL version of the table can be found in schema-pgsql.sql.

Introduction to Zend_Auth
Now that we’ve created the users table, we have something to authenticate against using
Zend_Auth. Before we get to that, though, we must understand exactly how Zend_Auth works.

First, we must understand the terminology Zend_Auth uses. The unique information that
identifies a user is referred to as their identity. After a user successfully authenticates, we store
their identity in a PHP session so we can identify them in subsequent page requests.

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 49

9063Ch03CMP4 11/13/07 9:37 PM Page 49

■Note It is possible to write custom storage methods, but the most common storage method will arguably
be in a PHP session. Zend_Auth provides the Zend_Auth_Storage_Session class for this. This class, in
turn, uses the Zend_Session component, which is essentially a wrapper to PHP’s $_SESSION variable
(although it does provide greater functionality). To create some other storage method, you simply implement
the Zend_Auth_Storage_Interface interface. For example, if you wanted to “remember a user” in
between sessions, you could create a storage class that writes identity data to a cookie. You would then
create an adapter (discussed shortly) to authenticate against cookie data. Be careful with this though, as it
could potentially be dangerous if done incorrectly, since cookie data can be forged. One safeguard against
this could be to give them a restricted role until they provide their credentials again, as Amazon.com does: it
will remember your identity but not allow you to make any changes to your account unless you re-enter your
password. Another example of using custom session storage is in a load-balanced environment (where mul-
tiple web servers are used for a single site). Disk-based sessions will not typically be available across all
servers, so a subsequent user request may be handled on a different server than the previous request.
Storing session data in the database alleviates this problem.

In order to authenticate a user, they must provide credentials. In the case of the applica-
tion we are writing, we will use the password column from the users table as the user’s
credentials.

We use an adapter to check the given identity and credentials against our database.
Adapters in Zend_Auth implement the Zend_Auth_Adapter_Interface interface. Thankfully, the
Zend Framework comes with an adapter that we can use to check our MySQL database. If we
wanted to authenticate users against a different storage method (such as LDAP or a password
file generated by Apache’s htpasswd), we would need to write a new adapter.

We will be using the Zend_Auth_Adapter_DbTable adapter, which is designed to work with
the Zend_Db component. If you choose instead to write your own adapter, the only method you
need to implement is the authenticate() method, which returns a Zend_Auth_Result object.
This object contains information about whether authentication was successful, as well as
diagnostic messages (such as whether the provided credentials were incorrect, or authentica-
tion failed because the identity wasn’t found or for some other reason).

By default, Zend_Auth_Adapter_DbTable returns only the submitted username in the
Zend_Auth_Result object. However, we need to store additional information about the user
(such as their name and, more importantly, their user type). When we look at processing user
logins with Zend_Auth, we will deal with this.

Instantiating Zend_Auth
Zend_Auth is a singleton class, which means only one instance of it can exist (like the Zend_
Controller_Front class we used in Chapter 2). As such, we can use the static getInstance()
method to retrieve that instance. We must then set the storage class (remember, we are using
sessions) using the setStorage() method. If you use multiple storage methods, you will need
to call this every time you want to access identity data in each storage location. Typically
though, you will only need to call this once: at the start of each request.

The following code is used to set up the Zend_Auth instance. As you can see, it is fairly
straightforward in its initial usage:

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 50

9063Ch03CMP4 11/13/07 9:37 PM Page 50

<?php
$auth = Zend_Auth::getInstance();
$auth->setStorage(new Zend_Auth_Storage_Session());

?>

We will be using the $auth object in several places in our web application. First, it will be
used when we check user permissions with Zend_Acl (in the “Introduction to Zend_Acl” sec-
tion later in this chapter). It will also be used in application login and logout methods, as we
need to store and then clear the identity data for each of these methods.

As we did with our application configuration and database connection, we will store the
$auth object in the application registry using Zend_Registry. Listing 3-3 shows the index.php
bootstrap file as it stands with Zend_Auth.

Listing 3-3. The Application Bootstrap File, Now Using Zend_Auth (index.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

// load the application configuration
$config = new Zend_Config_Ini('../settings.ini', 'development');
Zend_Registry::set('config', $config);

// create the application logger
$logger = new Zend_Log(new Zend_Log_Writer_Stream($config->logging->file));
Zend_Registry::set('logger', $logger);

// connect to the database
$params = array('host' => $config->database->hostname,

'username' => $config->database->username,
'password' => $config->database->password,
'dbname' => $config->database->database);

$db = Zend_Db::factory($config->database->type, $params);
Zend_Registry::set('db', $db);

// setup application authentication
$auth = Zend_Auth::getInstance();
$auth->setStorage(new Zend_Auth_Storage_Session());

// handle the user request
$controller = Zend_Controller_Front::getInstance();
$controller->setControllerDirectory($config->paths->base .

'/include/Controllers');
$controller->registerPlugin(new CustomControllerAclManager($auth));

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 51

9063Ch03CMP4 11/13/07 9:37 PM Page 51

// setup the view renderer
$vr = new Zend_Controller_Action_Helper_ViewRenderer();
$vr->setView(new Templater());
$vr->setViewSuffix('tpl');
Zend_Controller_Action_HelperBroker::addHelper($vr);

$controller->dispatch();
?>

Authenticating with Zend_Auth
In Chapter 4 we will be implementing the login and logout forms for our web application, but
before we get to that we will take a look at how the login and logout process actually work. As
mentioned previously, we will be using the Zend_Auth_Adapter_DbTable authentication
adapter. Prior to using this adapter, you must already have a valid Zend_Db object.

Because Zend_Auth_Adapter_DbTable is flexible and is designed to work with any database
configuration, you must tell it how your storage is set up. Thus, you must include the following
when instantiating it:

• The name of the database table being used (our table is called users).

• The column that holds the user identity (we are using the username column in the users
table).

• The column that holds the user credentials (we are using the password column).

• And finally, the treatment used on the credentials. This is essentially a function that (if
specified) wraps around the credentials. Remember that we are storing an MD5 hash of
the password in the password column. Therefore, we pass md5(?) as this final argument.
The question mark tells Zend_Db where to substitute in the password value.

Once Zend_Auth_Adapter_DbTable is instantiated (we will use the variable name $adapter),
we can set the identity (username) and credentials (password). To do this, we use setIdentity()
and setCredential().

Next, we will call the authenticate() method on the $auth object (the instance of
Zend_Auth). The single argument passed to authenticate() is the adapter ($adapter). An
instance of Zend_Auth_Result is then returned. We can call isValid() on this object to see
whether the user successfully authenticated. If they didn’t, we can either call getMessages()
on the result to determine why, or we can generate our own error message based on the result
from getCode().

■Note Although Zend_Auth_Result allows us to easily distinguish between an invalid username and an
invalid password, this typically isn’t information you should present to the user. Doing so can implicitly let
them know when a username exists or not, which can aid malicious users in gaining unauthorized access to
your application. The example in Listing 3-4 differentiates between these errors purely to demonstrate how
you can detect them. The code we add to our application will not inform users whether it was their user-
name or their password that was incorrect.

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 52

9063Ch03CMP4 11/13/07 9:37 PM Page 52

Listing 3-4 shows the code used to instantiate Zend_Auth_Adapter_DbTable and to authen-
ticate against the users table. At this stage, we are simply providing a fake username and
password, as we haven’t yet populated the users table. As you can see, we also handle
authentication errors and output a message indicating the reason for failure.

Listing 3-4. Authenticating Against a Database Table Using Zend_Auth and Zend_Db
(listing-3-4.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

// connect to the database
$params = array('host' => 'localhost',

'username' => 'phpweb20',
'password' => 'myPassword',
'dbname' => 'phpweb20');

$db = Zend_Db::factory('pdo_mysql', $params);

// setup application authentication
$auth = Zend_Auth::getInstance();
$auth->setStorage(new Zend_Auth_Storage_Session());

$adapter = new Zend_Auth_Adapter_DbTable($db,
'users',
'username',
'password',
'md5(?)');

// try and login the "fakeUsername" user
$adapter->setIdentity('fakeUsername');
$adapter->setCredential('fakePassword');
$result = $auth->authenticate($adapter);

if ($result->isValid()) {
// user successfully authenticated

}
else {

// user not authenticated

switch ($result->getCode()) {
case Zend_Auth_Result::FAILURE_IDENTITY_NOT_FOUND:

echo 'Identity not found';
break;

case Zend_Auth_Result::FAILURE_IDENTITY_AMBIGUOUS:
echo 'Multiple users found with this identity!';

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 53

9063Ch03CMP4 11/13/07 9:37 PM Page 53

break;
case Zend_Auth_Result::FAILURE_CREDENTIAL_INVALID:

echo 'Invalid password';
break;

default:
var_dump($result->getMessages());

}
}

?>

You can also check whether or not a user is authenticated using the $auth object. The
hasIdentity() method indicates whether or not a user is authenticated. Then, to determine
which user that is, you can use the getIdentity() method.

Similarly, you can use the clearIdentity() method to log a user out. If you are using
sessions as the storage method, this effectively unsets the identity from the session.

As mentioned previously, when $auth->authenticate() succeeds using
Zend_Auth_Adapter_DbTable, only the username is stored for the identity data. In Chapter 4,
when we implement the user login form, we will alter the identity data to include other user
details, such as the user type.

Introduction to Zend_Acl
Zend_Acl is a component of the Zend Framework that provides access control list (ACL) func-
tionality. While it doesn’t fundamentally require the use of Zend_Auth, we will combine these
two components to control what users can and cannot do in our web application.

Essentially what Zend_Acl does is determine whether a role has sufficient privileges to
access a resource.

• Resource: Some object (not an object in the OOP sense, just some “thing”) in a web
application to which access can be controlled. An example of a resource is an action in
a web application, such as approving the content of an article before it is published, or
deleting a user from the system. Additionally, you can provide finer-grained control
over privileges to resources. So, in the example of approving an article, the resource
would be the article-management system (or a particular article, depending on how
you look at it), while the privilege would be the approve action.

• Role: Some object that requests access to resources. In our web application, a role
refers to a user of certain privileges.

Although this language might be somewhat confusing, each user in our application (that
is, each record in the users table) has a particular user type. We refer to this as a user’s role.

■Note It is possible to make a role or a resource inherit from another role or resource, respectively. For
example, let’s say you assign certain privileges to Role A. If you make Role B inherit from Role A, it will get
all of the privileges that Role A has, in addition to any extra privileges you add to Role B. This can make your
permissions system confusing (especially when inheriting from more than one other role or resource), so we
will try to keep it as simple as possible in our application.

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 54

9063Ch03CMP4 11/13/07 9:37 PM Page 54

We will control access to particular resources (such as publishing a blog post or resetting
a password) based on a user’s role. As mentioned when creating the users table, the three
types of users (the three user roles) will be guest, member, and administrator.

The typical flow for using Zend_Acl in a web application is as follows:

1. Instantiate the Zend_Acl class (let’s call this object $acl).

2. Add one or more roles to $acl using the addRole() method.

3. Add resources to $acl using the add() method.

4. Add the full list of privileges for each role (that is, use allow() or deny() to indicate
which resources roles have access to).

5. Use the isAllowed() method on $acl to determine whether a particular role has access
to a particular resource/privilege combination.

6. Repeat step 5 as often as necessary while the script executes.

A Zend_Acl Example
Let’s take a look at actually using the Zend_Acl class. In this example, I will use the role names
we will be using in our application. The privileges I set up here should give you an idea of
exactly what we will be doing when we integrate Zend_Acl into our application.

The first thing I need to do to manage and check permissions is to instantiate the Zend_
Acl class. The constructor takes no arguments:

$acl = new Zend_Acl();

Next, I create each of the roles that I’m checking permissions for. As mentioned previ-
ously, we will be using three different roles: guest, member, and administrator.

$acl->addRole(new Zend_Acl_Role('guest'));
$acl->addRole(new Zend_Acl_Role('member'));
$acl->addRole(new Zend_Acl_Role('administrator'));

After creating the roles, I can create the resources. In fact, I could swap the order; the key
thing is that both roles and resources must be added before defining or checking permissions.

For this example, I will only add account and admin as the resources that will be granted
permissions. There will be other resources in our application, but only items that will be
granted permissions need to be added here, because when checking permissions, we check
for the existence of the requested resource. It’s up to you as the developer how you handle a
permissions check for a nonexistent resource. In this case, I will simply allow access to a
requested resource if it hasn’t been added to $acl.

$acl->add(new Zend_Acl_Resource('account'));
$acl->add(new Zend_Acl_Resource('admin'));

The next step is to define the different permissions required in the application. This is
achieved by making a series of calls to allow() and deny() on the Zend_Acl instance. The first
argument to this function is the role, and the second is the resource. You can add finer-grained
control by specifying the third parameter (the permission name).

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 55

9063Ch03CMP4 11/13/07 9:37 PM Page 55

In the permissions system for our application, the name of the controller (in the context
of Zend_Controller) is the resource, while the controller action is the permission name. As in
the following example, we can allow or deny access to an entire controller (as we will do for
guest in the admin controller), or we can open up one or two specific actions within a con-
troller (as we will do for the login and fetchpassword actions for guest).

$acl->allow('guest'); // allow guests everywhere ...
$acl->deny('guest', 'admin'); // ... except in the admin section ...
$acl->deny('guest', 'account'); // ... and the account management section
$acl->allow('guest', 'account', // ... although let them log in

array('login', 'fetchpassword'));

In addition to defining what guests can do, I also want to define what members are
allowed to do. Members are privileged users, so I allow them more access than guests:

$acl->allow('member'); // members can go everywhere ...
$acl->deny('member', 'admin'); // ... except for the site admin section

Next I define the permissions for administrators, who are even more privileged than
members:

$acl->allow('administrator'); // administrators can go everywhere!

Once all the permissions have been defined, they can be queried to determine what can
and can’t be accessed. Here are some examples:

// check permissions
$acl->isAllowed('guest', 'account'); // returns false
$acl->isAllowed('guest', 'account', 'login'); // true

$acl->isAllowed('member', 'account'); // true
$acl->isAllowed('member', 'account', 'login'); // true
$acl->isAllowed('member', 'admin'); // false

$acl->isAllowed('administrator', 'admin'); // true

Note that in our application the role names will be dynamically determined based on the user
that is logged in, and the resource and permission names will be determined by the requested
controller and action.

Realistically, the call to isAllowed() will be in an if statement, such as this:

<?php
if ($acl->isAllowed('member', 'account')) {

// display member account area
}

?>

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 56

9063Ch03CMP4 11/13/07 9:37 PM Page 56

■Tip If you try to check the permissions of an undefined resource, an exception will be thrown. It is up to
you how you want to handle this. For example, you may choose to automatically deny the request, or you
may choose to automatically allow it. Another option could be to fall back to a different resource if the given
resource is not found; the has() function is used to check the existence of a resource. The same principle
applies to roles. In our application, a user will fall back to guest if their role is not found (this would result
from a bogus value in the user_type column of the users table).

Our actual permissions system will be almost identical to this example, in that members
can access the account resource, while guests cannot, and administrators can access all areas.

■Note The code uses both the term admin and administrator. The user type (that is, the role) is called
administrator, while the controller (that is, the resource) is called admin. In other words, only users of
type administrator will be able to access the http://phpweb20/admin URL.

Combining Zend_Auth, Zend_Acl, and Zend_
Controller_Front
The next step in developing our web application is to integrate the Zend_Auth and Zend_Acl
components. In this section, we will change the behavior of the application controller (that is,
the instance of Zend_Controller_Front), to check permissions using Zend_Acl prior to dis-
patching a user’s request. When checking permissions, we will use the identity stored with
Zend_Auth to determine the role of the current user.

To control permissions, we will treat each controller as a resource, and treat the action
handlers in these controllers as the permissions associated with the resource. For instance,
later in this chapter we will create the AccountController.php file, which is used to control
everything relating to user accounts (such as logging in, logging out, fetching passwords, and
updating user details). The AccountController controller will be the resource for Zend_Acl,
while the privileges associated with this resource are the actions just mentioned (login, logout,
fetch password, update details).

■Note There are many ways to structure a permissions system. In this application, we will simply control
access to action handlers in controller files. This is relatively straightforward, as we can automate all ACL
checks dynamically based on the action and controller name in a user request.

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 57

9063Ch03CMP4 11/13/07 9:37 PM Page 57

The way we achieve this setup of using controller and action names to dictate permis-
sions is to write a plug-in for Zend_Controller (by extending the Zend_Controller_Plugin_
Abstract class). This plug-in defines the preDispatch() method, which receives a user request
before the front controller dispatches the request to the respective action. Effectively, we are
intercepting the request and checking whether the current user has sufficient privileges to
execute that action.

To register a plug-in with Zend_Controller, we call the registerPlugin() method on our
Zend_Controller_Front instance. Before we do that, let’s create the plug-in, which we will call
CustomControllerAclManager. We will create all roles and resources for Zend_Acl in this class,
as well as checking permissions.

Listing 3-5 shows the contents of the CustomControllerAclManager.php file, which we will
store in the /var/www/phpweb20/include directory.

Listing 3-5. The CustomControllerAclManager Plug-in, Which Checks Permissions Prior to
Dispatching User Requests (CustomControllerAclManager.php)

<?php
class CustomControllerAclManager extends Zend_Controller_Plugin_Abstract
{

// default user role if not logged or (or invalid role found)
private $_defaultRole = 'guest';

// the action to dispatch if a user doesn't have sufficient privileges
private $_authController = array('controller' => 'account',

'action' => 'login');

public function __construct(Zend_Auth $auth)
{

$this->auth = $auth;
$this->acl = new Zend_Acl();

// add the different user roles
$this->acl->addRole(new Zend_Acl_Role($this->_defaultRole));
$this->acl->addRole(new Zend_Acl_Role('member'));
$this->acl->addRole(new Zend_Acl_Role('administrator'), 'member');

// add the resources we want to have control over
$this->acl->add(new Zend_Acl_Resource('account'));
$this->acl->add(new Zend_Acl_Resource('admin'));

// allow access to everything for all users by default
// except for the account management and administration areas
$this->acl->allow();
$this->acl->deny(null, 'account');
$this->acl->deny(null, 'admin');

// add an exception so guests can log in or register
// in order to gain privilege

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 58

9063Ch03CMP4 11/13/07 9:37 PM Page 58

$this->acl->allow('guest', 'account', array('login',
'fetchpassword',
'register',
'registercomplete'));

// allow members access to the account management area
$this->acl->allow('member', 'account');

// allows administrators access to the admin area
$this->acl->allow('administrator', 'admin');

}

/**
* preDispatch
*
* Before an action is dispatched, check if the current user
* has sufficient privileges. If not, dispatch the default
* action instead
*
* @param Zend_Controller_Request_Abstract $request
*/
public function preDispatch(Zend_Controller_Request_Abstract $request)
{

// check if a user is logged in and has a valid role,
// otherwise, assign them the default role (guest)
if ($this->auth->hasIdentity())

$role = $this->auth->getIdentity()->user_type;
else

$role = $this->_defaultRole;

if (!$this->acl->hasRole($role))
$role = $this->_defaultRole;

// the ACL resource is the requested controller name
$resource = $request->controller;

// the ACL privilege is the requested action name
$privilege = $request->action;

// if we haven't explicitly added the resource, check
// the default global permissions
if (!$this->acl->has($resource))

$resource = null;

// access denied - reroute the request to the default action handler
if (!$this->acl->isAllowed($role, $resource, $privilege)) {

$request->setControllerName($this->_authController['controller']);

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 59

9063Ch03CMP4 11/13/07 9:37 PM Page 59

$request->setActionName($this->_authController['action']);
}

}
}

?>

The class constructor is where we define roles, resources, and permissions. In Listing 3-5
we first make the administrator role inherit from the member role. This means that any permis-
sion given to members is also given to administrators. Additionally, we can then give the
administrator role privileges on its own to access the admin area.

Next, we set up the default permissions (that is, permissions that apply to all roles). These
allow access to everything except for the account and admin resources. Obviously, a guest
needs the chance to authenticate themselves and become a privileged user, so we must open
up access to the login and fetchpassword privileges. Additionally, if they are not yet registered,
we need to grant them access to register and registercomplete (a helper action used to con-
firm registration to a user).

Once a guest becomes authenticated (thereby becoming either a member or an adminis-
trator), they need to be able to access the account resource. Since the administrator role
inherits from the member role, permitting members access to the account resource also gives
access to administrators.

Finally, we open up the admin areas to administrators only. In other words, guests and
members cannot access this area.

Now, let’s take a look at the preDispatch() method, which takes the user request as an
argument. First, we set up the role and resource so the ACL check will work correctly. If the
resource is not found, we set the $resource variable to null, which means the default permis-
sion will be used for the given role. Based on the way we have set this up (that is, allowing
access to everything), this effectively means the ACL check will return true. If the role is not
found, we use the guest role instead.

■Note We are accessing the user_type property of the identity stored with Zend_Auth. We haven’t yet
looked at storing this property with the identity when performing a login, but we will cover this in Chapter 4,
when we implement the login action to our account controller.

Finally, we call isAllowed() to determine whether the $role role has access to the
$privilege privilege of resource $resource. If this returns true, we do nothing and let the
front controller dispatch loop continue. If this returns false, we reroute the dispatcher to
execute the login action of the account controller. In other words, when an unprivileged
user tries to do something they are not allowed to do, they will be redirected to a login screen.

■Note One side effect of this behavior is that if a member tries to access the admin area, they will be
shown a login screen, even though they are already logged in. You could modify the code to show the login
screen if no identity is found in $auth, but show a different screen if the user is logged in but has insuffi-
cient privileges.

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 60

9063Ch03CMP4 11/13/07 9:37 PM Page 60

Managing User Records with DatabaseObject
DatabaseObject is a class I developed several years ago that I make heavy use of in nearly all of
my PHP development tasks. It acts as an extra layer on top of a database connection, which
makes reading, writing, and deleting rows from a database very simple. You can find the full
DatabaseObject.php file in the ./include directory of the downloadable source code.

Essentially, I extend the abstract DatabaseObject class for each major table in an applica-
tion. So to manage records in the users table of our web application, we will create a class
called DatabaseObject_User. Once we instantiate this class, we can then call the load()
method to fetch a record from the database, use the save() method to either insert or update
data in the database (depending on whether or not a record has already been loaded), and call
delete() to delete a loaded record.

■Note When I first wrote DatabaseObject, neither PHP 5 nor the Zend Framework were out yet, but I
have since updated this class to use PHP 5 and to work with the Zend_Db component. If you are not using
Zend_Db, you will have to make appropriate changes.

Instead of looking at the implementation details, we will take a look at the available func-
tions and exactly how DatabaseObject can be used:

• load(): Loads a record by performing a select query. Returns true if the record is
loaded.

• isSaved(): Returns true if a record has previously been loaded with load().

• save(): Saves the current data to the database. If the record wasn’t previously loaded, an
insert statement is used; otherwise the loaded record is updated with an SQL update.

• delete(): If a record has been loaded, this function performs an SQL delete query.

• getId(): Retrieves the database ID of a saved record.

There are also a number of callbacks you can define, which are automatically called as
required. The callbacks that can be defined are as follows:

• postLoad(): Called after a record is successfully loaded. It could be used to load data
from other tables as required.

• preInsert(): Called prior to inserting a new record (note that in this case save() distin-
guishes inserts from updates). It could be used to set values dynamically (such as a
timestamp recording the date of insert).

• postInsert(): Called after a new record is saved. In the case of our users table, we will
use this to send an e-mail to the new user.

• preUpdate(): Called prior to an existing record being updated. It could be used to set
values dynamically (such as a timestamp recording the date of update).

• postUpdate(): Called after an existing record is updated.

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 61

9063Ch03CMP4 11/13/07 9:37 PM Page 61

• preDelete(): Called prior to an existing record being deleted. If other tables depend on
this data, you would delete the data from those tables here, before the data is deleted
from this table.

• postDelete(): Called after a record has been deleted. It could be used to delete a file on
the filesystem that relates to this record.

All callbacks (except for postLoad()) must return either true or false. If false is returned,
the entire transaction is rolled back. For example, if you return false from postDelete(), the
record is not deleted, and any queries you perform in preDelete() are also rolled back. It is
important to remember to define the return value if you implement any of these functions.

■Note Because of the way DatabaseObject works, all tables that use it must follow a similar structure.
That is, the table must have a single primary key field, with an auto-incrementing sequence. The users
table we created earlier in this chapter follows this structure by defining the user_id field as a serial.
This wasn’t the case for users_profile, and we will be managing data in this table slightly differently.

The DatabaseObject_User Class
Now that we’ve looked at how DatabaseObject works, we will create a child class to manage
records in the users table. Once we have created this class, we will look at how to actually use it.

To create this class, all we really need to do is define the name of the database table and
the name of its primary key field, and then define the list of columns in the table. If required,
you can also set the types of the columns, which makes DatabaseObject treat the data accord-
ingly. At this stage, all we will be using is the DatabaseObject::TYPE_TIMESTAMP type.

Listing 3-6 shows the contents of User.php, which should be stored in the DatabaseObject
directory (so the full path is /var/www/phpweb20/include/DatabaseObject). Note that naming it
in this manner means the Zend Framework autoloader will automatically include this code
when required.

Listing 3-6. The Initial Version of the DatabaseObject_User Class (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

public function __construct($db)
{

parent::__construct($db, 'users', 'user_id');

$this->add('username');
$this->add('password');
$this->add('user_type', 'member');
$this->add('ts_created', time(), self::TYPE_TIMESTAMP);
$this->add('ts_last_login', null, self::TYPE_TIMESTAMP);

}
}

?>

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 62

9063Ch03CMP4 11/13/07 9:37 PM Page 62

In Listing 3-6, we first call the parent constructor. This method accepts the database con-
nection as the first argument (an instance of Zend_Db_Adapter), the database table name as the
second argument, and the column name of the primary key as the third argument.

Next, we add the list of fields using add(). The first argument is the name of the field, the
second argument if specified is its default value, and the third argument is the type. If no type
is specified, the value is simply treated as is.

In the listing, you can see that the ts_created and ts_last_login fields are both time-
stamps. We set the ts_created field to be the current time, and we set ts_last_login to null,
as the user has not yet logged in.

■Note We could alternatively set the default value of ts_created to null, and then dynamically set the
value in the preInsert() callback instead. There’s no real difference, unless there is a huge time difference
between instantiating the object and calling its save() method.

The other thing we have done is set the default value of the user_type field to member. Ear-
lier in this chapter we covered the three types of users: guests, members, and administrators.
By definition, a guest is somebody who doesn’t have a user account (and therefore has no row
in the users table), so we set the default value to member.

Now is a good time to define the user types in this code. Our code should allow us to add
more user types in the future and to only ever have to change this one list (disregarding the
fact that we would likely need to change the ACL permissions). We could alternatively store
the list of user types in a database table, but for the sake of simplicity we will store them in a
static array in the DatabaseObject_User class.

Additionally, we can extend the __set() method to intercept the value being set so we can
ensure that the value is valid.

■Note PHP 5 allows the use of a magic __set() method, which is automatically called (if defined) when
code tries to modify a nonexistent property in an object. DatabaseObject uses this method to set values to
be saved in the database table. We can also define this in the DatabaseObject_User child class in order to
alter a value before calling __set() in the parent class. PHP 5 also allows a similar __get() method, which
is automatically called if a nonexistent property is read. DatabaseObject also uses this method.

Before we look at the code that does this, there is one further value we must intercept and
alter before it is written to the database: the password. We mentioned earlier that we are sav-
ing passwords as MD5 hashes of their original value. As such, we must call md5() on the
password value prior to saving it to the database.

■Note You can use either the PHP version of md5() or you can call it in the SQL query. For the sake of sim-
plicity and cross-database compatibility, we will use the PHP function.

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 63

9063Ch03CMP4 11/13/07 9:37 PM Page 63

Listing 3-7 shows the new version of User.php, which now defines the list of user types, as
well as ensuring that a valid user type is set. It also changes the password value, when it is set,
to be an MD5 hash.

Listing 3-7. The New Version of DatabaseObject_User, Now Setting the Password and User Type
Correctly (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

static $userTypes = array('member' => 'Member',
'administrator' => 'Administrator');

public function __construct($db)
{

parent::__construct($db, 'users', 'user_id');

$this->add('username');
$this->add('password');
$this->add('user_type', 'member');
$this->add('ts_created', time(), self::TYPE_TIMESTAMP);
$this->add('ts_last_login', null, self::TYPE_TIMESTAMP);

}

public function __set($name, $value)
{

switch ($name) {
case 'password':

$value = md5($value);
break;

case 'user_type':
if (!array_key_exists($value, self::$userTypes))

$value = 'member';
break;

}

return parent::__set($name, $value);
}

}
?>

Using DatabaseObject_User
Now that we have created the DatabaseObject_User class, let’s look at how to use it. Listing 3-8
shows the typical usage of a DatabaseObject child class: we first set some properties and then
call the save() method (which will perform an SQL insert). Next we modify some properties

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 64

9063Ch03CMP4 11/13/07 9:37 PM Page 64

on the same object and then call save() again (this time an SQL update will be performed).
Finally, we try to load an existing record and then delete it from the database table.

Listing 3-8. Sample Usage of the DatabaseObject_User Class (listing-3-8.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

// connect to the database
$params = array('host' => 'localhost',

'username' => 'phpweb20',
'password' => 'myPassword',
'dbname' => 'phpweb20');

$db = Zend_Db::factory('pdo_mysql', $params);

// Create a new user
$user = new DatabaseObject_User($db);
$user->username = 'someUser';
$user->password = 'myPassword';
$user->save();

// Now update that user and save new details
$user->user_type = 'admin';
$user->ts_last_login = time();
$user->save();

// Find a user with user_id of 5 and delete them
$user2 = new DatabaseObject_User($db);
if ($user2->load(5)) {

$user2->delete();
}

?>

If we were to look at the users table after running this script, it might look something like
this:

mysql> select user_id, username, password from users;
+---------+----------+----------------------------------+
| user_id | username | password |
+---------+----------+----------------------------------+
| 7 | someUser | deb1536f480475f7d593219aa1afd74c |
+---------+----------+----------------------------------+

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 65

9063Ch03CMP4 11/13/07 9:37 PM Page 65

Managing User Profiles
When we created the users table earlier in this chapter, we also created a table called users_
profile, which we use to hold user profile data. The way this table is structured, we can add
any number of values to correspond with each user account. This may include personal
details, such as the user’s name or e-mail address, or it may include other settings, such as
whether or not the user wants to receive a monthly newsletter.

Because I use a system like this for most web applications I work on, I have developed a
generic class called Profile to manage data of this nature. Profile is an abstract class that
must be extended for each table you want to write to. We will create a class called
Profile_User to extend Profile.

The profile is typically used as follows:

1. Create a new instance of Profile_User. One instance is responsible for the profile data
of one user.

2. Set the user ID and load the existing profile data for that user.

3. Set new values, update existing values, or delete existing values as required.

4. Save the profile data.

In order to autoload the classes with Zend_Loader, we can store the Profile.php file in
the ./include directory, while we store User.php (which holds the Profile_User class) in
./include/Profile.

No methods need to be implemented in the Profile_User class—all we need to do is
specify the database table used to store profile data. Additionally, we need to add a single
utility method to set the user ID.

Since we are storing profile data for all users in a single table, we need to add a filter to the
parent Profile class so it correctly reads and writes the profile data.

Listing 3-9 shows the contents of User.php, which defines the Profile_User child class.

Listing 3-9. The Profile_User Child Class, Used to Initialize Profile Management for Users
(User.php)

<?php
class Profile_User extends Profile
{

public function __construct($db, $user_id = null)
{

parent::__construct($db, 'users_profile');

if ($user_id > 0)
$this->setUserId($user_id);

}

public function setUserId($user_id)
{

$filters = array('user_id' => (int) $user_id);
$this->_filters = $filters;

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 66

9063Ch03CMP4 11/13/07 9:37 PM Page 66

}
}

?>

To instantiate Profile_User, the database connection is passed, as well as an optional
user ID. If you don’t specify a user ID, you can call the setUserId() method. Once the user ID
has been set, you can call the load() method to load existing profile data from the database.

■Note You must make a call to setUserId() before calling load() or save(); otherwise the data may
be saved incorrectly or an error will occur.

Using Profile_User
Now that we have looked at the code for Profile_User, let’s take a look at an example of how to
use the class. For this example, let’s assume a user has already been created in the users table
with an ID of 1234 (remember from our schema that the user_id field in users_profile is a
foreign key to users, so the corresponding record must exist).

The first thing we must do is instantiate the class and load the data:

<?php
$profile = new Profile_User($db, 1234);
$profile->load();

?>

Alternatively, we can call setUserId() instead of passing the ID in the constructor. We will
be using this method when we integrate Profile_User with DatabaseObject_User.

$profile = new Profile_User($db);
$profile->setUserId(1234);
$profile->load();

Now we can set a new profile value (or update an existing one) just by accessing the
object property, like so:

$profile->email = 'user@example.com';

We can delete a profile value by calling unset():

unset($profile->email);

And we can check whether a profile value exists by calling isset():

if (isset($profile->email)) {
// do something

}

Finally, we must save any changes that we make to the database by calling the save()
method:

$profile->save();

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 67

9063Ch03CMP4 11/13/07 9:37 PM Page 67

Listing 3-10 shows a more complete example of using Profile_User, this time including
the database creation code.

Listing 3-10. A Complete Example of Setting Profile Data and Displaying a Simple Message
(listing-3-10.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

// connect to the database
$params = array('host' => 'localhost',

'username' => 'phpweb20',
'password' => 'myPassword',
'dbname' => 'phpweb20');

$db = Zend_Db::factory('pdo_mysql', $params);

$profile = new Profile_User($db);
$profile->setUserId(1234);
$profile->load();

$profile->email = 'user@example.com';
$profile->country = 'Australia';
$profile->save();

if (isset($profile->country))
echo sprintf('Your country is %s', $profile->country);

?>

If you were to check the data in the users_profile table after running this example, it
would look something like the following:

mysql> select * from users_profile where user_id = 1234;
+---------+-------------+------------------+
| user_id | profile_key | profile_value |
+---------+-------------+------------------+
| 1234 | country | Australia |
| 1234 | email | user@example.com |
+---------+-------------+------------------+
2 rows in set (0.00 sec)

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 68

9063Ch03CMP4 11/13/07 9:37 PM Page 68

Integrating Profile_User with DatabaseObject_User
Now that we have a way of managing user profiles, we must integrate this into our
DatabaseObject_User class so that all user data can easily be managed in a single place.
Essentially what we must do is as follows:

• Instantiate the Profile_User class within DatabaseObject_User.

• Load the profile data automatically when a user is loaded.

• Save the profile data automatically when the user record is saved.

• Delete the profile data automatically when the user record is deleted.

Additionally, we must deal with the fact that the user ID is not known when creating a
new user record with DatabaseObject_User. As such, we must correctly use the callbacks that
DatabaseObject makes available. We will use them as follows:

• In the load callback (postLoad()), we will set the user ID and load the profile data.

• Before an insert occurs (preInsert()), we will generate a password for the user. For
now, we will use the PHP uniqid() function to generate a password, but we will improve
on this in Chapter 4 when we need to send an e-mail out to new users.

• After an insert occurs (postInsert()), we will set the user ID and save the profile data.

• After an update occurs (postUpdate()), we will save the profile data (the user ID is
known at this point).

• Before a delete occurs (preDelete()), we will delete all profile data. Note that this must
occur before the user is deleted (as opposed to being done in postDelete()), because a
foreign key constraint violation will occur if we do it the other way around (that is,
users_profile depends on users, so data can’t be removed from users that is referenced
in users_profile).

Listing 3-11 shows the new version of DatabaseObject_User, which defines each of these
callbacks. Importantly, the postInsert() and postUpdate() callbacks also return true, which is
required for the database transaction to complete.

Listing 3-11. DatabaseObject_User with Profile Management Functionality Built in (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

static $userTypes = array('member' => 'Member',
'administrator' => 'Administrator');

public $profile = null;

public function __construct($db)
{

parent::__construct($db, 'users', 'user_id');

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 69

9063Ch03CMP4 11/13/07 9:37 PM Page 69

$this->add('username');
$this->add('password');
$this->add('user_type', 'member');
$this->add('ts_created', time(), self::TYPE_TIMESTAMP);
$this->add('ts_last_login', null, self::TYPE_TIMESTAMP);

$this->profile = new Profile_User($db);
}

protected function preInsert()
{

$this->password = uniqid();
return true;

}

protected function postLoad()
{

$this->profile->setUserId($this->getId());
$this->profile->load();

}

protected function postInsert()
{

$this->profile->setUserId($this->getId());
$this->profile->save(false);
return true;

}

protected function postUpdate()
{

$this->profile->save(false);
return true;

}

protected function preDelete()
{

$this->profile->delete();
return true;

}

public function __set($name, $value)
{

switch ($name) {
case 'password':

$value = md5($value);
break;

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 70

9063Ch03CMP4 11/13/07 9:37 PM Page 70

case 'user_type':
if (!array_key_exists($value, self::$userTypes))

$value = 'member';
break;

}

return parent::__set($name, $value);
}

}
?>

In addition to the callbacks defined in this code, Profile_User is instantiated in the
constructor. Note that because we have used the PHP 5 __set() and __get() overloaders in
DatabaseObject, we must also define the $profile property in the class definition.

■Important When calling the save() method on the profile, we pass false as an argument, which
prevents Profile from using a database transaction to save the data. We want to prevent this because
DatabaseObject has already initiated a transaction, so the saving of profile data falls within this transac-
tion. In other words, if we were to return false from postUpdate(), the transaction would be rolled back,
meaning the changes to the user table wouldn’t be saved, and the profile data would remain unchanged in
the database.

With these new features added to DatabaseObject_User, we can now easily manipulate all
user data as required. Listing 3-12 shows an example of creating a new user and setting the
profile data all in one step.

Listing 3-12. Creating a New User and Setting the Profile Data All in One Step (listing-3-12.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

// connect to the database
$params = array('host' => 'localhost',

'username' => 'phpweb20',
'password' => 'myPassword',
'dbname' => 'phpweb20');

$db = Zend_Db::factory('pdo_mysql', $params);

// Create a new user
$user = new DatabaseObject_User($db);
$user->username = 'someUser';
$user->password = 'myPassword';

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 71

9063Ch03CMP4 11/13/07 9:37 PM Page 71

// Set their profile data
$user->profile->email = 'user@example.com';
$user->profile->country = 'Australia';

// Save the user and their profile
$user->save();

// Load some other user and delete them
$user2 = new DatabaseObject_User($db);
if ($user2->load(1234))

$user2->delete();
?>

Summary
In this chapter we created the infrastructure for managing users in our web application. First,
we looked at the Zend_Auth and Zend_Acl components from the Zend Framework. We discov-
ered the differences between authentication and authorization, and how they apply to our
application.

Next, we integrated both of these components with Zend_Controller_Front, restricting
access to our application based on the requested controller and action. We then looked at how
database data can easily be managed using the DatabaseObject and Profile classes, which we
extended in order to manage user data.

In the next chapter, we will continue the process of building the application’s user system
by allowing users to create new accounts, log in, and update their profiles using the code we
have developed in this chapter.

CHAPTER 3 ■ USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT 72

9063Ch03CMP4 11/13/07 9:37 PM Page 72

User Registration, Login,
and Logout

In Chapter 3 we looked closely at the user authentication and authorization aspects of the
web application. We learned that authentication is when a user proves they are who they say
they are, while authorization determines what that user is and isn’t allowed to do. We created
the necessary database tables to hold user details as well as the code to manage the database
records. We then used the Zend_Auth and Zend_Acl components of the Zend Framework to
control which areas of the web site users can access.

In this chapter we will build on the code from Chapter 3 by implementing a user registra-
tion system. Once registered, users will be able to log in and update their details. This chapter
covers everything related to creating user accounts and authenticating (that is, logging in).
This includes the use of CAPTCHA images as well as allowing users to reset their forgotten
passwords.

Adding User Registration to the Application
Implementing a user registration system is a fairly involved process, not only because there’s a
lot to do in setting up a user account, but also because it’s the first real interaction between
the web application and the end-user that we’ve looked at in this book.

The process of accepting user registrations will involve the following:

• Adding navigation so the user can find the registration form

• Displaying the registration form to the user, including a CAPTCHA image

• Accepting and validating the submitted details, including checking availability of user-
names

• Displaying errors back to the user if something goes wrong

• Saving the database record, e-mailing the user, and displaying a confirmation page if all
went well

We won’t do all of this in exactly this order, but we will build up the registration system until it
incorporates all of these features.

73

C H A P T E R 4

9063CH04CMP4 11/20/07 9:20 PM Page 73

The fields users will be filling in for registration are as follows:

• A username. This value must be unique and contain only alphanumeric characters
(letters and numbers).

• Their name. We will split this up into first name and last name.

• Their e-mail address. We require this so we have a valid point of contact for the user. To
ensure that we have a real e-mail address, the account password is automatically gener-
ated and sent to this address. This is a simple but effective way of preventing false
e-mail addresses from being entered.

Creating the Form Processor for User Registration
In order to keep the code that is responsible for processing the user registration form
separate from other parts of the application (such as the account controller that displays
the registration form), we will create a class called FormProcessor_UserRegistration. This class
will extend from FormProcessor, another utility class (available in the book’s code base in
./include/FormProcessor.php) that I wrote to aid in my own web application development.
The FormProcessor class is fairly simple and doesn’t do anything aside from hold the form values
you tell it to, and hold form error messages that you can display.

The Initial FormProcessor_UserRegistration Class
To extend FormProcessor, all we need to do is implement the abstract function process(),
which accepts a Zend_Controller_Request_Abstract object as an argument and returns true
if the form was successfully processed or false if an error occurred. The instance of Zend_
Controller_Request_Abstract is an object generated by Zend_Controller_Front, which holds
all data relating to the current request, such as get and post data.

■Note In actual fact, the instance of Zend_Controller_Request_Abstract is an instance of Zend_
Controller_Request_Http that we will eventually pass to process(). The Zend_Controller_Request_
Http class extends from Zend_Controller_Request_Abstract.

As mentioned above, FormProcessor also provides methods for storing error messages:

• addError($name, $message): Sets a new error message with the given name. If the error
message already exists, that error name is assigned an array with multiple messages.

• hasError($name): Checks whether an error message with the specified name has been
set. By omitting the $name parameter, this method can also be used to check whether
any errors have been set at all.

• getError($name): Retrieves the error message for the given name. If no corresponding
error message has been set, null is returned.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT74

9063CH04CMP4 11/20/07 9:20 PM Page 74

Additionally, there is a function called sanitize() that is used to strip HTML tags from
the string and trim whitespace from the start and end of the string. This is achieved primarily
using Zend_Filter, a Zend Framework component that can manipulate strings with filters (we
will look briefly at Zend_Filter in Chapter 7).

■Note The FormProcessor.php file is available from the downloadable source code for this book. It
belongs in the ./include directory so it can be automatically loaded as required.

Let’s now take a look at the FormProcessor_UserRegistration class. Listing 4-1 shows
the beginnings of this class—we will add to it throughout this section. This file is located in
./include/FormProcessor/UserRegistration.php.

Listing 4-1. The Beginnings of the User Registration Form Processor (UserRegistration.php)

<?php
class FormProcessor_UserRegistration extends FormProcessor
{

protected $db = null;
public $user = null;

public function __construct($db)
{

parent::__construct();

$this->db = $db;
$this->user = new DatabaseObject_User($db);
$this->user->type = 'member';

}

public function process(Zend_Controller_Request_Abstract $request)
{

// validate the username

// validate first and last name

// validate the e-mail address

// validate CAPTCHA phrase

// save database record if no errors

// return true if no errors have occurred
return !$this->hasError();

}
}

?>

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 75

9063CH04CMP4 11/20/07 9:20 PM Page 75

The first thing this code does is define the constructor, in which the database connection
is accepted and an instance of DatabaseObject_User is created. This object will remain
unsaved until the form is successfully processed and $this->user->save() is called.

Next the abstract method process() is implemented. This method returns true if the form
was processed correctly and false if an error occurred. As such, we can use the hasError()
method to determine the return value.

To implement the process() method, we must fetch the submitted values from the
$request object and process them accordingly. First, we must check the username by doing
the following:

1. Check that a username was entered. If one wasn’t, we need to notify the user that the
username is a required field.

2. If a username was entered, check that it is in a valid format. Our usernames will consist
of only alphanumeric characters (that is, only letters and numbers). If an invalid user-
name was entered, we should create an appropriate error message.

3. If the username is valid, check whether or not somebody else has already registered
with this username.

In order to check these conditions, we will implement two new functions in DatabaseObject_
User: usernameExists() and IsValidUsername(), as shown in Listing 4-2.

Listing 4-2. New Functions Added to DatabaseObject_User (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

// ... other code

public function usernameExists($username)
{

$query = sprintf('select count(*) as num from %s where username = ?',
$this->_table);

$result = $this->_db->fetchOne($query, $username);

return $result['num'] > 0;
}

static public function IsValidUsername($username)
{

$validator = new Zend_Validate_Alnum();
return $validator->isValid($username);

}
}

?>

Let’s take a look at each of these changes before returning to the FormProcessor_UserReg-
istration class.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT76

9063CH04CMP4 11/20/07 9:20 PM Page 76

The usernameExists() Method
We call this method to determine whether or not the passed-in username already exists. If the
username is in use, then true is returned; otherwise false is returned.

The IsValidUsername() Method
This method simply checks whether or not a username is valid, returning true if it is and
false if not. To check the validity of the username, we use the Zend_Validate component of
the Zend Framework. We are only checking for alphanumeric characters, so we can use the
Zend_Validate_Alnum class.

Obviously, we could write a simple regular expression (such as /^[a-z0-9]+$/i) to check
this, but Zend_Validate allows us to easily chain different validators together, meaning that in
the future you could easily change the method for validating a username. Additionally, using
Zend_Validate is a good practice to get into, as we will be using it throughout this book when
validating form data (we will see it again shortly when we check users’ e-mail addresses).

This method is static, as it does not rely on an instance of DatabaseObject_User.

Adding Username Validation to FormProcessor_UserRegistration
Since we have the new username-related methods available in DatabaseObject_User, we can now
proceed to validate and set a username according to the rules outlined previously. Listing 4-3
shows the new version of process(), which now takes the submitted username from the request
post data (using the getPost() method on $request) and validates it.

Listing 4-3. Validating the Submitted Username (UserRegistration.php)

<?php
class FormProcessor_UserRegistration extends FormProcessor
{

// ... other code

public function process(Zend_Controller_Request_Abstract $request)
{

// validate the username
$this->username = trim($request->getPost('username'));

if (strlen($this->username) == 0)
$this->addError('username', 'Please enter a username');

else if (!DatabaseObject_User::IsValidUsername($this->username))
$this->addError('username', 'Please enter a valid username');

else if ($this->user->usernameExists($this->username))
$this->addError('username', 'The selected username already exists');

else
$this->user->username = $this->username;

// return true if no errors have occurred
return !$this->hasError();

}
}

?>

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 77

9063CH04CMP4 11/20/07 9:20 PM Page 77

As you can see in this code, we first check that the username isn’t an empty string, then we
check that it’s a valid username, and then we make sure that it doesn’t already exist. If we deter-
mine the username is valid, we accept the value and update the DatabaseObject_User instance.

■Note The IsValidUsername() method will return false if the string is empty, thereby making the first
check somewhat redundant. However, checking for an empty string separately allows us to generate a dif-
ferent error message.

Validating the User’s Name
As mentioned earlier, we will require users to enter both a first name and last name (in sepa-
rate fields) when registering. To keep things simple, we won’t do any validation on this data
other than making sure they’re not empty strings. You may want to add further validation to
this data yourself. We will also call the sanitize() method to ensure any HTML tags are
stripped out.

Listing 4-4 shows a stripped-down version of FormProcessor_UserRegistration, which
retrieves, validates, and sets the first and last name of the user.

Listing 4-4. Validating the User’s First and Last Name (UserRegistration.php)

<?php
class FormProcessor_UserRegistration extends FormProcessor
{

// ... other code

public function process(Zend_Controller_Request_Abstract $request)
{

// validate first and last name

$this->first_name = $this->sanitize($request->getPost('first_name'));
if (strlen($this->first_name) == 0)

$this->addError('first_name', 'Please enter your first name');
else

$this->user->profile->first_name = $this->first_name;

$this->last_name = $this->sanitize($request->getPost('last_name'));
if (strlen($this->last_name) == 0)

$this->addError('last_name', 'Please enter your last name');
else

$this->user->profile->last_name = $this->last_name;

// return true if no errors have occurred
return !$this->hasError();

}
}

?>

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT78

9063CH04CMP4 11/20/07 9:20 PM Page 78

Validating the User’s E-mail Address
The final submitted item we must validate is the user’s e-mail address. We do this by first
checking that an e-mail address was submitted, and then by checking that it is in the correct
format for an e-mail address.

To check this second condition, we will use the Zend_Validate_EmailAddress class. This
class is a part of the Zend_Validate component and will tell us whether or not an e-mail
address is valid.

■Note Zend_Validate_EmailAddress can even go one step further than checking for a valid e-mail
format: it can also check that the given hostname in the e-mail address has valid DNS MX records. We won’t
be using this feature, though, as it’s the user’s problem if they want to fool the system—they simply won’t
receive their password if they enter a false address.

Listing 4-5 shows the code for FormProcessor_UserRegistration, which validates the
e-mail address using Zend_Validate_EmailAddress. Note once again that we first check for
an empty string so we can generate a different error message.

Listing 4-5. Using Zend_Validate_EmailAddress to Check the Validity of a Submitted E-mail
Address (UserRegistration.php)

<?php
class FormProcessor_UserRegistration extends FormProcessor
{

// ... other code

public function process(Zend_Controller_Request_Abstract $request)
{

// validate the e-mail address

$this->email = $this->sanitize($request->getPost('email'));
$validator = new Zend_Validate_EmailAddress();

if (strlen($this->email) == 0)
$this->addError('email', 'Please enter your e-mail address');

else if (!$validator->isValid($this->email))
$this->addError('email', 'Please enter a valid e-mail address');

else
$this->user->profile->email = $this->email;

// return true if no errors have occurred
return !$this->hasError();

}
}

?>

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 79

9063CH04CMP4 11/20/07 9:20 PM Page 79

The Complete FormProcessor_UserRegistration Class
We have now covered all of the validation tasks required for our FormProcessor_UserRegistration
class. The final section of code we must insert is a call to $this->user->save() to save the record
into the users table. We will first check whether or not an error has occurred before saving the
record. If there is an error, no record will be saved and the user will be shown the error messages
(that is, once we have created the registration form template).

Listing 4-6 shows the entire FormProcessor_UserRegistration class. In the next section we
will write the code responsible for using this class.

Listing 4-6. The Complete FormProcessor_UserRegistration Class (UserRegistration.php)

<?php
class FormProcessor_UserRegistration extends FormProcessor
{

protected $db = null;
public $user = null;

public function __construct($db)
{

parent::__construct();

$this->db = $db;
$this->user = new DatabaseObject_User($db);
$this->user->type = 'member';

}

public function process(Zend_Controller_Request_Abstract $request)
{

// validate the username
$this->username = trim($request->getPost('username'));

if (strlen($this->username) == 0)
$this->addError('username', 'Please enter a username');

else if (!DatabaseObject_User::IsValidUsername($this->username))
$this->addError('username', 'Please enter a valid username');

else if ($this->user->usernameExists($this->username))
$this->addError('username', 'The selected username already exists');

else
$this->user->username = $this->username;

// validate the user's name

$this->first_name = $this->sanitize($request->getPost('first_name'));
if (strlen($this->first_name) == 0)

$this->addError('first_name', 'Please enter your first name');
else

$this->user->profile->first_name = $this->first_name;

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT80

9063CH04CMP4 11/20/07 9:20 PM Page 80

$this->last_name = $this->sanitize($request->getPost('last_name'));
if (strlen($this->last_name) == 0)

$this->addError('last_name', 'Please enter your last name');
else

$this->user->profile->last_name = $this->last_name;

// validate the e-mail address
$this->email = $this->sanitize($request->getPost('email'));
$validator = new Zend_Validate_EmailAddress();

if (strlen($this->email) == 0)
$this->addError('email', 'Please enter your e-mail address');

else if (!$validator->isValid($this->email))
$this->addError('email', 'Please enter a valid e-mail address');

else
$this->user->profile->email = $this->email;

// if no errors have occurred, save the user
if (!$this->hasError()) {

$this->user->save();
}

// return true if no errors have occurred
return !$this->hasError();

}
}

?>

Displaying the Registration Form and Processing Registrations
The next step in creating the registration form is to create the account controller as well as the
register action inside of it. In Chapter 3 we set up the access control lists so that only regis-
tered members could access the account section. That permission refers specifically to this
controller (in other words, if a user tries to access http://phpweb20/account, they can only
access the actions in the specified controller if they have the necessary permissions).

The other permissions we defined were exemptions so that unregistered users (guests)
would be able to access the register, registercomplete, login, and fetchpassword actions.
There’s nothing special we need to put in the controller to deal with these permissions—it has
already been done in the CustomControllerAclManager class.

The Initial AccountController Class
Listing 4-7 shows the beginnings of the AccountController class, which extends
CustomControllerAction. At this stage we will only define the registerAction() method—as
we continue with development, we will add more actions to this controller (such as the index
action, which will be executed when users successfully authenticate). The AccountController
class is stored in the AccountController.php file, which belongs in the ./include/Controllers
directory.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 81

9063CH04CMP4 11/20/07 9:20 PM Page 81

Listing 4-7. Creating the Account Controller and Defining the Register Action
(AccountController.php)

<?php
class AccountController extends CustomControllerAction
{

public function registerAction()
{

$fp = new FormProcessor_UserRegistration($this->db);
$this->view->fp = $fp;

}
}

?>

■Note Since we haven’t yet created the register.tpl template, loading http://phpweb20/account/
register in your browser will result in a Smarty error.

In the registerAction() method, we first instantiate the FormProcessor_UserRegistration
class. We then assign it to the displayed template. This template (register.tpl) will show the
HTML form to the user trying to register.

The reason we assign the form processor to this template is so that any errors can be
displayed to the user. The template can then read the errors in the form processor using the
hasError() and getError() methods.

Additionally, when displaying errors in a form, you should prepopulate the fields the user
has already entered. The form processor provides access to these values easily via the magic
__get() method. For instance, to retrieve the username value, you would use $fp->username in
the template.

Developing the Templates
Before we go any further, let’s quickly add some navigation to the header.tpl template we cre-
ated in Chapter 2, so we can navigate to the registration page. Listing 4-8 shows the contents
of ./templates/header.tpl with some basic navigation. We will improve on this later in the
book, but for now this will suffice.

Listing 4-8. Including Basic Navigation on the Header Template (header.tpl)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<title>Title</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>
<body>

<div>

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT82

9063CH04CMP4 11/20/07 9:20 PM Page 82

Home
| Register

<hr />
We can now start building the register.tpl template. There are some fundamental things

we need to include in a form template:

• A clearly labeled form so the user knows what the form is for.

• A label for each field in the form.

• The HTML form element with any submitted values prepopulating the field. Addition-
ally, since this contains user-submitted data, we must escape the HTML entities
accordingly (as we saw in Chapter 2).

• Any errors that have occurred.

• A clearly labeled submit button.

The easiest way to lay out a form is to use HTML tables; however, these are not necessarily
the best thing to use for accessibility and for good CSS practice. Instead, we are going to use
the fieldset, legend, and label HTML tags to aid with layout. Additionally, each form element
is wrapped in a div so it can be positioned properly.

Figure 4-1 shows what this form looks like after the user has submitted it yet omitted
some fields. At this stage, the page looks somewhat bland, but we will not concern ourselves
with the CSS until Chapter 6 (eventually, errors will be highlighted and the form fields will be
spaced so they can be more easily understood).

Figure 4-1. The registration form displaying some data-entry errors

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 83

9063CH04CMP4 11/20/07 9:20 PM Page 83

Listing 4-9 shows the contents of register.tpl, which is stored in the ./templates/account
directory (you will need to create this directory if you have not already done so).

Listing 4-9. The HTML Template for User Registration (register.tpl)

{include file='header.tpl'}

<form method="post" action="/account/register">

<fieldset>
<legend>Create an Account</legend>

<div class="error"{if !$fp->hasError()} style="display: none"{/if}>
An error has occurred in the form below. Please check
the highlighted fields and resubmit the form.

</div>

<div class="row" id="form_username_container">
<label for="form_username">Username:</label>
<input type="text" id="form_username"

name="username" value="{$fp->username|escape}" />
{include file='lib/error.tpl' error=$fp->getError('username')}

</div>

<div class="row" id="form_email_container">
<label for="form_email">E-mail Address:</label>
<input type="text" id="form_email"

name="email" value="{$fp->email|escape}" />
{include file='lib/error.tpl' error=$fp->getError('email')}

</div>

<div class="row" id="form_first_name_container">
<label for="form_first_name">First Name:</label>
<input type="text" id="form_first_name"

name="first_name" value="{$fp->first_name|escape}" />
{include file='lib/error.tpl' error=$fp->getError('first_name')}

</div>

<div class="row" id="form_last_name_container">
<label for="form_last_name">Last Name:</label>
<input type="text" id="form_last_name"

name="last_name" value="{$fp->last_name|escape}" />
{include file='lib/error.tpl' error=$fp->getError('last_name')}

</div>

<div class="submit">
<input type="submit" value="Register" />

</div>

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT84

9063CH04CMP4 11/20/07 9:20 PM Page 84

</fieldset>

</form>

{include file='footer.tpl'}

■Note You will still need to create the error.tpl template in Listing 4-10 before register.tpl can be
viewed without any PHP or Smarty errors.

In Listing 4-9, the entire form is wrapped in a <fieldset> tag, which is useful for splitting
a form into separate parts. This form only contains a small number of fields though, so it only
uses one part.

For each element in the form, we essentially use the same markup: a named <div> con-
taining a label for the element, as well as the form element. Finally the error.tpl template is
included, which we use to output any errors for the respective element. We also include a
global form error message at the top of the form. This is especially useful for long forms, where
an individual error may go unnoticed.

Listing 4-10 shows the contents of error.tpl, which we will store in ./templates/lib.
There is no great significance to the name of this directory (lib), but as a general habit I like to
store reusable templates that don’t directly correspond to a specific controller action inside a
separate directory.

■Note If you were to create a controller called lib, you would need to use a different directory for these
helper templates.

Listing 4-10. A Basic Template Used to Display Form Errors (error.tpl)

{if $error|@is_array || $error|strlen > 0}
{assign var=hasError value=true}

{else}
{assign var=hasError value=false}

{/if}
<div class="error"{if !$hasError} style="display:none"{/if}>

{if $error|@is_array}

{foreach from=$error item=str}
{$str|escape}

{/foreach}

{else}
{$error|escape}

{/if}
</div>

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 85

9063CH04CMP4 11/20/07 9:20 PM Page 85

The way we determine whether an error has occurred is to check the $error variable
passed to this template (when called in register.tpl). If it is an empty string, there are no
errors. Otherwise FormProcessor::getError() will return a single error as a nonempty string,
and multiple error messages with the same name will be returned as an array.

The other significant thing to notice in this template is that we still generate the HTML
div even if there is no error. We do this to create a placeholder for error messages we might
generate on the client side using JavaScript. Later in this book we will add some client-side
validation to this form (such as checking the availability of a username in real time), so we
will write error messages to this error container.

Handling the Form Submission
At this stage in the development of the registration form, if you were to click the submit button,
nothing would happen other than the empty form being redisplayed. When the page reloads,
the register action handler should process the request by either using the FormProcessor_
UserRegistration class to check the form and save the user data, or to simply display the form.

■Note If an error occurs while processing the form (such as the user entering a username already in use),
the code is designed to fall through to displaying the form again. On this subsequent rendering of the form,
the submitted values will be available to redisplay in the template, along with any generated error messages.

We’ll accomplish this by first checking for a post request (using $request->isPost()),
and then calling process() accordingly. Once the form has been successfully processed, the
browser is redirected to the registercomplete action. This redirection to a new action prevents
the user from refreshing the page (and therefore resubmitting their registration data, which
would fail at this point since the username now exists).

In order to show the user a custom thank-you message (that is, one that includes some
part of their registration details), we need to first write the ID (this is the user_id column of
the users table, which has a data type of serial) of the new user to the session before redirect-
ing them to registercompleteAction(). Inside the registercomplete action, we look for a
stored user ID, and if one exists we display a message. If a valid user ID is not found in the
session, we simply forward their request back to the register page.

Listing 4-11 shows the account controller with the call to process(), as well as the redirec-
tion to the registercomplete action once a valid registration occurs. We use the _redirect()
method provided by Zend_Controller_Front, as this performs an HTTP redirect (as opposed to
_forward(), which forwards the request internally). The lines you need to add to your existing
version of registerAction() are displayed in bold.

Listing 4-11. Completing the Processing of a User’s Registration (AccountController.php)

<?php
class AccountController extends CustomControllerAction
{

public function registerAction()
{

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT86

9063CH04CMP4 11/20/07 9:20 PM Page 86

$request = $this->getRequest();

$fp = new FormProcessor_UserRegistration($this->db);

if ($request->isPost()) {
if ($fp->process($request)) {

$session = new Zend_Session_Namespace('registration');
$session->user_id = $fp->user->getId();
$this->_redirect('/account/registercomplete');

}
}

$this->view->fp = $fp;
}

public function registercompleteAction()
{

// retrieve the same session namespace used in register
$session = new Zend_Session_Namespace('registration');

// load the user record based on the stored user ID
$user = new DatabaseObject_User($this->db);
if (!$user->load($session->user_id)) {

$this->_forward('register');
return;

}

$this->view->user = $user;
}

}
?>

In the registerAction() method, we call $this->getRequest() to retrieve the request
object from Zend_Controller_Front, which contains all the data related to the user’s request,
such as get and post data. This is the object we pass to FormProcessor_UserRegistration when
calling process().

Note that since process() will return false if an error occurs, the code will simply fall
right through to displaying the register.tpl template again, which means the errors that
occurred will be displayed. On the other hand, if the call to process() returns true, we can
assume a new user was created in the database. As such, we can write the user’s ID to the
session and redirect the browser to /account/registercomplete.

■Note We could write directly to the $_SESSION superglobal; however, Zend_Session provides a better
way of managing session data. It allows fairly straightforward management of session namespaces, mean-
ing the session is organized in a way that won’t cause data conflicts. Additionally, we are already using
Zend_Session to store user authentication data (that is, their identity).

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 87

9063CH04CMP4 11/20/07 9:20 PM Page 87

In the registercompleteAction() method, we check for a stored user ID and then try to
load a new DatabaseObject_User object accordingly. If the record isn’t found, we forward the
request back to the registerAction(). This would happen if a user requested the /account/
registercomplete URL directly without completing the registration.

■Note After calling the _forward() method in this case, we return from the registercompleteAction()
method. If we didn’t, the remainder of registercompleteAction() would be executed, since the new action
would only be dispatched after the current one was complete. The first argument to _forward() is the action,
and the second is the controller. If the second argument is omitted (as in this case), the current controller
is used.

Finally, we must create the registercomplete.tpl template (which also belongs in the
./templates/account directory). We will use this template to show a basic “thank you for regis-
tering” message. Listing 4-12 shows this template, which makes mention of a password being
sent to the user. We will add this e-mail functionality in the “Adding E-mail Functionality”
section of this chapter.

Listing 4-12. The Message Displayed to Users Upon Successful Registration (registercomplete.tpl)

{include file='header.tpl'}

<p>
Thank you {$user->profile->first_name|escape},
your registration is now complete.

</p>
<p>

Your password has been e-mailed to you at {$user->profile->email|escape}.
</p>

{include file='footer.tpl'}

Adding CAPTCHA to the User Registration Form
Now that we have the core functionality of the user registration system working, we can
improve it slightly by adding a simple yet effective security measure to ensure that registra-
tions come only from real people and not computer programs. This security measure is called
CAPTCHA, which stands for Completely Automated Public Turing test to tell Computers and
Humans Apart. There are many different types of CAPTCHA tests available, but we will be
using what is probably the most common one. This is where a series of characters are shown
as an image, and the user is required to identify these characters by typing them in as part of
the form they are submitting.

We will be using the Text_CAPTCHA component from PEAR (the PHP Extension and Appli-
cation Repository) to generate our CAPTCHA images. Note that we will be using a CAPTCHA
test for several forms in our web application, not just the registration form.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT88

9063CH04CMP4 11/20/07 9:20 PM Page 88

An example of a CAPTCHA image that Text_CAPTCHA generates is shown in Figure 4-2. The
random lines and shapes help to fool optical character recognition (OCR) software that may
try to automatically decipher the CAPTCHA.

Figure 4-2. A sample CAPTCHA image generated by PEAR’s Text_CAPTCHA

Circumventing CAPTCHA
Although the point of the CAPTCHA test is to tell computers and humans apart, it is techni-
cally possible to write a program that can solve a CAPTCHA automatically. In the case of the
text CAPTCHA we will be using, OCR software could be used to determine the characters in
the image.

Because of this, we try to distort the images to a point where using OCR software is not
possible, but not too far so that humans cannot determine which characters are being dis-
played. This means avoiding characters such as zero and the letter O completely, which can
easily be confused.

CAPTCHA and Accessibility
Another important consideration when implementing a CAPTCHA test in your web applications
is accessibility. If somebody is unable to pass the test, they will be unable to complete the form
protected by the CAPTCHA test. As such, it is important to have alternative methods available.

One possible solution is to implement an audio CAPTCHA in addition to the text CAPTCHA.
This would involve generating an audio file that reads back letters, numbers, or words, which the
user must then type in.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 89

9063CH04CMP4 11/20/07 9:20 PM Page 89

Another alternative is to have a manual registration system, where the user can e-mail
their details to the site administrator who can then save their details on their behalf. In Chap-
ter 14 we will discuss the implementation of an administration area in our web application.
Part of this administration area will be a user management section where an administrator
could manually create new users.

PEAR’s Text_CAPTCHA
To generate CAPTCHA images, we will be using the Text_CAPTCHA component from PEAR.
Text_CAPTCHA will generate the series of characters to appear in the image and then create an
image with those characters appearing at a random angles in random locations. It will also
add some random noise to prevent OCR software from reading the letters. This noise is a
series of lines and shapes that will be placed randomly on the image.

Before you can use Text_CAPTCHA, you must install it. It is available for download from
http://pear.php.net/package/Text_CAPTCHA, or you can use the PEAR installer to simplify
installation.

Text_CAPTCHA also relies on the Text_Password and Image_Text components, so you must
also install them. To install these packages using the PEAR installer, use the following com-
mands:

pear install -f Text_CAPTCHA
pear install -f Image_Text

Because neither of these packages have a stable release at time of writing, I used the –f
argument, which forces installation of a non-stable version. The first command should auto-
matically install Text_Password, but if it doesn’t, use the following command:

pear install Text_Password

Text_CAPTCHA also needs a TrueType font available in order to write letters to the
CAPTCHA image. Any font will do for this, as long as its characters are easy to read. The font
file I use in this book is the bold version of Vera (VeraBD.ttf), available from the Gnome web
site (http://www.gnome.org/fonts/). I chose this font because its license terms allow it to be
freely distributed. The font should be stored in the application data directory (/var/www/
phpweb20/data/VeraBD.ttf).

Generating a CAPTCHA Image
In order to add CAPTCHA capabilities to our application, we need to create a new controller
action that will be responsible for outputting the image. The CAPTCHA is not specific to user
registration, so we will call this controller utility, as there may be other utility actions we
want to add later.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT90

9063CH04CMP4 11/20/07 9:20 PM Page 90

Listing 4-13 shows the contents of UtilityController.php, which we will store in
./include/Controllers. Presently there is just one action, which is responsible for generating
and outputting the image.

Listing 4-13. Generating a CAPTCHA Image Using Text_CAPTCHA (UtilityController.php)

<?php
class UtilityController extends CustomControllerAction
{

public function captchaAction()
{

$captcha = Text_CAPTCHA::factory('Image');

$opts = array('font_size' => 20,
'font_path' => Zend_Registry::get('config')->paths->data,
'font_file' => 'VeraBd.ttf');

$captcha->init(120, 60, null, $opts);

// disable auto-rendering since we're outputting an image
$this->_helper->viewRenderer->setNoRender();

header('Content-type: image/png');
echo $captcha->getCAPTCHAAsPng();

}
}

?>

■Important In Listing 4-13, we must disable the autorendering of templates that Zend_Controller_
Front will do. If we don’t include the call to setNoRender(), captchaAction() will try to render a tem-
plate belonging in ./templates/utility/captcha.tpl. Since the captchaAction() method outputs the
generated CAPTCHA image, there is no such template.

In order to use Text_CAPTCHA, we first call the factory() method to use the Image driver.
We then create an array of options to specify properties of the font that will be used. As men-
tioned previously, the TrueType font is stored in the application data directory, so we use the
application config to tell Text_CAPTCHA about this directory.

Next we call the init() method, which specifies the height, width, and CAPTCHA phrase,
as well as the font options. In this code we pass null as the third parameter, which means the
phrase will be randomly generated by Text_Password.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 91

9063CH04CMP4 11/20/07 9:20 PM Page 91

■Tip You may prefer to store some of the “magic values” in Listing 4-13 (such as font name and size) in
the application settings (./settings.ini).

Finally, we send the image to the browser using the getCAPTCHAAsPng() method. We must
also send the correct Content-type header to the browser, so it knows to interpret the data as
an image.

As it stands, we cannot yet use this code in our registration form because
FormProcessor_UserRegistration needs to know the CAPTCHA phrase in order to determine
whether or not the user entered it correctly. We must modify captchaAction() so that it gener-
ates a new phrase and writes it to the session. On subsequent requests to captchaAction(), we
then check for the existence of the phrase in the session. If the value exists, we use that for the
image rather than generating a new one.

■Note The way we are implementing CAPTCHA images is so that if a user enters the phrase incorrectly,
they are shown the same CAPTCHA image again. An alternative is to generate a new phrase every time they
get it wrong. The important thing to remember in this implementation is to clear the phrase once it has been
successfully entered. We will cover this shortly.

Listing 4-14 shows a modified version of captchaAction(), which now checks for an exist-
ing phrase, and then writes the phrase that was used in the image back to the session.

Listing 4-14. Storing CAPTCHA Phrases in the Session for Reuse (UtilityController.php)

<?php
class UtilityController extends CustomControllerAction
{

public function captchaAction()
{

$session = new Zend_Session_Namespace('captcha');

// check for existing phrase in session
$phrase = null;
if (isset($session->phrase) && strlen($session->phrase) > 0)

$phrase = $session->phrase;

// generate CAPTCHA
$captcha = Text_CAPTCHA::factory('Image');

$opts = array('font_size' => 20,
'font_path' => Zend_Registry::get('config')->paths->data,
'font_file' => 'VeraBd.ttf');

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT92

9063CH04CMP4 11/20/07 9:20 PM Page 92

$captcha->init(120, 60, $phrase, $opts);

// write the phrase to session
$session->phrase = $captcha->getPhrase();

// disable auto-rendering since we're outputting an image
$this->_helper->viewRenderer->setNoRender();

header('Content-type: image/png');
echo $captcha->getCAPTCHAAsPng();

}
}

?>

You can now view the generated CAPTCHA image directly in your browser by visiting
http://phpweb20/utility/captcha. (This is how I generated Figure 4-2.) Unlike all of the previ-
ous controller actions we have implemented so far, which returned HTML code, this action
returns image data (along with the corresponding headers so browsers knows how to display
the data).

Adding the CAPTCHA Image to the Registration Form
The next step in integrating the CAPTCHA test is to display the image on the registration form.
To do this, we simply use an HTML tag to show the image, and we add a text input so the
user can enter the phrase.

Listing 4-15 shows the relevant HTML code we need to add to the register.tpl form cre-
ated earlier in this chapter (located in ./templates/account). The convention with CAPTCHA
images is to add them at the end of the form, above the submit button.

Listing 4-15. Displaying the CAPTCHA Image on the Registration Form (register.tpl)

{include file='header.tpl'}

<form method="post" action="/account/register">

<fieldset>
<legend>Create an Account</legend>

<!--
// other form fields

-->

<div class="captcha">

</div>

<div class="row" id="form_captcha_container">
<label for="form_captcha">Enter Above Phrase:</label>

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 93

9063CH04CMP4 11/20/07 9:20 PM Page 93

<input type="text" id="form_captcha"
name="captcha" value="{$fp->captcha|escape}" />

{include file='lib/error.tpl' error=$fp->getError('captcha')}
</div>

<div class="submit">
<input type="submit" value="Register" />

</div>
</fieldset>

</form>

{include file='footer.tpl'}

One thing to notice in this code is that we still prepopulate the captcha field in this form.
This is so the user only has to enter it successfully once. For example, if they enter an invalid
e-mail address but a valid CAPTCHA phrase, they shouldn’t have to enter the CAPTCHA
phrase again after fixing their e-mail address. Figure 4-3 shows the registration form with the
CAPTCHA image and the corresponding text input field.

Figure 4-3. The registration form with a CAPTCHA image and text input field to receive the
phrase from the user

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT94

9063CH04CMP4 11/20/07 9:20 PM Page 94

Validating the CAPTCHA Phrase
Finally, we must check that the submitted CAPTCHA phrase matches the one stored in the ses-
sion data. To do this, we need to add a new check to the process() method in FormProcessor_
UserRegistration. We also need to clear the saved phrase once the form is completed. This is so
a new phrase is generated the next time the user tries to do anything that requires CAPTCHA
authentication.

Listing 4-16 shows the additions to FormProcessor_UserRegistration that check for a valid
phrase and clear out the phrase upon completion.

Listing 4-16. Validating the Submitted CAPTCHA Phrase (UserRegistration.php)

<?php
class FormProcessor_UserRegistration extends FormProcessor
{

// ... other code

public function process(Zend_Controller_Request_Abstract $request)
{

// validate CAPTCHA phrase

$session = new Zend_Session_Namespace('captcha');
$this->captcha = $this->sanitize($request->getPost('captcha'));

if ($this->captcha != $session->phrase)
$this->addError('captcha', 'Please enter the correct phrase');

// if no errors have occurred, save the user
if (!$this->hasError()) {

$this->user->save();
unset($session->phrase);

}

// return true if no errors have occurred
return !$this->hasError();

}
}

?>

Adding E-mail Functionality
The final function we must add to the user registration system is one that sends the newly reg-
istered user a confirmation of their account, as well as their randomly generated password so
they can log in. Sending them their password by e-mail is an easy way to validate their e-mail
address.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 95

9063CH04CMP4 11/20/07 9:20 PM Page 95

To send e-mail from our application, we will use the Zend_Mail component of the Zend
Framework. We could instead use the PHP mail() function, but by using a class such as this
(or even PEAR’s Mail_Mime), we can do a whole lot more, such as attaching files (including
images) and sending HTML e-mail. We won’t be doing either in this book, but if you ever
wanted to add such functionality, the key code would already be in place.

Listing 4-17 shows a basic example of using Zend_Mail. This script sends a single e-mail to
the address specified with the call to addTo(). You can use this script to ensure that your e-mail
server is correctly sending e-mail (remember to update the recipient address to your own).

Listing 4-17. Example Usage of Zend_Mail to Send an E-mail (listing-4-17.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

$mail = new Zend_Mail();
$mail->setBodyText('E-mail body');
$mail->setFrom('from@example.com');
$mail->addTo('to@example.com');
$mail->setSubject('E-mail Subject');
$mail->send();

?>

Before we can make our user registration system send out an e-mail, we must first add
functionality to DatabaseObject_User for sending e-mail to users—this will allow us to easily
send other e-mail messages to users as well (such as instructions for resetting a forgotten
password).

We will use Smarty for e-mail templates, just as we do for outputting the web site HTML.
Our e-mail templates will be structured so the first line of the template is the e-mail subject,
while the rest of the file constitutes the e-mail body.

Listing 4-18 shows the sendEmail() function, which we will add to the DatabaseObject_
User class. It takes the filename of a template as the argument, and feeds it through Smarty
before using Zend_Mail to send the resulting e-mail body to the user.

Listing 4-18. A Helper Function Used to Send E-mail to Users (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

// ... other code

public function sendEmail($tpl)
{

$templater = new Templater();
$templater->user = $this;

// fetch the e-mail body
$body = $templater->render('email/' . $tpl);

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT96

9063CH04CMP4 11/20/07 9:20 PM Page 96

// extract the subject from the first line
list($subject, $body) = preg_split('/\r|\n/', $body, 2);

// now set up and send the e-mail
$mail = new Zend_Mail();

// set the to address and the user's full name in the 'to' line
$mail->addTo($this->profile->email,

trim($this->profile->first_name . ' ' .
$this->profile->last_name));

// get the admin 'from' details from the config
$mail->setFrom(Zend_Registry::get('config')->email->from->email,

Zend_Registry::get('config')->email->from->name);

// set the subject and body and send the mail
$mail->setSubject(trim($subject));
$mail->setBodyText(trim($body));
$mail->send();

}

// ... other code
}

?>

In this code, we first instantiate the Templater class and assign to it $this, so we can
access all user details (including the profile) from within the e-mail template passed in via the
$tpl argument.

Next, we use the render() method to retrieve the template output. In this function, we
want the string returned, so we can extract the subject and then send it via e-mail. Addition-
ally, this code forces all e-mail templates to be within the e-mail directory inside the template
directory (./templates/email).

The call to preg_split() is what we use to extract the subject. The regular expression used
simply finds a newline (\n) or a carriage return (\r) to split on. The third argument (the num-
ber 2) splits the string into a maximum of two items.

The other important thing to notice in this code is how we set the from e-mail address
and name: we add two new values in the application settings file (settings.ini). Listing 4-19
shows the updated version of settings.ini. The values here are somewhat generic; you can
set them to reflect your own needs.

Listing 4-19. The Updated Application Settings with System Administrator Contact Details
(settings.ini)

[development]

database.type = pdo_mysql
database.hostname = localhost

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 97

9063CH04CMP4 11/20/07 9:20 PM Page 97

database.username = phpweb20
database.password = myPassword
database.database = phpweb20

paths.base = /var/www/phpweb20
paths.data = /var/www/phpweb20/data
paths.templates = /var/www/phpweb20/templates

logging.file = /var/www/phpweb20/data/logs/debug.log

email.from.name = "System Administrator"
email.from.email = "noreply@localhost"

Now we can update the postInsert() method in DatabaseObject_User to send the user a
welcome e-mail. As you may recall from Chapter 3, this callback method is executed after a new
record has successfully been inserted into the database using DatabaseObject’s save() method.
Listing 4-20 shows the updated version of postInsert(), which will send an e-mail using
user-register.tpl once the user’s profile has been saved.

Listing 4-20. Adding an Automated Call to sendEmail() when a New User is Added (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

// ... other code

protected function postInsert()
{

$this->profile->setUserId($this->getId());
$this->profile->save(false);

$this->sendEmail('user-register.tpl');
return true;

}

// ... other code
}

?>

All that remains now is to create the e-mail template and make the new password avail-
able from within that template. When we initially created DatabaseObject_User, we used the
uniqid() function generate a random password. We will now update this to use the PEAR
Text_Password class we installed for our CAPTCHA implementation to generate a better pass-
word. Additionally, since passwords are stored in the database using MD5, we must record the
password before it is encrypted so we can include it in the e-mail template.

We will do this by storing the generated password as a property in the current
DatabaseObject_User object so it is available from the template. We will also need to initialize
this property at the top of the class. Listing 4-21 shows the changes to the preInsert() callback

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT98

9063CH04CMP4 11/20/07 9:20 PM Page 98

of DatabaseObject_User, and the new initialization of the $_newPassword property. This property
must be public so the template can access its value.

Listing 4-21. Creating a Pronounceable Password with Text_Password (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

// ... other code

public $_newPassword = null;

// ... other code

protected function preInsert()
{

$this->_newPassword = Text_Password::create(8);
$this->password = $this->_newPassword;
return true;

}

// ... other code
}

?>

Finally, we can create the user-register.tpl template. As mentioned previously, the first
line of this file will be used as the e-mail subject. This is useful, as it allows us to include tem-
plate logic in the e-mail subject as well as in the body. We will include the user’s first name in
the e-mail subject.

Listing 4-22 shows the contents of user-register.tpl, which is stored in ./templates/
email. You may want to customize this template to suit your own requirements.

Listing 4-22. The E-mail Template Used when New Users Register (user-register.tpl)

{$user->profile->first_name}, Thank You For Your Registration
Dear {$user->profile->first_name},

Thank you for your registration. Your login details are as follows:

Login URL: http://phpweb20/account/login
Username: {$user->username}
Password: {$user->_newPassword}

Sincerely,

Web Site Administrator

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 99

9063CH04CMP4 11/20/07 9:20 PM Page 99

Figure 4-4 shows how the e-mail will look when received by the user. Hopefully the user’s
e-mail client will make the login URL clickable. You could choose to use an HTML e-mail
instead, but if the e-mail client can’t automatically highlight links in a text e-mail, it probably
can’t render HTML e-mails either.

Figure 4-4. An example of the e-mail sent to a user when they register

Implementing Account Login and Logout
Now that users have a way of registering on the system, we must allow them to log in to their
account. We do that by adding a new action to the account controller, which we will call login.
In Chapter 3 we looked at how to authenticate using Zend_Auth (see Listing 3-5). We will now
implement this functionality.

The basic algorithm for the login action is as follows:

1. Display the login form.

2. If the user submits the form, try to authenticate them with Zend_Auth.

3. If they successfully authenticate, write their identity to the session and redirect them
to their account home page (or to the protected page they originally requested).

4. If their authentication attempt was unsuccessful, display the login form again, indicat-
ing that an error occurred.

In addition to this, we also want to make use of our logging capabilities. We will make a
log entry for both successful and unsuccessful login attempts.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT100

9063CH04CMP4 11/20/07 9:20 PM Page 100

Creating the Login Template
Before we implement the login action in our account controller, we’ll quickly take a look at
the login form. Listing 4-23 shows the login.tpl template, which we will store in./templates/
account.

Listing 4-23. The Account Login Form (login.tpl)

{include file='header.tpl'}

<form method="post" action="/account/login">

<fieldset>
<input type="hidden" name="redirect" value="{$redirect|escape}" />

<legend>Log In to Your Account</legend>

<div class="row" id="form_username_container">
<label for="form_username">Username:</label>
<input type="text" id="form_username"

name="username" value="{$username|escape}" />
{include file='lib/error.tpl' error=$errors.username}

</div>

<div class="row" id="form_password_container">
<label for="form_password">Password:</label>
<input type="password" id="form_password"

name="password" value="" />
{include file='lib/error.tpl' error=$errors.password}

</div>

<div class="submit">
<input type="submit" value="Login" />

</div>
</fieldset>

</form>

{include file='footer.tpl'}

This form is very similar in structure to the registration form, except it only contains input
fields for username and password. Additionally, we use the password type for the password
field, instead of the text type. This template also relies on the presence of an array called
$errors, which is generated by the login action.

This form also includes a hidden form variable called redirect. The value of this field
indicates the relative page URL where the user will end up once they successfully log in. This is
necessary because sometimes a user will go directly to a page that requires authentication, but
they will not yet be authenticated. If users were automatically redirected to their account

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 101

9063CH04CMP4 11/20/07 9:20 PM Page 101

home, they would then have to navigate back to the page they originally wanted, which they
would find annoying. We will set the value for $redirect in the login action.

Figure 4-5 shows the login form. Again, it is bland, but we will improve on it in Chapter 6.

Figure 4-5. The user login form

Adding the Account Controller Login Action
Now we need to add the loginAction() method to the account controller. This is the most
complex action handler we’ve created so far, although all it does is perform the four points
listed at the start of the “Implementing Account Login and Logout” section.

Listing 4-24 shows the code for loginAction(), which belongs in the AccountController.php
file.

Listing 4-24. Processing User Login Attempts (AccountController.php)

<?php
class AccountController extends CustomControllerAction
{

// ... other code

public function loginAction()
{

// if a user's already logged in, send them to their account home page
$auth = Zend_Auth::getInstance();

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT102

9063CH04CMP4 11/20/07 9:20 PM Page 102

if ($auth->hasIdentity())
$this->_redirect('/account');

$request = $this->getRequest();

// determine the page the user was originally trying to request
$redirect = $request->getPost('redirect');
if (strlen($redirect) == 0)

$redirect = $request->getServer('REQUEST_URI');
if (strlen($redirect) == 0)

$redirect = '/account';

// initialize errors
$errors = array();

// process login if request method is post
if ($request->isPost()) {

// fetch login details from form and validate them
$username = $request->getPost('username');
$password = $request->getPost('password');

if (strlen($username) == 0)
$errors['username'] = 'Required field must not be blank';

if (strlen($password) == 0)
$errors['password'] = 'Required field must not be blank';

if (count($errors) == 0) {

// setup the authentication adapter
$adapter = new Zend_Auth_Adapter_DbTable($this->db,

'users',
'username',
'password',
'md5(?)');

$adapter->setIdentity($username);
$adapter->setCredential($password);

// try and authenticate the user
$result = $auth->authenticate($adapter);

if ($result->isValid()) {

$user = new DatabaseObject_User($this->db);
$user->load($adapter->getResultRowObject()->user_id);

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 103

9063CH04CMP4 11/20/07 9:20 PM Page 103

// record login attempt
$user->loginSuccess();

// create identity data and write it to session
$identity = $user->createAuthIdentity();
$auth->getStorage()->write($identity);

// send user to page they originally request
$this->_redirect($redirect);

}

// record failed login attempt
DatabaseObject_User::LoginFailure($username,

$result->getCode());
$errors['username'] = 'Your login details were invalid';

}
}

$this->view->errors = $errors;
$this->view->redirect = $redirect;

}
}

?>

The first thing this function does is check whether or not the user has already been
authenticated. If they have, they are redirected back to their account home page.

Next we try to determine the page they were originally trying to access. If they have sub-
mitted the login form, this value will be in the redirect form value. If not, we simply use the
$_SERVER['REQUEST_URI'] value to determine where they came from. If we still can’t determine
where they came from, we just use their account home page as the default destination. We
haven’t yet created the action to display their account home page; we will do that in the
“Implementing Account Management” section later in this chapter.

■Note Because the ACL manager forwarded the request to the login handler (as opposed to using an HTTP
redirect), the server variable REQUEST_URI will contain the location originally requested. If a redirect was
used to display the login form, you could use the HTTP_REFERER value instead.

We then define an empty array to hold error messages. This is done here so it can be
assigned to the template whether a login attempt has occurred or not.

Next we check whether or not the login form has been submitted by checking the
$request object’s isPost() method (we also did this earlier when processing user registra-
tions). If it has been submitted, we retrieve the submitted username and password values from
the request data. If either of these is empty, we set corresponding error messages and proceed
to display the login template again.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT104

9063CH04CMP4 11/20/07 9:20 PM Page 104

Once we have determined that both a username and password have been submitted, we
try to authenticate the user. This code is very similar to that of Listing 3-4.

If we determine that the login attempt was successful, we perform three actions:

1. Record the successful login attempt. When a user successfully logs in, we want to
make a note of this in the application log file. To do so, we will add a utility function
to DatabaseObject_User called loginSuccess(). This function will also update the
ts_last_login field in the user table to record the timestamp of the user’s most recent
login. We will look at the loginSuccess() function shortly. This function must be called
after a user record has been loaded in DatabaseObject_User.

2. Update the identity data stored in session to include all of the values in the corre-
sponding database row for this user. By default, only the supplied username will be
stored as the identity; however, since we want to display other user details (such as
their name or e-mail address) we need to update the stored identity to include those
other details:

• We can retrieve the data we want to save as the identity by using the
createAuthIdentity() method in DatabaseObject_User. This function returns
a generic PHP object holding the user’s details.

• The storage object returned from Zend_Auth’s getStorage() method has a method
called write(), which we can use to overwrite the existing identity with the data
returned from createAuthIdentity().

3. Redirect the user to their previously requested page. This is achieved simply by call-
ing the _redirect() method with the $redirect variable as its only argument.

Alternatively, if the login attempt failed, the code will continue on. At this point, we call
the LoginFailure() method from the DatabaseObject_User class to write this failed attempt to
the log file. We will look at this method shortly.

We then write a message to the $errors array and continue on to display the template.
As mentioned in Chapter 3, we can determine the exact reason why the login attempt failed,
and we will record this reason in the log file. However, this isn’t information that should be
provided to the user.

■Note Until you add the functions in the next section, a PHP error will occur if you try to log in.

Logging Successful and Failed Login Attempts
To log both successful and unsuccessful login attempts, we will implement two utility func-
tions in DatabaseObject_User: loginSuccess() and LoginFailure().

Listing 4-25 shows these functions as they appear within the DatabaseObject_User class
(User.php). Note that LoginFailure() is a static method, while loginSuccess() must be called
after a user record has been loaded. I’ve also included the createAuthIdentity() method as
described in the previous section.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 105

9063CH04CMP4 11/20/07 9:20 PM Page 105

Listing 4-25. Auditing Login Attempts by Writing Them to the Application Log (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

// ... other code

public function createAuthIdentity()
{

$identity = new stdClass;
$identity->user_id = $this->getId();
$identity->username = $this->username;
$identity->user_type = $this->user_type;
$identity->first_name = $this->profile->first_name;
$identity->last_name = $this->profile->last_name;
$identity->email = $this->profile->email;

return $identity;
}

public function loginSuccess()
{

$this->ts_last_login = time();
$this->save();

$message = sprintf('Successful login attempt from %s user %s',
$_SERVER['REMOTE_ADDR'],
$this->username);

$logger = Zend_Registry::get('logger');
$logger->notice($message);

}

static public function LoginFailure($username, $code = '')
{

switch ($code) {
case Zend_Auth_Result::FAILURE_IDENTITY_NOT_FOUND:

$reason = 'Unknown username';
break;

case Zend_Auth_Result::FAILURE_IDENTITY_AMBIGUOUS:
$reason = 'Multiple users found with this username';
break;

case Zend_Auth_Result::FAILURE_CREDENTIAL_INVALID:
$reason = 'Invalid password';
break;

default:
$reason = '';

}

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT106

9063CH04CMP4 11/20/07 9:20 PM Page 106

$message = sprintf('Failed login attempt from %s user %s',
$_SERVER['REMOTE_ADDR'],
$username);

if (strlen($reason) > 0)
$message .= sprintf(' (%s)', $reason);

$logger = Zend_Registry::get('logger');
$logger->warn($message);

}

// ... other code
}

?>

The first thing we do in LoginSuccess() is update the users table to set the ts_last_login
field to the current date and time for the user that has just logged in. It is for this reason
(updating the database) that we pass in the database connection as the first argument.

We then fetch the $logger object from the application registry so we can write a message
indicating that the given user just logged in. We also include the IP address of the user.

LoginFailure() is essentially the same as loginSuccess(), except we do not make any data-
base updates. Also, the function accepts the error code generated during the login attempt
(retrieved with the getCode() method on the authentication result object in Listing 4-24), which
we use to generate extra information to write to the log. We log this message as a warning, since
it’s of greater importance than a successful login.

Please be aware that if you try to log in now you will be redirected to the account home
page (http://phpweb20/account) which we will be creating shortly.

■Tip The reason you want to track failed logins separately from successful logins (using different priority
levels) is that a successful login typically indicates “normal operation,” while a failed login may indicate that
somebody is trying to gain unauthorized access to an account. Being able to filter the log easily by the mes-
sage type helps you easily identify potential problems that have occurred or are occurring. In Chapter 14 we
will look at how to make use of this log file.

Logging Users Out of Their Accounts
It is important to give users the option of logging out of their accounts, as they may want to
ensure that nobody can use their account (maliciously or otherwise) after they are finished
with their session.

It is very straightforward to log a user out when using Zend_Auth. Because the presence of
an identity in the session is what determines whether or not a user is logged in, all we need to
do is clear that identity to log them out.

To do this, we simply use the clearIdentity() method of the instance of Zend_Auth. We
can then redirect the user somewhere else, so they can continue to use the site if they please.
I simply chose to redirect them back to the login page.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 107

9063CH04CMP4 11/20/07 9:20 PM Page 107

Listing 4-26 shows the logoutAction() method which is used to clear user identity data.
Users can log out by visiting http://phpweb20/account/logout.

Listing 4-26. Logging Out a User and Redirecting Them Back to the Login Page
(AccountController.php)

<?php
class AccountController extends CustomControllerAction
{

// ... other code

public function logoutAction()
{

Zend_Auth::getInstance()->clearIdentity();
$this->_redirect('/account/login');

}
}

?>

■Note You could use _forward('login') in Listing 4-26 instead of _redirect('/account/login')
if you wanted to. However, if you forwarded the request to the login page, the $redirect variable in
loginAction() would be set to load the logout page (/account/logout) as soon as a user logged in—
they would never be able to log in to their account unless they manually typed in a different URL first!

Dealing with Forgotten Passwords
Now that we have added login functionality, we must also allow users who have forgotten their
passwords to access their accounts. Because we store the user password as an MD5 hash of
the actual password, we cannot send them the old password. Instead, when they complete the
fetch-password form, we will generate a new password and send that to them.

We can’t automatically assume that the person who filled out the fetch-password form is
the account holder, so we won’t update the actual account password until their identity has
been verified. We do this by providing a link in the sent e-mail that will confirm the password
change. This has the added advantage of allowing them to remember their old password after
filling out the form and before clicking the confirmation link.

The basic algorithm for implementing fetch-password functionality is as follows:

1. Display a form to the user asking for their username.

2. If the supplied username is found, generate a new password and write it to their pro-
file, and then send an e-mail to the address associated with the account informing
them of their new password.

3. If the supplied username is not found, display an error message to the user.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT108

9063CH04CMP4 11/20/07 9:20 PM Page 108

So that we don’t have to mess around with application permissions, we will handle three
different actions in the new fetch-password controller action:

1. Display and process the user form.

2. Display the confirmation message.

3. Update the user account when the password-update confirmation link is clicked and
indicate to the user that this has occurred.

Resetting a User’s Password
Before we implement the required application logic for fetch password, let’s create the web
page template we will use. Listing 4-27 shows the contents of fetchpassword.tpl, which we
will store in the account template directory. This template handles each of the three cases out-
lined previously.

Listing 4-27. The Template Used for the Fetch-Password Tool (fetchpassword.tpl)

{include file='header.tpl'}

{if $action == 'confirm'}
{if $errors|@count == 0}

<p>
Your new password has now been activated.

</p>

Log in to your account

{else}
<p>

Your new password was not confirmed. Please double-check the link
sent to you by e-mail, or try using the
Fetch Password tool again.

</p>
{/if}

{elseif $action == 'complete'}
<p>

A password has been sent to your account e-mail address containing
your new password. You must click the link in this e-mail to activate
the new password.

</p>
{else}

<form method="post" action="/account/fetchpassword">

<fieldset>
<legend>Fetch Your Password</legend>

<div class="row" id="form_username_container">

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 109

9063CH04CMP4 11/20/07 9:20 PM Page 109

<label for="form_username">Username:</label>
<input type="text" id="form_username" name="username" />
{include file='lib/error.tpl' error=$errors.username}

</div>

<div class="submit">
<input type="submit" value="Fetch Password" />

</div>

</fieldset>

</form>
{/if}

{include file='footer.tpl'}

This template is divided into three parts. The first is used when a user tries to confirm
their new password. Within this section is a section for successful confirmation, and another
to display a message if the confirmation URL is invalid.

The next section (for the complete action) is used after the user submits the fetch-pass-
word form with a valid username. The final section is the default part of the template, which is
shown when the user initially visits the fetch-password tool, or if they enter an invalid user-
name.

Now let’s take a look at the new controller action. I called this action handler
fetchpasswordAction(), as you can see in Listing 4-28. This code is to be added to the
AccountController.php file in ./include/Controllers.

Listing 4-28. Handling the Fetch-Password Request (AccountController.php)

<?php
class AccountController extends CustomControllerAction
{

// ... other code

public function fetchpasswordAction()
{

// if a user's already logged in, send them to their account home page
if (Zend_Auth::getInstance()->hasIdentity())

$this->_redirect('/account');

$errors = array();

$action = $this->getRequest()->getQuery('action');

if ($this->getRequest()->isPost())
$action = 'submit';

switch ($action) {

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT110

9063CH04CMP4 11/20/07 9:20 PM Page 110

case 'submit':
$username = trim($this->getRequest()->getPost('username'));
if (strlen($username) == 0) {

$errors['username'] = 'Required field must not be blank';
}
else {

$user = new DatabaseObject_User($this->db);
if ($user->load($username, 'username')) {

$user->fetchPassword();

$url = '/account/fetchpassword?action=complete';
$this->_redirect($url);

}
else

$errors['username'] = 'Specified user not found';
}
break;

case 'complete':
// nothing to do
break;

case 'confirm':
$id = $this->getRequest()->getQuery('id');
$key = $this->getRequest()->getQuery('key');

$user = new DatabaseObject_User($this->db);
if (!$user->load($id))

$errors['confirm'] = 'Error confirming new password';
else if (!$user->confirmNewPassword($key))

$errors['confirm'] = 'Error confirming new password';

break;
}

$this->view->errors = $errors;
$this->view->action = $action;

}
}

?>

In this code, we first redirect the user back to the account home page if they are authenti-
cated. Next we try to determine the action the user is trying to perform. When a user initially
visits the fetch-password page (http://phpweb20/account/fetchpassword), no action will be
set. As such, the entire switch statement will be skipped.

If the request method for the current request is POST, we assume the user submitted the
fetch-password form, so we update the $action variable accordingly. If the form has been
filled out correctly and a valid username has been specified, the DatabaseObject_User::

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 111

9063CH04CMP4 11/20/07 9:20 PM Page 111

fetchPassword() method is called. This is a utility function we will define shortly (along with
confirmNewPassword()). Once this has been called, we redirect back to the fetch-password
page, indicating that the action has completed by putting action=complete in the URL. As
you can see in the switch statement, there is nothing to actually do for this action; it is just
included there for completeness.

The other action is the confirm action. This code is executed when the user clicks on the
link we send them in the fetch-password e-mail (which we will look at shortly). We then try to
confirm their new password using the submitted key value.

Functions for Resetting Passwords
There are two functions we need to add to DatabaseObject_User to implement the password
resetting. The first is called fetchPassword(), which does the following:

1. Generates a new password using Text_Password.

2. Writes the new password to the user profile.

3. Writes the current date and time to the user profile, so we can ensure the new pass-
word can only be confirmed within one day.

4. Generates a key that must be supplied by the user to confirm their new password. We
also write this to the user profile.

5. Saves the profile.

6. Sends an e-mail to the user using the fetch-password.tpl e-mail template (separate
from the fetchpassword.tpl page template created previously).

The second function we will add is called confirmNewPassword(), which confirms the
user’s new password after they click the link in the e-mail sent to them. This function works as
follows:

1. Checks that the new password, timestamp, and confirmation key exist in the profile.

2. Checks that the confirmation is taking place within a day of the stored timestamp.

3. Checks that the supplied key matches the key stored in the user profile.

4. Updates the user record to use the new password.

5. Removes the values from the profile.

6. Saves the user (which will also save the profile).

Listing 4-29 shows these two new functions, which belong in the DatabaseObject_User
class (User.php).

Listing 4-29. Utility Functions Used for Resetting a User’s Password (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

// ... other code

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT112

9063CH04CMP4 11/20/07 9:20 PM Page 112

public function fetchPassword()
{

if (!$this->isSaved())
return false;

// generate new password properties
$this->_newPassword = Text_Password::create(8);
$this->profile->new_password = md5($this->_newPassword);
$this->profile->new_password_ts = time();
$this->profile->new_password_key = md5(uniqid() .

$this->getId() .
$this->_newPassword);

// save new password to profile and send e-mail
$this->profile->save();
$this->sendEmail('user-fetch-password.tpl');

return true;
}

public function confirmNewPassword($key)
{

// check that valid password reset data is set
if (!isset($this->profile->new_password)

|| !isset($this->profile->new_password_ts)
|| !isset($this->profile->new_password_key)) {

return false;
}

// check if the password is being confirm within a day
if (time() - $this->profile->new_password_ts > 86400)

return false;

// check that the key is correct
if ($this->profile->new_password_key != $key)

return false;

// everything is valid, now update the account to use the new password

// bypass the local setter as new_password is already an md5
parent::__set('password', $this->profile->new_password);

unset($this->profile->new_password);
unset($this->profile->new_password_ts);
unset($this->profile->new_password_key);

// finally, save the updated user record and the updated profile

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 113

9063CH04CMP4 11/20/07 9:20 PM Page 113

return $this->save();
}

// ... other code
}

?>

Now we just need to create the e-mail template. In this e-mail, we will generate the
URL that the user needs to click on in order to reset their password. If you refer back to the
fetchpasswordAction() function in AccountController.php (Listing 4-28), you will see that
the arguments required are the action parameter (set to confirm), the id parameter (which
corresponds to the user_id column in the users table), and the key parameter (which is the
new_password_key value we generated in DatabaseObject::fetchPassword()).

Listing 4-30 shows the e-mail template, which we will store in user-fetch-password.tpl in
the ./templates/email directory. Remember that the first line is the e-mail subject.

Listing 4-30. The E-mail Template Used to Send a User Their New Password
(user-fetch-password.tpl)

{$user->profile->first_name}, Your Account Password
Dear {$user->profile->first_name},

You recently requested a password reset as you had forgotten your password.

Your new password is listed below. To activate this password, click this link:

Activate Password: http://phpweb20/account/fetchpassword? ➥

action=confirm&id={$user->getId()}&key={$user->profile->new_password_key}
Username: {$user->username}
New Password: {$user->_newPassword}

If you didn't request a password reset, please ignore this message and your password
will remain unchanged.

Sincerely,

Web Site Administrator

Figure 4-6 shows a sample of the e-mail that is sent when a new password is requested.
Take special note of the URL that is generated, and the different parts in the URL that we use
in fetchpasswordAction().

■Note One small potential problem is the length of the URL in the e-mail. Some e-mail clients may wrap
this URL across two lines, resulting in it not being highlighted properly (or if the user manually copies and
pastes the URL, they may miss part of it). You may prefer to generate a shorter key or action name to reduce
its length.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT114

9063CH04CMP4 11/20/07 9:20 PM Page 114

Figure 4-6. The fetch password e-mail sent to a user

There’s one more small issue we must now address: if a user requests a new password,
and then logs in with their old password without using the new password, we want to remove
the new password details from their profile. To do this, we update the loginSuccess() method
in DatabaseObject_User to clear this data. Listing 4-31 shows the updated version of this
method as it appears in the User.php file. We place the three calls to unset() before calling the
save() method, so the user record only needs saving once.

Listing 4-31. Clearing the Password Reset Fields if They Are Set (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

// ... other code

public function loginSuccess()
{

$this->ts_last_login = time();
unset($this->profile->new_password);
unset($this->profile->new_password_ts);
unset($this->profile->new_password_key);
$this->save();

$message = sprintf('Successful login attempt from %s user %s',

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 115

9063CH04CMP4 11/20/07 9:20 PM Page 115

$_SERVER['REMOTE_ADDR'],
$this->username);

$logger = Zend_Registry::get('logger');
$logger->notice($message);

}

// ... other code
}

?>

Finally, as shown in Listing 4-32, we must add a link to the original login form (login.tpl
in ./templates/account) so the user can access the fetch-password tool if required.

Listing 4-32. Linking to the Fetch-Password Tool from the Account Login Page (login.tpl)

<!-- // ... other code -->

<fieldset>
<legend>Log In to Your Account</legend>

<!-- // ... other code -->

<div>
Forgotten your password?

</div>
</fieldset>

<!-- // ... other code -->

Implementing Account Management
Earlier in this chapter we implemented the login and logout system for user accounts. When a
user successfully logged in, the code would redirect them to the page they initially requested. In
many cases, this will be their account home page (which has the URL http://phpweb20/account).
So far, however, we haven’t actually implemented this action in the AccountController class.

In this section, we will first create this action (indexAction()), although there isn’t terribly
much that this will do right now. Next, we will update the site header template so it has more
useful navigation (even if it is still unstyled). This will include additional menu options for
logged-in users only. Finally, we will allow users to update their account details.

Creating the Account Home Page
After a user logs in, they are allowed to access their account home page by using the
index action in the account controller. Listing 4-33 shows the code for indexAction() in
AccountController.php, which at this stage doesn’t do anything of great interest, other than
display the index.tpl template in ./templates/account.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT116

9063CH04CMP4 11/20/07 9:20 PM Page 116

Listing 4-33. The Account Home Page Action Controller (AccountController.php)

<?php
class AccountController extends CustomControllerAction
{

public function indexAction()
{

// nothing to do here, index.tpl will be displayed
}

// ... other code
}

?>

Before we look at index.tpl, we will make a small but important change to the
CustomControllerAction.php file. We are going to change it so the logged-in user’s identity
data is automatically assigned to the template, thereby making it available within all site tem-
plates. This is the data we generated in the createAuthIdentity() method in Listing 4-25.

Additionally, we will assign a variable called $authenticated, which is true if identity data
exists. We could use {if isset($identity)} in our templates instead of this variable, but we
would then be making an assumption that the presence of the $identity means the user is
logged in (and vice versa).

To make this change, we need to implement the preDispatch() method, as shown in
Listing 4-34. This method is automatically called by Zend_Controller_Front at the start of dis-
patching any action. We can make this change to CustomControllerAction, since all controllers
in our application extend from this class.

Listing 4-34. Assigning Identity Data Automatically to Templates (CustomControllerAction.php)

<?php
class CustomControllerAction extends Zend_Controller_Action
{

function init()
{

$this->db = Zend_Registry::get('db');
}

public function preDispatch()
{

$auth = Zend_Auth::getInstance();
if ($auth->hasIdentity()) {

$this->view->authenticated = true;
$this->view->identity = $auth->getIdentity();

}
else

$this->view->authenticated = false;
}

}
?>

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 117

9063CH04CMP4 11/20/07 9:20 PM Page 117

Now let’s look at the index.tpl file, which currently displays a simple welcome message.
We can use the first_name property from the identity to personalize the message. Listing 4-35
shows this template, which is stored in ./templates/account.

Listing 4-35. Displaying a Welcome Message After a User Logs In to Their Account Home Page
(index.tpl)

{include file='header.tpl'}

Welcome {$identity->first_name}.

{include file='footer.tpl'}

At this point, you can try to log in by visiting http://phpweb20/account and entering your
account details (remember that thanks to the permissions, trying to access this URL will dis-
play the page at http://phpweb20/account/login).

Updating the Web Site Navigation
When we last looked at the navigation in header.tpl, all we had was a home link and a register
link. We are now going to improve this navigation to include a few new items:

• Log in to account link

• Information about the currently logged in user (if any)

• A member’s-only submenu, including a logout link

To implement the second and third points, we need to check the $authenticated variable
we are now assigning to the template. Additionally, once a user has logged in, the login and
register links are no longer relevant, so we can hide them.

Listing 4-36 shows the updated version of header.tpl, which now includes some basic
template logic for the HTML header. For now we are just using vertical pipes to separate menu
items, but we will use CSS to improve this in Chapter 6.

Listing 4-36. Making the Site Navigation Member-Aware (header.tpl)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<title>Title</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>
<body>

<div>
Home

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT118

9063CH04CMP4 11/20/07 9:20 PM Page 118

{if $authenticated}
| Your Account
| Update Your Details
| Logout

{else}
| Register
| Log In

{/if}

{if $authenticated}
<hr />
<div>

Logged in as
{$identity->first_name|escape} {$identity->last_name|escape}
(logout)

</div>
{/if}

<hr />

Figure 4-7 shows the account home page that users are directed to after logging in. Note
the new navigation elements, as well as the information about the currently logged-in user.

Figure 4-7. The account home page with updated navigation and identity display

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 119

9063CH04CMP4 11/20/07 9:20 PM Page 119

Allowing Users to Update Their Details
The final thing we need to add to the user account section for now is the ability for users to
update their details. In the new header.tpl shown in Figure 4-7, there is a link labeled Update
Your Details, which will allow users to do this.

Because this code is largely similar to the user registration system, I have not included all
of the repetitive details. The key differences between user registration and updating details are
as follows:

• We are updating an existing user record rather than creating a new one.

• We do not allow the user to update their username.

• We allow the user to set a new password.

• We do not need the CAPTCHA test.

• Because the user is already logged in, we must update their Zend_Auth identity
accordingly.

■Note While there isn’t anything inherently bad about allowing users to change their own usernames, it is
my own preference to generally not allow users to do so (an exception might be if their e-mail address is used
as their login username). One reason why it is bad to allow the changing of usernames is that other users get
to know a user by their username; in the case of this application, we will be using the username to generate a
unique user home page URL. Changing their username would result in a new URL for their home page.

When allowing users to change their password, we will show them a password field and
a password confirmation field, requiring them to enter the new password twice in order to
change it. Additionally, we will include a note telling them to leave the password field blank if
they do not want to change their password. This is because we cannot prepopulate the pass-
word field with their existing password, since we only store an MD5 hash of it.

To implement the update details function, we must do the following:

• Create a new form processor class called FormProcessor_UserDetails, which is similar
to FormProcessor_UserRegistration. This class will read the submitted form values and
process them to ensure they are valid. If no errors occur when validating the data, the
existing user record is updated.

• Create a new action called detailsAction() in AccountController that instantiates
FormProcessor_UserDetails, and passes to it the ID of the logged-in user. This function
also updates the Zend_Auth identity by calling the createAuthIdentity() function in
DatabaseObject_User that we created earlier.

• Create a confirmation page to confirm to the user that their details have been
updated. To do this, we will create a new action handler called detailscompleteAction(),
which simply tells the user that their details have been saved.

Figure 4-8 shows what the form looks like when initially displayed to users. Note the pre-
populated fields, as well as the lack of a username field and the addition of a password field.

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT120

9063CH04CMP4 11/20/07 9:20 PM Page 120

You may want to display the username as a read-only field, but that is a personal preference. If
the user tries to remove a value and then submit the form, a corresponding error message will
be shown, just as in the registration form.

Figure 4-8. The update details form as it is initially shown to users

All the code for this section is included with the downloadable application source code.

Summary
In this chapter we implemented a user registration system, which allows users to create a new
account by filling out a web form. This form requires users to enter a CAPTCHA phrase to
prove that they are people (and not computer programs). Once the user’s registration is com-
plete, their details are saved to the database using DatabaseObject_User and Profile_User,
and the users are then sent an e-mail containing their account details.

We then added code to the application to allow users to log in to their accounts. We
saved their identity to the current session using Zend_Auth so it would be accessible on all
pages they visit.

Additionally, we added logging capabilities to the login system, so both successful and
unsuccessful login attempts would be recorded.

Finally, we created a basic account home page, to which users will be redirected after log-
ging in. We also added code to let them update their account details.

In the next chapter we will move slightly away from the development of the web applica-
tion while we take a look at two JavaScript libraries: Prototype and Scriptaculous. We will be
using these libraries to help give our application a funky interface and make it “Web 2.0.”

CHAPTER 4 ■ USER REGISTRATION, LOGIN, AND LOGOUT 121

9063CH04CMP4 11/20/07 9:20 PM Page 121

9063CH04CMP4 11/20/07 9:20 PM Page 122

Introduction to Prototype
and Scriptaculous

In this chapter we will be looking at two JavaScript libraries that are designed to help with
Web 2.0 and Ajax application development.

First, we will look at Prototype, a JavaScript framework developed by Sam Stephenson. Pro-
totype simplifies JavaScript development by providing the means to easily write for different
platforms (browsers). For example, implementing an Ajax subrequest using XMLHttpRequest can
be achieved with the same code in Internet Explorer, Firefox, and Safari.

Next, we will look at Scriptaculous, a JavaScript library used to add special effects and
improve a web site’s user interface. Scriptaculous is built upon Prototype, so knowing how to
use Scriptaculous requires knowledge of how Prototype works. Scriptaculous was created by
Thomas Fuchs.

We will cover the basic functions of Prototype and look at how it can be used in your web
applications. Then we will look at some of the effects that can be achieved with Scriptaculous.
Finally, we will look at an example that makes use of Prototype, Scriptaculous, Ajax, and PHP.

The code covered in this chapter will not form part of our final web application, but in
forthcoming chapters we will use the techniques from this chapter to add various effects and
to help with coding clean and maintainable JavaScript.

Downloading and Installing Prototype
The Prototype JavaScript framework can be downloaded from http://prototypejs.org.

At time of writing, the latest release version of Prototype is 1.5.1.1, and it is a single JavaScript
file that you include in your HTML files. For example, if you store your JavaScript code in the /js
directory on your web site, you would use the following HTML code to include Prototype:

<html>
<head>

<title>Loading the Prototype library</title>
<script type="text/javascript" src="/js/prototype.js"></script>

</head>
<body>

</body>
</html>

123

C H A P T E R 5

9063CH05CMP2 10/29/07 8:39 PM Page 123

■Note At time of writing, Prototype 1.5.1.1 is the latest stable release; however, version 1.6 is close to
being released. This new version will introduce several key features and improvements in the event handling
model of Prototype (as well as many other enhancements).

Prototype Documentation
You can find comprehensive documentation for all the functionality provided by Prototype at
http://prototypejs.org/api. I highly recommend you look through this site, as it will provide
details about Prototype beyond what I can cover in this chapter.

Additionally, you may find value in perusing the Prototype source code. Doing so may
give you a feel not only for how certain functions work but also to see a good example of how
to use various aspects of Prototype.

Selecting Objects in the Document Object Model
There are several functions available in Prototype for selecting elements in the Document
Object Model (DOM). I recommend that you use the Prototype functions wherever possible
instead of methods you may be more used to using (such as document.getElementById()),
since they are simpler, they work across different browsers, and they provide you with extra
functionality (as you will shortly see).

The $() Function
The $() function is used to select an element from the Document Object Model (DOM)—in
other words, it selects an element on your HTML page. This function is extremely useful and
may be one of the most commonly used functions in your JavaScript development.

Essentially, $() is a replacement for using document.getElementById(), except that it will
also do the following:

• Return an array of elements if you pass in multiple arguments (each returned element
corresponds to the argument position; that is, the 0 element corresponds to the first
argument).

• Extend the returned element(s) with extra Prototype functionality (which we will cover
in this chapter).

Because of this second point, you should always use $() (or one of the other Prototype
element selectors we will look at shortly) to select elements in your JavaScript code when you
are using Prototype. This will give you the full range of functionality that Prototype provides.

Listing 5-1 shows several examples of selecting elements with the $() function. Note that
you can pass in an element’s ID or you can pass in the element directly (which effectively will
just add the extra Prototype functionality to the element).

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS124

9063CH05CMP2 10/29/07 8:39 PM Page 124

Listing 5-1. Example Usage of the $() Element Selector (listing-5-1.html)

<html>
<head>

<title>Listing 5-1: Example usage of the $() function</title>
<script type="text/javascript" src="/js/prototype.js"></script>

</head>
<body>

<div id="my-example-div">
<form method="post" action="nowhere.html" name="f">

<input type="text" name="title" value="Example" id="form-title" />
</form>

</div>

<script type="text/javascript">
// select the div and change its color to red
var exampleDiv = $('my-example-div');
exampleDiv.style.backgroundColor = '#f00';

// select the text input and show its value
var exampleInput = $('form-title');
alert(exampleInput.value);

// now select it again using its DOM path and show its value
var exampleInput = $(document.f.elements.title);
alert(exampleInput.value);

</script>
</body>

</html>

The getElementsByClassName() Function
If you have multiple elements on a page, all with the same class, you can use the
getElementsByClassName() function to select all of them. An array will be returned, with
each element corresponding to one element with the given class name.

This can be an expensive function to call, as internally every element is analyzed to see if
it is of the specified class. Because of this, you should also specify a parent element when call-
ing this function. Doing so means only elements within the parent element are checked.

You would typically use this function when you want a make the same update to all ele-
ments of a particular class. For example, suppose you had an HTML page with several boxes
on it, each having the class name .box, contained within a div called #box-container. If you
wanted to add a Hide All or Show All button on your HTML page, you could select all ele-
ments using document.getElementsByClassName('box', 'box-container'), and then loop over
each element and hide or show it accordingly. Listing 5-2 demonstrates this.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 125

9063CH05CMP2 10/29/07 8:39 PM Page 125

Listing 5-2. Sample Usage of getElementsByClassName (listing-5-2.html)

<html>
<head>
<title>

Listing 5-2: Hiding or showing boxes using
document.getElementsByClassName()

</title>

<script type="text/javascript" src="/js/prototype.js"></script>

<style type="text/css">
.box {
width : 300px; text-align : center;
background : #f60; color : #fff;
margin : 10px; font-weight : bold;

}
.box h1 { margin : 0; }

</style>
</head>
<body>

<div>
<input type="button" value="Hide All" onclick="hideAll()" />
<input type="button" value="Show All" onclick="showAll()" />

</div>

<div id="box-container">
<div class="box">
<h1>Box 1</h1>

</div>

<div class="box">
<h1>Box 2</h1>

</div>
</div>

<script type="text/javascript">
function hideAll()
{
// find all 'box' elements
var elts = document.getElementsByClassName('box', 'box-container');

// now loop over them and hide them
for (i = 0; i < elts.length; i++)
elts[i].hide();

}

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS126

9063CH05CMP2 10/29/07 8:39 PM Page 126

function showAll()
{
// find all 'box' elements
var elts = document.getElementsByClassName('box', 'box-container');

// now loop over them and hide them
for (i = 0; i < elts.length; i++)
elts[i].show();

}
</script>

</body>
</html>

In the preceding code, you will see a call to a method called hide() and a call to a method
called show(). These are both functions provided by Prototype, which simply hide or show the
respective element. These are examples of the extra functionality provided when using the
Prototype element selectors. We will cover more of these later in this chapter.

After the code fetches all of the box elements, it loops over them in both the showAll()
and hideAll() functions to show or hide the element.

There is another way you can shorten this code and easily apply the same code to all
returned elements: you can use either the each() method or the invoke() method. These are
two functions Prototype adds to all arrays. Listing 5-3 shows the methods in Listing 5-2 rewrit-
ten to use each().

Listing 5-3. Using each() to Iterate Over the Returned Elements (listing-5-3.html)

<script type="text/javascript">
function hideAll()
{
// find all 'box' elements and hide them
document.getElementsByClassName('box', 'box-container').each(

function(s) {
s.hide();

}
);

}

function showAll()
{
// find all 'box' elements and show them
document.getElementsByClassName('box', 'box-container').each(

function(s) {
s.show();

}
);

}
</script>

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 127

9063CH05CMP2 10/29/07 8:39 PM Page 127

This code passes a function as the argument to each(). This function is executed once
for each item in the array each() is called on. The argument passed to this function is the
element in question, thereby allowing us to call hide() or show() directly on it.

■Note Although I didn’t use it in this case, the second argument passed to the function inside each()
contains the loop number. For example, function(s, idx) { … } would pass 0 in the idx parameter for
the first element, 1 for the second, and so on.

Alternatively, you can use invoke() instead of each(). This allows you to call a single
method on each element, with an arbitrary number of arguments. This would work perfectly
in this hide/show example, as we are just calling these methods for each box. However, if you
needed to execute multiple lines of code, you would need to go back to using each().

Listing 5-4 shows the hideAll() and showAll() functions with a call to invoke(). Note that
the method you want to invoke on each array element is passed as a string.

Listing 5-4. Using invoke() to Call a Single Method on Each Array Element (listing-5-4.html)

<script type="text/javascript">
function hideAll()
{
// find all 'box' elements and hide them
document.getElementsByClassName('box', 'box-container').invoke('hide');

}

function showAll()
{
// find all 'box' elements and show them
document.getElementsByClassName('box', 'box-container').invoke('show');

}
</script>

■Tip You can also call getElementsByClassName() directly on an element (rather than passing it as the
first argument). For instance, you could select all .box-container elements as in the previous example by
using $('box').getElementsByClassName('box-container').

The $$() Function
The $$() function (not to be confused with the $() function discussed previously) is a very
powerful function that allows you to select elements using CSS rules. All returned elements are
extended with extra Prototype functionality, just as $() does. Note, however, that an array is
returned, even if only a single element is found. The ordering of elements in the array is the
order of the elements in the document.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS128

9063CH05CMP2 10/29/07 8:39 PM Page 128

A CSS rule is a string used to specify elements in Cascading Style Sheets (CSS) documents,
using a combination of element names (such as div), class names (such as .box), and element
ID names (such as #box-content). For example, in Listing 5-2 we could have used var elts =
$$('#box-container .box') instead of using the call to document.getElementsByClassName().

Here are some more examples:

• $$('form'): Selects all forms on a page

• $$('div.box'): Selects all div elements that have the class name box

• $$('div#logo img'): Selects the img element within the div called #logo

• $$('input[type=radio]'): Selects all inputs that are radio buttons

So why not just use $$() solely, and forget about $() and getElementsByClassName()? Yes,
$$() can do exactly what the other two functions can do, but it is more expensive to call. That
is, it is less efficient.

If you want to select an element whose ID you know, you should use $('element-id')
instead of $$('#element-id'), since the former is more efficient (also, using $$() returns an
array, and $() doesn’t in this case). If you want to select all elements with a certain class (such
as class .box inside a div with ID #box-container), you should use $('box-container').
getElementsByClassName('box') instead of $$('#box-container .box').

One recommendation from the Prototype documentation (found on http://proto-
typejs.org/api), is that if you do use $$(), try to narrow the search down by specifying a
parent element’s ID at the start of the CSS rule. In other words, $$('#box-container .box')
would be more efficient than $$('.box'), as the former would only search within the #box-
container element for elements with class .box, while the latter would search the entire DOM.

If you are familiar with CSS, using $$() will be far easier to read and write, but from a per-
formance point of view you should try to avoid it if there is a more efficient solution. For
simplicity, I will continue to use $$() in the examples.

The getElementsBySelector() Function
It is possible to use the same syntax as in $$() but to only look within a particular element rather
than the whole document. This can be achieved by calling the getElementsBySelector() func-
tion directly on an element.

For example, you can use $('box-container').getElementsBySelector('.box') to find all
elements that have class .box inside the #box-container element.

Prototype’s Hash Object
Prototype provides an object type called Hash, which is essentially a normal JavaScript object
that has been extended. I am covering it here simply because I will be referring to the Hash
object in the future. It could also be referred to as an associative array, but I will call it a hash.

If you are unfamiliar with JavaScript objects, they can be created and used as follows:

<script type="text/javascript">
var person = {

name : 'John Smith',

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 129

9063CH05CMP2 10/29/07 8:39 PM Page 129

age : 30
};

alert('The age of ' + person.name + ' is ' + person.age);
</script>

To extend this object with extra Prototype functionality, the $H() function is used. This
essentially converts the created object into a hash. So the preceding code would be modified
as follows:

<script type="text/javascript">
var person = $H({

name : 'John Smith',
age : 30

});
alert('The age of ' + person.name + ' is ' + person.age);

</script>

Doing this not only allows you to understand what a hash is, but it also provides the
following extra functionality:

• each(): Allows you to loop over each key/value pair, similar to how you would with
arrays in Prototype.

• remove(): Removes a value from the hash based on the specified key (for example,
person.remove('age') will remove the age element from the hash in the previous
example).

• toQueryString(): Serializes the keys and values into a usable query string (so the pre-
ceding person hash would become name=John+Smith&age=30).

■Note Sometimes you will need to create a hash but you will not require the extended functionality (such
as when defining options to be passed to Ajax.Request). In this case, you can forego calling $H(), but I
will still refer to it as a hash even though strictly speaking it is a generic JavaScript object.

Other Element Extensions
In the previous section I stated that when using a function such as $() or $$() in Prototype,
the returned elements are extended. That is, they are given extra functionality that is not nor-
mally available when programming in JavaScript. We looked at a couple of these added
functions (namely show() and hide()), but there are many more functions provided. We will
take a brief look at the some of the more useful of these and at how you can use them in your
everyday JavaScript development.

Note that which extensions are added depends on the type of element. That is, some new
functions will be only available for arrays, and others only for strings. Some new functions are
available to all elements.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS130

9063CH05CMP2 10/29/07 8:39 PM Page 130

Showing and Hiding Elements
As we saw before, the show() method makes a hidden element visible (or does nothing if the
element is already visible), while the hide() method hides a visible element hidden (or does
nothing if the element is already hidden).

In addition, there is a toggle() method. This will hide a visible element or show a hidden
element. You can check whether an element is hidden or not by using the visible() method,
which returns true if the element is visible and false if not.

Additionally, you can remove an element from the DOM completely by calling its
remove() method.

Retrieving Dimensions of Elements
Prototype provides a method called getDimensions(), which returns the width and height of
an element (in the width and height properties). You can retrieve an element’s width by just
using getWidth(), or its height by using getHeight(), but if you need both of these values you
should use a single call to getDimensions(). This is because both getWidth() and getHeight()
will internally make a call to getDimensions(), thereby resulting in an extra unnecessary func-
tion call.

The following example shows a simple function that accepts the ID of an element and
then determines and displays its dimensions in an alert box:

<script type="text/javascript">
function displayDimensions(id)
{

var dims = $(id).getDimensions();
alert('This size of this box is ' + dims.width + 'x' + dims.height);

}
</script>

Managing Classes of Elements
You can easily manipulate an element’s classes with Prototype, which may be of great use for
achieving mouseover effects or to allow the user to mark an item as selected.

The following functions are available to elements:

• addClassName(): Applies a class to an element. This might be useful if you have a high-
light class for a selected element.

• removeClassName(): Removes a class from an element. This would typically be used at
some point after calling addClassName().

• toggleClassName(): Adds or removes a class name (if the element doesn’t have the class,
it is added; it is removed if the element already has it).

• hasClassName(): Checks whether an element has a particular class.

Let’s now look at a practical example of using these methods. Listing 5-5 is slightly more
complex than previous examples; it highlights a box when your mouse pointer moves over it,
and removes the highlight when the pointer is moved away.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 131

9063CH05CMP2 10/29/07 8:39 PM Page 131

Listing 5-5. Demonstrating addClassName() and removeClassName() (listing-5-5.html)

<html>
<head>

<title>
Listing 5-5: Manipulating element class name with Prototype

</title>

<script type="text/javascript" src="/js/prototype.js"></script>

<style type="text/css">
.box {

width : 300px; text-align : center;
background : #f60; color : #fff;
margin : 10px; font-weight : bold;

}
.box h1 { margin : 0; }
.box.highlight { background : #f00; }

</style>
</head>
<body>

<div id="box-container">
<div class="box">

<h1>Box 1</h1>
</div>

<div class="box">
<h1>Box 2</h1>

</div>
</div>

<script type="text/javascript">
// find all the box elements, then loop over each one and
// add the onmouseover and onmouseout events to it
$$('#box-container .box').each(

function(s)
{

s.onmouseover = function() {
this.addClassName('highlight');

};
s.onmouseout = function() {

this.removeClassName('highlight');
};

}
);

</script>
</body>

</html>

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS132

9063CH05CMP2 10/29/07 8:39 PM Page 132

In this example, there are a series of boxes (with class .box) inside of #box-container, and
various styles are defined for this box. I have also defined a .highlight style, which will make
the box turn red when the mouse is over it.

■Note The JavaScript code in this example would be unnecessary if the :hover selector worked across
all browsers. In Firefox, you could simply use CSS like div.box:hover { background : #f00; }, but
this will not work in Internet Explorer (except on links) so the JavaScript solution is required.

Essentially, what I want this code to do is as follows:

1. Retrieve all .box elements.

2. Add an onmouseover event to each element, which adds the .highlight class.

3. Add an onmouseout event to each element, which removes the .highlight class.

I first use $$('#box-container .box') to select all the boxes, and then use each() on the
array of returned elements, as I want to execute several lines of code for each element. (See
Listing 5-3 for more information about using each().)

Next I set the onmouseover and onmouseout events for each element with a call to
addClassName() and removeClassName() respectively. Note that in the event handler, this
refers to the element on which the event occurred.

■Caution In order to keep the example somewhat simple, I used a non-preferred way of observing
events in JavaScript. The problem with how I added these events is that if either of the onmouseover or
onmouseout events had previously been defined on the .box elements, I would have overwritten that han-
dler. Conversely, if another script executes after this code, my event handlers may be overwritten. Prototype
provides an event handling class that deals with these issues and allows events to be observed correctly
between all platforms. We will cover this Event class in the “Event Handling in Prototype” section later in
this chapter.

Manipulating Strings with Prototype
All string elements are extended with several methods, including the following:

• truncate(): Shortens a string to a specified length, and optionally appends a string at
the end (such as …). For example, you could turn “My short string” into “My short…”.

• strip(): Removes whitespace from the beginning and end of a string.

• stripTags(): Removes any HTML tags from a string.

• stripScripts(): Removes any scripts (such as JavaScript) from a string.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 133

9063CH05CMP2 10/29/07 8:39 PM Page 133

• escapeHTML(): Turns HTML elements into their respective entities (for example, replac-
ing < with <)

• unescapeHTML(): Performs the opposite of escapeHTML() (for example, turning <
into <).

There are several more functions available, but these are among the most useful.

■Note Even if you are using functions such as stripTags() and stripScripts() on user-submitted
data, you should still be performing these same operations at the server if the data is submitted, since you
cannot guarantee the data has passed through the JavaScript code when it reaches the server.

Ajax Operations in Prototype
One of the key reasons for choosing to use Prototype in this book was not only the extended
functionality applied to all elements—which in itself is extremely useful—but also for its Ajax
support. Cross-browser Ajax solutions can easily be created by using the Prototype Ajax class.

Typical usage of this class involves first defining a hash of options (such as form data that
should be submitted in the request), and then instantiating one of Ajax.Request,
Ajax.Updater, or Ajax.PeriodicalUpdater:

• Ajax.Request: Generally used for a one-time request. This is the core Ajax method avail-
able, and it is the function you will call directly to initiate most Ajax operations.

• Ajax.Updater: Behaves in the same way as Ajax.Request, except its specific purpose is
to populate an element on your HTML page with the response data from a request. This
can also be achieved by using Ajax.Request, but Ajax.Updater simplifies the process for
this specific operation.

• Ajax.PeriodicalUpdater: Behaves the same way as Ajax.Updater in that it populates an
element with the Ajax response data; however, it will continue to execute with a speci-
fied frequency. For instance, if you need to retrieve fresh data every N seconds, you can
use this method. Another way to look at it is that Ajax.PeriodicalUpdater performs a
request with Ajax.Updater every N seconds.

Ajax Request Options
When initiating an Ajax request with Prototype, the one key thing you need is the URL you are
requesting. In addition to this, you can define a set of options that dictate the behavior of the
request. These options are not required to perform the request (default options are defined
internally); however, it is rare that you wouldn’t need to set various options or callbacks.

The options you will typically need to set are as follows:

• method: The HTTP method used for the request. This is typically get or post (with post
being the default). Note that there are other types of HTTP requests possible, but they
are typically not used and are beyond the scope of this book.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS134

9063CH05CMP2 10/29/07 8:39 PM Page 134

• parameters: The form data that is included in the request, regardless of whether it is a
get or post request. Prototype can accept a wide variety of data formats here (such as a
string you have already encoded, or simply a hash). It will convert the data into the
required format to complete the request.

The following is an example of an options hash that can be used for a Prototype Ajax
request:

<script type="text/javascript">
var options = {

method : 'post',
parameters : 'action=save&id=1234'

};
</script>

And here is an example of getting the value of a text input field from the existing page and
including it in the options hash:

<input type="text" id="my-input" />
<script type="text/javascript">

function createOptions()
{

var options = {
method : 'post',
parameters : 'action=save&id=1234',
postBody : 'someValue=' + $('my-input').getValue()

};
}

</script>

In this example, the getValue() function retrieves a form element’s value. This is a function
added to form elements by Prototype so their values can be retrieved regardless of their type
(whether textarea, checkbox, radio, or other type).

Ajax Callback Functions
For all Ajax requests you make with Prototype, there are a number of callback functions that
can be defined. Each specified callback function will be called automatically at appropriate
stages of the Ajax request lifecycle.

■Note You can perform Ajax requests without specifying any event callbacks; however, it will not be possi-
ble to use the returned result if you don’t define any callbacks. Sometimes you may not care about the
response data, but most of the time you will.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 135

9063CH05CMP2 10/29/07 8:39 PM Page 135

Typically, you will define the callback prior to initiating the Ajax request, and then pass in
the function name with the request options (as discussed in the previous section). Each call-
back receives the XMLHttpRequest object as its first parameter, thereby allowing you to easily
read the response data (including HTTP status code) if it is available.

The following are the main callback functions you will typically need to define when han-
dling an Ajax request:

• onSuccess: This callback is called upon successful completion of a request. A request is
successful if no error occurs and if the HTTP status code is in the 2xx family.

• onFailure: If a request completes successfully but returns an HTTP status code not in
the 2xx family, this callback is invoked.

• onComplete: After a request has completed and all other callbacks have been called, the
onComplete callback is triggered. In reality, you will probably not need this callback in
your requests unless you have some kind of cleanup code that needs to be executed
whether a request succeeds or not.

■Note Many Ajax programmers (both in the past and even now) simply check for an exact status code of
200 when trying to determine success. Not all successful HTTP requests will necessarily return this status
code, however, so the onSuccess callback should be used instead. Prototype will automatically deal with
each of these status codes.

Here’s an example of defining the onComplete and onFailure callbacks, combined with the
other options you may need in an Ajax request:

<script type="text/javascript">
var options = {

method : 'post',
parameters : 'action=save&id=1234',
onSuccess : function(transport)
{

alert('Ajax request succeeded!');
},
onFailure : function(transport)
{

alert('Oh no – something went wrong!');
}

};
</script>

The callback functions I have defined are somewhat useless, but hopefully they demonstrate
how the Ajax request is set up.

In reality, I much prefer to define the actual function as its own separate block, and then
pass in the function name as the argument in the options hash. An example of this is shown

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS136

9063CH05CMP2 10/29/07 8:39 PM Page 136

next. Note that technically speaking it is a function pointer that is used as the value in the
options hash—it’s not simply a string with the function name.

<script type="text/javascript">
function handleSuccess(transport)
{

alert('Ajax request succeeded!');
}

function handleFailure(transport)
{

alert('Oh no – something went wrong!');
}

var options = {
method : 'post',
parameters : 'action=save&id=1234',
onSuccess : handleSuccess,
onFailure : handleFailure

};
</script>

In addition to the onSuccess and onFailure callbacks (which encompass a large number
of HTTP status codes), Prototype also allows you to easily handle each status code indepen-
dently. To do this, you define an onXYZ callback, where XYZ corresponds to the HTTP status
code you want to handle.

For example, if you wanted a specific function to be called when a 404: File Not Found
error occurred, you would pass the on404 callback to the Ajax request options. The following
example demonstrates this by creating several callbacks, each to handle various error codes:

<script type="text/javascript">
function handleUnauthorized(transport)
{

alert('401 Error – You are not authorized');
}

function handleForbidden(transport)
{

alert('403 Error – You are forbidden');
}

function handleFileNotFound(transport)
{

alert('404 Error – File was not found');
}

var options = {
on401 : handleUnauthorized,
on403 : handleForbidden,

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 137

9063CH05CMP2 10/29/07 8:39 PM Page 137

on404 : handleFileNotFound
};

</script>

The XMLHttpRequest Callback Argument
In all of the preceding examples, I have included an argument called transport in the callback
functions. As I mentioned previously, this argument is the XMLHttpRequest object created as a
result of the call to Ajax.Request.

■Note The primary reason for naming this argument transport (and not xhr or something similar) is
simply convention. You can call it what you like, but to be consistent you should just call it transport.

You can use transport in your callback functions to read the response data. The following
properties are available inside the transport variable:

• responseText: The response from the request as a string.

• responseXML: The response from the request as an XMLDocument object. This allows you
to manipulate the response in the same way you would with the normal DOM. I will
demonstrate this shortly, in the “An Ajax.Request Example” section.

• status: The HTTP status code resulting from the request (such as 200 for a successful
request, or 404 for a file-not-found error).

• statusText: A textual description for the HTTP status code (such as OK for a status
response of 200).

So you could modify the handleSuccess() callback from the previous example to show the
response data in an alert box using the following code:

<script type="text/javascript">
function handleSuccess(transport)
{

alert(transport.responseText);
}

</script>

JavaScript Object Notation (JSON)
JavaScript Object Notation, or JSON, is a data-exchange format that is very useful in Ajax-
enabled web applications. In essence, JSON is JavaScript code. It is typically used to serialize
JavaScript arrays or objects (what I referred to as hashes earlier) into a simple format that can
be exchanged between client and server.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS138

9063CH05CMP2 10/29/07 8:39 PM Page 138

■Note My own personal preference is to use JSON data as the response to Ajax requests, since it’s much
easier to manipulate the data. However, since we’re covering Ajax, it’s good to know how the X in Ajax
works. As such, I will use XML for the main example in this chapter, but in following chapters, when we add
Ajax functionality to our application, we will use JSON and not XML.

JSON is used as an alternative to XML for data exchange in Ajax requests because it results
in a much smaller payload (since there are no opening/closing tags), and it is typically simpler
to access within JavaScript code. For example, the JavaScript code you might use to represent
data for a book may look like this:

var book = {
title : 'Practical PHP Web 2.0 Applications',
author : 'Quentin Zervaas'

};

Now consider the code you would use in PHP to represent this same data:

<?php
$book = array(

'title' => 'Practical PHP Web 2.0 Applications',
'author' => 'Quentin Zervaas'

);
?>

If I wanted to represent this PHP snippet in JavaScript, I would need to somehow create
JavaScript code like the preceding, which means creating a string of JSON data. PHP provides
a function called json_encode() to do exactly this. The Zend Framework also provides the
Zend_Json class, which is what we’ll be using. Earlier versions of PHP do not have the
json_encode() function, and by using Zend_Json we don’t have to worry about that.

Now, if I wanted to represent the preceding PHP code as JavaScript code, I could call
Zend_Json::encode() to do so:

<script type="text/javascript">
var book = <?php echo Zend_Json::encode($book) ?>

</script>

This function will generate a string that looks like this:

{ title : 'Practical PHP Web 2.0 Applications', author : 'Quentin Zervaas' };

While this example serves no great purpose, it demonstrates what is possible with JSON. When
a request is made with XMLHttpRequest, the server can return a JSON-encoded string so that
the JavaScript code can interpret the results.

To interpret the returned data, you can use the JavaScript eval() function, which will
evaluate as JavaScript code whatever is passed as its first argument. Thankfully, Prototype
simplifies this for us by providing the evalJSON() method. For example, to decode JSON data
returned from an Ajax request, you could use code similar to the following:

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 139

9063CH05CMP2 10/29/07 8:39 PM Page 139

<script type="text/javascript">
function handleSuccess(transport)
{

var json = transport.responseText.evalJSON(true);
}

</script>

In this example, the evalJSON() is an extended method Prototype provides to all strings.
The first argument to this method tells Prototype to check for data that isn’t well formed. If the
string is not well-formed JavaScript code, eval() is not called internally as a safety precaution.

■Note When Prototype 1.6.0 is released, the responseJSON property will also be available in the response
from Ajax requests, saving us the trouble of manually decoding the JSON data as in the preceding example.

I will continue using XML in this chapter, just to give you a full taste of how Ajax solutions
can be implemented. Our first real taste of JSON will be in Chapter 6, when we add client-side
form validation to the user registration form we created in Chapter 4.

An Ajax.Request Example
Now that we have looked at defining options and callbacks for a request, we can take a look
at Ajax.Request, the primary Prototype function used for Ajax. In this example, the code will
request an XML file that resides on a web server. It will then loop over the data in the XML file
and output it to the browser. At this stage, we won’t be doing anything fancy with the data—we
will save the fanciness for when we cover Scriptaculous.

Listing 5-6 shows the XML data. This is just made-up data that has no real meaning other
than demonstrating the use of Ajax.Request. This data is stored in a file called listing-5-6.xml.

Listing 5-6. Sample XML Data to Be Processed in the Ajax.Request Example (listing-5-6.xml)

<people>
<person name="John" age="30" />
<person name="Mary" age="25" />

</people>

The basic code outline we will use to perform the Ajax request is as follows. We will flesh it
out a bit more shortly.

<script type="text/javascript">
function handleSuccess(transport)
{

// todo
}

function handleFailure(transport)
{

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS140

9063CH05CMP2 10/29/07 8:39 PM Page 140

// todo
}

function loadXml()
{

var url = 'listing-5-6.xml';
var options = {

method : 'get',
onSuccess : handleSuccess,
onFailure : handleFailure

};

new Ajax.Request(url, options);
}

</script>

■Note Since Ajax.Request is in fact a class (as opposed to simply being a function), it must be invoked
using the new keyword. If new is omitted, the call to Ajax.Request will not work.

As you can see, the first argument to Ajax.Request is the URL being requested. In this
example, we are simply getting an XML file, but in real-world applications this is likely to be a
server-side script (such as a PHP script). The second argument is the list of request options.

Here you can also see that we’ve defined callbacks for both success and failure, although
they do not yet do anything.

Handling XML Data from an Ajax Request
As mentioned previously, we can access the responseXML property of the XMLHttpRequest
object passed in to the callback. This property is an XMLDocument object, which allows us to
manipulate it just as we would the DOM.

Referring back to our listing-5-6.xml file in Listing 5-6, we could call
getElementsByTagName('person') to find all of the individual people records in the returned
XML. Note that the documentElement property is the root node of the XML document, so you
can’t actually call getElementsByTagName() directly on the responseXML property. In reality, it
would look more like this:

<script type="text/javascript">
var people = transport.responseXML.documentElement.getElementsByTagName('person');

</script>

This will return an array called people containing all of the person records in the XML
document. Strictly speaking, this is actually an HTMLCollection (not an array), but by using the
Prototype $A() function, we can turn it into an array and gain the extra array functionality
Prototype provides (such as each() and invoke()).

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 141

9063CH05CMP2 10/29/07 8:39 PM Page 141

So, we can modify the handleSuccess() callback to loop over each person, outputting their
name in an alert box. This functionality is still somewhat crude, but we will improve it further
shortly. We can use the DOM getAttribute() method to fetch a person’s name from the
returned person data, as follows:

<script type="text/javascript">
function handleSuccess(transport)
{

var xml = transport.responseXML;
var people = $A(xml.documentElement.getElementsByTagName('person'));

people.each(function(s) {
alert(s.getAttribute('name'));

});
}

</script>

If we want to output a more meaningful message for each returned person, we need to
build up a string using the data associated with each user. To do this, we will use Prototype’s
Template class. This class probably isn’t something you will often use with Prototype, but it is
worth knowing about (particularly since we will use it in later code listings).

The Template class allows you to define a template string with placeholders for change-
able data. You can then call the evaluate() method on the created template, passing in the
data you want to include. The following code shows an updated version of handleSuccess(),
which now uses the Template class in combination with Prototype’s each() enumerator:

<script type="text/javascript">
function handleSuccess(transport)
{

var xml = transport.responseXML;
var people = $A(xml.documentElement.getElementsByTagName('person'));

var tpl = new Template('The age of #{name} is #{age}');

people.each(function(s, idx) {
var data = {

name : s.getAttribute('name'),
age : s.getAttribute('age')

};

alert(tpl.evaluate(data));
});

}
</script>

Handling XML That Isn’t Well Formed
In all of the preceding examples of handleSuccess(), we have assumed that the XML data is well
formed. That is, we assume it is valid and that no errors are contained in the document. This is

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS142

9063CH05CMP2 10/29/07 8:39 PM Page 142

not always going to be the case, especially for dynamically generated XML. Just because an Ajax
request is successful doesn’t mean the returned data is correct. Additionally, if the document is
well formed but is missing properties that we require (for instance, if the age property is missing
from one or more records), this is not an error per se.

Prototype does not provide XML-handling functionality, so detecting XML errors across
different platforms is not a straightforward task. We will treat an XML parsing error in our code
the same way we treat no records being returned.

For the sake of completeness, here is code you can use to detect XML parsing errors:

<script type="text/javascript">
// detect a parse error in Internet Explorer
if (xml.parseError) {

if (xml.parseError.errorCode != 0) {
str = xml.parseError.reason

+ ' on line ' + xml.parseError.line
+ ' position ' + xml.parseError.linepos);

alert(str);
}

}

// detect a parse error in Mozilla
else if (xml.documentElement.nodeName == 'parsererror') {

alert(xml.documentElement.firstChild.data);
}

</script>

Completing the onFailure Error Handler
The final part of this example is the handleError() callback. In this particular example, we are
doing nothing more than showing an alert box for each person record found. To accompany
this, we will simply display an alert box containing the error if one has occurred.

<script type="text/javascript">
function handleFailure(transport)
{

alert('Error: ' + transport.statusText);
}

</script>

The Complete Ajax.Request Example
Listing 5-7 contains the complete code for the Ajax.Request example.

Listing 5-7. The Complete Ajax.Request Example (listing-5-7.html)

<html>
<head>

<title>
Listing 5-7: The complete Ajax.Request example

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 143

9063CH05CMP2 10/29/07 8:39 PM Page 143

</title>
<script type="text/javascript" src="/js/prototype.js"></script>

</head>
<body>

<div>
<input type="button" value="Load XML" id="load-xml" />

</div>

<script type="text/javascript">
function handleSuccess(transport)
{

var xml = transport.responseXML;
var people = $A(xml.documentElement.getElementsByTagName('person'));

var tpl = new Template('The age of #{name} is #{age}');

people.each(function(s, idx) {
var data = {

name : s.getAttribute('name'),
age : s.getAttribute('age')

};
alert(tpl.evaluate(data));

});
}

function handleFailure(transport)
{

alert('Error: ' + transport.statusText);
}

function loadXml()
{

var url = 'listing-5-6.xml';
var options = {

method : 'get',
onSuccess : handleSuccess,
onFailure : handleFailure

};

new Ajax.Request(url, options);
}

Event.observe('load-xml', 'click', loadXml);
</script>

</body>
</html>

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS144

9063CH05CMP2 10/29/07 8:39 PM Page 144

When you load listing-5-7.html in your browser, all you will see is a form button that
says Load XML. At the end of the code, the click event handler is added to this button using
Event.observe(), which simply calls the loadXml() function when the event is triggered.

Note that we could have created the button with a line like this:

<input type="button" value="Load XML" id="load-xml" onclick="loadXml()" />

However, as noted earlier in this chapter, using the Prototype event-handling code is the pre-
ferred way to observe events.

■Note If you don’t quite follow how the event-observing code works, don’t worry; we’ll cover it in the next
section.

Event Handling in Prototype
One key benefit Prototype offers developers is enhanced DOM event handling. Writing code to
handle events across different browsers can be difficult, but with Prototype these issues can
be avoided.

One difficulty when not using Prototype is that event handlers can easily be overwritten.
For example, if you have HTML code that includes <body onload="doSomething()"> and also
loads an external JavaScript file containing window.onload = doSomethingElse, which function
is called? Certainly not both of them!

Prototype solves this problem by allowing us to add to existing event observers. This
means that if you observe the same event on the same element twice, both event handlers will
be triggered when the event occurs.

Observing an Event
To observe an event with Prototype, use the Event.observe() method. This method takes three
arguments:

• The element on which the event is being observed.

• The event to observe; this is a string containing the event name. The event names are
the same ones you might already be used to in JavaScript, except they don’t begin with
on. For instance, to observe the onmouseover event, you would specify mouseover as the
second argument.

• The function to execute when the event is triggered.

Going back to the “body onload” example, rather than using <body onload="doSomething()">,
you would use the following to correctly observe this event:

Event.observe(window, 'load', something);

This code would appear either in an external JavaScript file or within <script> tags in
your HTML document.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 145

9063CH05CMP2 10/29/07 8:39 PM Page 145

■Note This example might be slightly confusing, since you observe the window element in
Event.observe(), whereas the inline version was in the body tag. Technically speaking, when using
<body onload="">, this event is being attached to the window DOM element. Also, the reference to the
something function is a function pointer, so you don’t include the brackets; if you did, it would mean
the result of the something() function would be used as the third argument.

Note that you can also call the observe() function directly on an element. In this case, you
omit the first argument. For instance, you might add an image to your web page with the fol-
lowing HTML code:

You can observe the onclick event on this image by using Event.observe() as you saw
already:

Event.observe('my-image', 'click', something);

Or you can first retrieve the element and then call observe() on it:

$('my-image').observe('click', something);

Finding Out Which Element an Event Occurred On
When a function is triggered by an event occurring, the event object is passed in as the first
argument to the callback. This lets you find out certain things about the event, such as the ele-
ment on which the event occurred (so if the onclick event was observed on several elements,
you could find out exactly which element was clicked on).

To find the element, you call the Event.element() function. I’ll use the example of clicking
on an image:

<script type="text/javascript">
$('my-image').observe('click', something);

</script>

Next I can write the something() function, which is called when the image is clicked. I
assume the first argument will be the event (which I like to simply call e). I can then pass e to
Event.element() to return the image element.

<script type="text/javascript">
function something(e)
{

var img = Event.element(e);
}

</script>

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS146

9063CH05CMP2 10/29/07 8:39 PM Page 146

Canceling an Event
A common technique we will use in this book when writing Ajax code is to trigger an Ajax
request when a form submit button is clicked. The problem with this is that the web browser
will perform a normal postback when the button is clicked, meaning a new page will be
loaded in the browser. To prevent this from occurring, the Event.stop() method must be
called. This is a very useful method, since it is difficult to write code to achieve this across all
browsers.

As an example, let’s say I have the following form code:

<form method="post" action="/someUrl" id="my-form">
<input type="submit" value="Submit Form" />

</form>

Rather than submitting the form data back to the server, I want to run a function called
handleFormSubmission() when the Submit Form button is clicked. First, I must observe the
onsubmit event, and then call Event.stop() when handling the event:

<script type="text/javascript">
$('my-form').observe('submit', handleFormSubmission);

function handleFormSubmission(e)
{

Event.stop(e);

// now do something here such as an Ajax request
}

</script>

The best part about using code such as this is that it allows you to prevent normal postback
when the user is running a browser capable of running JavaScript, yet it still submits the form as
normal when a non-JavaScript browser is used. This helps you provide a rich user experience
when the browser is capable of it, but it is also an accessible non-JavaScript solution.

Creating JavaScript Classes in Prototype
Yet another great thing about Prototype is its ability to easily create JavaScript classes. While
this has always been possible with JavaScript, Prototype makes the process much simpler and
helps you generate cleaner and more manageable code.

Creating a Class
The typical process for creating a class with Prototype is as follows:

1. Create the new class by calling Class.create(). Internally, this causes the class’s con-
structor function to be automatically run when the class is instantiated.

2. Define the class’s prototype object (not to be confused with the name of the library you
are using). This defines the properties and methods of the class.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 147

9063CH05CMP2 10/29/07 8:39 PM Page 147

3. When defining the class’s prototype object, implement the class constructor. The
name of the constructor is initialize(), which can take any number of arguments
(just as when writing any other JavaScript function).

For example, to create a simple class called Book, which takes a title as its first argument,
the following code could be used:

Book = Class.create();

Book.prototype = {
initialize : function(title)
{

this.title = title;
}

};

You can implement your own functions as required. For example, you could make a func-
tion that returns the book title as follows:

Book = Class.create();

Book.prototype = {
initialize : function(title)
{

this.title = title;
},

getTitle : function()
{

return this.title;
}

};

var book = new Book('Practical PHP Web 2.0 Applications');
alert(book.getTitle());

■Tip Since each function is an element of the class’s prototype object, they must be separated by com-
mas. Forgetting the comma is a very common cause of syntax errors when developing classes in JavaScript.

Binding Function Calls to Objects
A very important aspect of developing classes with Prototype is the use of the bind() and
bindAsEventListener() functions. Please ensure you understand how these functions work, as
they are used frequently in the JavaScript code in this book.

These functions bind an object’s context to a class method so that when you call this in
the method, it refers to the correct object. Because this is a difficult concept to grasp, I’ll use

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS148

9063CH05CMP2 10/29/07 8:39 PM Page 148

examples to explain it further. Once I have shown you how binding works, I’ll show you the
difference between bind() and bindAsEventListener(), since there is only a subtle difference
between the two.

To demonstrate how binding works, I’ll create a class that observes the onclick event on
an image. When the image is clicked, I will display an alert to the user notifying them that the
image was clicked.

First, I’ll create the class. The initialize method accepts the image element as its only
argument, and then observes the onclick event. Also, I’ll define the notifyUser() method,
which will be called by the event handler when the image is clicked.

ImageHandler = Class.create();

ImageHandler.prototype = {
initialize : function(img)
{

$(img).observe('click', handleClick);
},

notifyUser : function()
{

alert('The image was clicked');
}

};

So far so good. The image element is set as the first argument to the constructor, and the
onclick event is observed on it. But wait, I haven’t implemented the handleClick() method,
which is called by the event observer. I’ll add it to the class:

ImageHandler = Class.create();

ImageHandler.prototype = {
initialize : function(img)
{

$(img).observe('click', handleClick);
},

notifyUser : function()
{

alert('The image was clicked');
},

handleClick : function(e)
{

this.notifyUser();
}

};

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 149

9063CH05CMP2 10/29/07 8:39 PM Page 149

The event handler function is now there. But will it be called when the image is clicked?
No—the observer will call the global handleClick() function, not the handleClick() method
inside the ImageHandler class. I need to add this in front of the handleClick() call:

initialize : function(img)
{

$(img).observe('click', this.handleClick);
},

There’s one small problem with this. The correct function will now be called when
the image is clicked, but it will be called from the event-handling part of the system. In the
handleClick() function, I refer to this.notifyUser(). Unfortunately, calling this here will not
refer to the current instance of ImageHandler.

This is where bind() comes in. I must bind the event-handler function to the current
object. Rather than using this.handleClick as the event handler, I actually need to use
this.handleClick.bind(this), as follows:

ImageHandler = Class.create();

ImageHandler.prototype = {
initialize : function(img)
{

$(img).observe('click', this.handleClick.bind(this));
},

notifyUser : function()
{

alert('The image was clicked');
},

handleClick : function(e)
{

this.notifyUser();
}

};

By calling bind() on the function, I’m effectively saying, “when I refer to this in the
ImageHandler’s handleClick() function, it should refer to the object I’m passing to bind(),
which is an instance of ImageHandler.”

The difference between bind() and bindAsEventListener() is that when you use
bindAsEventListener() the event object will be passed in as the first argument to the bound
function. Typically, you will always use bindAsEventListener() when observing events, not
bind(). So, in actual fact, the preceding code to observe the image click needs to be as follows:

$(img).observe('click', this.handleClick.bindAsEventListener(this));

When implementing callbacks for an Ajax response, you only use bind(), as the response
isn’t triggered by an event. For example, the following code initiates an Ajax request when
the object is initialized. The Ajax request will call handleSuccess() if the request is successfully

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS150

9063CH05CMP2 10/29/07 8:39 PM Page 150

performed. I will tell Prototype to bind the instance of AjaxBindExample to the handleSuccess()
function:

AjaxBindExample = Class.create();

AjaxBindExample.prototype = {
initialize : function(img)
{

var options = {
onSuccess : this.handleSuccess.bind(this)

};

new Ajax.Request('/someUrl', options);
},

handleSuccess : function(transport)
{

this.doSomething();
},

doSomething : function()
{ }

};

From Prototype to Scriptaculous
Prototype is a very useful JavaScript framework, and we just covered a large amount of the
functionality it provides. We didn’t cover everything available in Prototype, however, as it is
simply not all relevant to most of the code you will write in your Web 2.0 applications.

We now move on to Scriptaculous, a JavaScript library used to add special effects to web
sites. Scriptaculous is built upon Prototype, as it makes extensive use of nearly all classes pro-
vided by Prototype—even ones we haven’t yet looked at, such as Position (used for element
positioning and other issues related to the complex task of cross-browser layout). We will
briefly cover exactly what Scriptaculous can do, then go over the installation of the library on
your web pages, and finally look at an extensive example, which will make use of Scriptacu-
lous effects and controls, Prototype classes, Ajax, and PHP.

Before we go any further, though, let’s look at what Scriptaculous can do for us. We won’t
go into all features in detail, but we will cover the more important ones, and anything else that
will be required in this book.

Prebuilt Controls
Scriptaculous provides a number of prebuilt controls that can easily be included on your page.
A control is a complex element for user interaction, typically used within or in place of forms.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 151

9063CH05CMP2 10/29/07 8:39 PM Page 151

The controls available in Scriptaculous are as follows:

• Autocompleter: A text field that automatically provides suggestions based on user-input
(somewhat similar to Google Suggest—http://www.google.com/webhp?complete=1&hl=en).

■Note In Chapter 12 we will implement a JavaScript class that behaves similarly to Google Suggest rather
than using the one provided by Scriptaculous. This allows us to look at some of the nitty-gritty code involved
in developing such a class.

• InPlaceEditor: A class that allows a user to edit content on a web page directly. For
example, if you had a list of files, you could use InPlaceEditor to allow users to rename
a file by clicking on it. The filename would be replaced by a text input field, allowing the
new filename to be entered inline.

• Slider: A slider that a user can click and drag to change a value. Sliders are very cus-
tomizable, including their styles, available values, and orientation (horizontal or
vertical).

Drag and Drop
With Scriptaculous, it is easy to define draggable areas (using the Draggables class) and
droppable areas (using the Droppables class) on your HTML pages. This allows you to achieve
effects such as the following very easily:

• Sort a list of items using the Sortables class, meaning that list items can be clicked on
and dragged to their new location (and the new order can be saved in real time trans-
parently using Ajax).

• Drag an item from one list to another. For example, if you were managing product
images for an online store, you might have a gallery of all the unused images. You could
drag an image from this list onto a list of product images. Once again, you could save
this state change transparently using Ajax.

Visual Effects
There are five core effects in Scriptaculous:

• Effect.Opacity: Changes the opacity (transparency) of an element. This is done gradu-
ally over a specified period of time. For instance, you could fade something from 100
percent opacity to 50 percent opacity over a period of 2 seconds.

• Effect.Scale: Changes the size of an element to the specified dimensions. This allows
you to easily grow or shrink an element.

• Effect.MoveBy: Moves an element by a specified number of pixels (in both the X and Y
directions).

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS152

9063CH05CMP2 10/29/07 8:39 PM Page 152

• Effect.Highlight: Highlights an element with a given color. Both a starting color and
finishing color are specified, and the element changes color from the starting color to
the finish color. This effect would typically be used to draw attention to a particular
area of the page, such as to notify the user that an Ajax request has completed.

• Effect.Parallel: Combines one or more effects into a single effect.

In addition to these core effects, there are a large number of combination effects, built
using the core effects. They include the following:

• Effect.Appear: Makes a hidden element appear, going from complete transparency to
100 percent opacity.

• Effect.Fade: Makes an element completely transparent (the opposite of
Effect.Appear). At the completion of the effect, it will also hide the element from the
document (that is, it will set the element’s CSS display property to none).

• Effect.Grow: Grows an element from a size of 0x0 to its normal size. At the start of the
effect, the element is shrunk to 0x0 and then grown gradually to normal size. Typically
the element will be hidden prior to calling this effect.

• Effect.Shrink: Scales an element gradually down to a size of 0x0 (the opposite of
Effect.Grow).

There are many more effects available, and you can write your own. The Scriptaculous
web site (http://script.aculo.us) has more examples of the effects you can use.

DOM Element Builder
Scriptaculous provides a class called Builder, which is used to dynamically create new ele-
ments in the DOM. It is effectively a replacement for the document.createElement() available
in modern browsers.

■Tip The upcoming release of Prototype (version 1.6.0) will include a built-in DOM element builder. This
means you can use Prototype to create new DOM elements rather than using Scriptaculous. Throughout this
book, however, we will be using the Scriptaculous Builder class when we need to dynamically create new
DOM elements. You can still create DOM elements using the browser’s built-in functions, but the solution
provided by Scriptaculous is much cleaner and simpler.

JavaScript Unit Testing
The final class provided by Scriptaculous is called Test, which provides unit testing capabili-
ties for JavaScript. The idea is to write a series of test cases alongside your code as you are
developing it. This allows you to assert that your code still works correctly in the future even
after making changes. It is useful for discovering bugs early on that you might not have discov-
ered until later.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 153

9063CH05CMP2 10/29/07 8:39 PM Page 153

To use this class, you must manually include the unittest.js file in your HTML docu-
ment. We will not be using this class in this book.

Downloading and Installing Scriptaculous
You can download Scriptaculous from http://script.aculo.us. The version used in this book
is 1.7.1b3, and it requires Prototype 1.5.1.1 (typically when a new version of Prototype is
released, a corresponding version of Scriptaculous is also released).

After extracting the downloaded archive, all you need are the files in the src directory; I
like to put these files in a directory called scriptaculous. Note that Prototype is also included
in the archive (inside the lib directory), but you may already have the file installed. If not, this
is the same file that you would download from http://www.prototypejs.org.

Assuming you created the scriptaculous directory within a directory called /js (just as
you did for Prototype), you would load Scriptaculous in your HTML pages using code similar
to the following:

<html>
<head>

<title>Loading the Scriptaculous library</title>
<script type="text/javascript" src="/js/prototype.js"></script>
<script type="text/javascript"

src="/js/scriptaculous/scriptaculous.js"></script>
</head>
<body>

</body>
</html>

As you can see, Prototype is loaded prior to Scriptaculous. If you do not do this, an excep-
tion will be thrown by Scriptaculous.

■Tip If you do not need to use Scriptaculous on a particular page, you should avoid loading it to improve
download speeds of the page and slightly reduce system overhead when loading the page. In addition to the
main scriptaculous.js file, there are six JavaScript files that are automatically loaded. This totals seven
HTTP requests and about 150KB just for Scriptaculous (the unit testing library, unittest.js, isn’t automati-
cally loaded). In addition to this, Prototype is another 94KB.

Combining Prototype, Scriptaculous, Ajax, and
PHP in a Useful Example
In order to demonstrate how to actually use Scriptaculous, we are going to write a script that
utilizes it and makes use of the Prototype features we have covered so far in this chapter.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS154

9063CH05CMP2 10/29/07 8:39 PM Page 154

We will create a script that allows a user to sort a list of items using drag and drop. The
script will do the following:

1. Once the user loads the page, use Ajax to fetch the list of items to be sorted and display
them to the user

2. Allow the user to click and drag items to new locations to change the list order

3. Save the new order of the list after the user releases an item in a new location

4. Notify the user when the new order has been saved

We will look at everything that is involved, including these functions:

• Fetching the list of items using Ajax and using the DOM to create an unordered list
() in which to display the items.

• Making the list of items into a drag-and-drop list using the Scriptaculous Sortable
class.

• Styling the list of items in a manner that makes it easy for the user to drag items.

• Handling Ajax events, including errors that may occur.

• Using PHP in the background to save the list order. The list will be saved in a MySQL
database.

The code will be structured as follows:

• index.php: A simple HTML page containing placeholders in which to show the sortable
list and to show status messages.

• styles.css: An external CSS file used to style the HTML page.

• items.php: A PHP utility script used to manage the list of items, including connecting to
the database, retrieving the list of items, and updating the order of the items.

• processor.php: A PHP script to respond to the two different Ajax requests.

• scripts.js: An external JavaScript file (in addition to Prototype and Scriptaculous) to
handle the client-side application logic. This will be responsible for making the two
Ajax requests required (fetching the list of items, and saving its new order).

■Note These files should be kept separate from the main web application we began in earlier chapters,
since these files will not form part of the final application. This code will work just fine from a subdirectory.

Figure 5-1 shows how the page will look once the example is complete. This is an action
shot of the “Door” item being dragged to the bottom of the list.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 155

9063CH05CMP2 10/29/07 8:39 PM Page 155

Figure 5-1. Dragging an item in the list to a new location

Creating the Main HTML Page: index.php
First we need to create the main index HTML page, as shown in Listing 5-8. This is the page
users will load in the browser.

Listing 5-8. The HTML Code Used to Display the List to the User (index.php)

<html>
<head>

<title>Manage items order</title>
<script type="text/javascript" src="/js/prototype.js"></script>
<script type="text/javascript"

src="/js/scriptaculous/scriptaculous.js"></script>
<script type="text/javascript" src="scripts.js"></script>
<link type="text/css" rel="stylesheet" href="styles.css" />

</head>
<body>

<div id="status-container">
Status:
(nothing to report)

</div>

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS156

9063CH05CMP2 10/29/07 8:39 PM Page 156

<div id="content">
<h1>Manage items order</h1>

<div id="container">
(items not yet loaded)

</div>
</div>

</body>
</html>

In this code we first load the Prototype and Scriptaculous libraries, followed by our own
JavaScript file (scripts.js). The files must be loaded in this order, as Scriptaculous relies on
Prototype, and our script relies on both. Then the external CSS file is loaded.

Next, we include a container called #status-container to show a status message. When a
new status message is set, it will be displayed inside of #status. The text inside of #status is
the default text, meaning that after a new status message is shown, #status will revert back to
this text.

We then define a div called #content. This is only used because of how we will style
#status-container. Inside of this is a div called #container—this is where the sortable list
will appear. Note that we could define the tag here, and then add elements to it
later, but instead of doing that I’ve included a message saying the items aren’t yet loaded.
This message will be replaced by the list after it is loaded.

That is all that is required in this file. If you’re wondering how the script is initiated, we
will actually define the onload event inside of scripts.js; after everything is loaded, the list
will be fetched using Ajax.

■Note This file could just as easily be called index.html as it doesn’t contain any PHP code; however, I
like to keep all files consistently named, rather than have a mix of .php and .html files.

Styling the Application: styles.css
Now let’s look at the CSS file for our application, styles.css. Listing 5-9 shows the code for
this file. It should be stored in the same directory as the index.php file.

Listing 5-9. The CSS Code Used to Style the Example Application (styles.css)

body {
margin : 0;
font-family : sans-serif;
font-size : 12px;

}

ul.sortable {
list-style-type : none; width : 300px; margin : 0; padding : 0;

}

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 157

9063CH05CMP2 10/29/07 8:39 PM Page 157

ul.sortable li {
margin : 2px; padding : 5px; background : #eee; cursor : move;

}

#status-container {
color : #333; background : #f7f7f7; font-weight : bold; font-size : 11px;
border-bottom : 1px solid #666; padding : 3px;

}

#status {
font-weight : normal;

}

#content {
margin : 10px;

}

The main things to be aware of in this file are the ul.sortable and ul.sortable li selec-
tors. These give the list items the look and feel of items that can be moved. We also change the
mouse pointer to move to indicate that the elements can be dragged when the cursor is above
them.

Creating and Populating the Database: schema.sql
As mentioned previously, we will be using a MySQL database in this example to store the list
items. The database is called ch05_example. Assuming you already have permissions set up
correctly in your MySQL server, use the following query to create your database:

mysql> create database ch05_example;

You may need to grant the correct permissions so that the database can be accessed. To
use the same username and password as we used in Chapter 2, you can use the following
command:

mysql> grant all on ch05_example.* to phpweb20@localhost identified by 'myPassword';

You can then populate this database using the SQL queries inside schema.sql, as shown in
Listing 5-10.

Listing 5-10. The SQL Queries Used to Populate the Database (schema.sql)

create table items (
item_id serial not null,
title varchar(255) not null,
ranking int,

primary key (item_id)
);

insert into items (title) values ('Bicycle');

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS158

9063CH05CMP2 10/29/07 8:39 PM Page 158

insert into items (title) values ('Car');
insert into items (title) values ('Chair');
insert into items (title) values ('Door');
insert into items (title) values ('House');
insert into items (title) values ('Table');
insert into items (title) values ('Window');

■Note The SQL code in schema.sql will also work just fine in PostgreSQL (although the commands to
create the database and user will be different).

You can either paste these commands directly into the MySQL console, or you could run
the following command (from the Linux or Windows command prompt):

$ mysql -u phpweb20 -p ch05_example < schema.sql

In the preceding table schema, the ranking column is used to store the order of the list
items. This is the value that is manipulated by clicking and dragging items using the Scriptac-
ulous Sortable class.

■Note At this stage we aren’t storing any value for the ranking column. This will only be saved when the
list order is updated. In the PHP code, you will see that if two or more rows have the same ranking value,
they will then be sorted alphabetically.

Managing the List Items on the Server Side: items.php
We must now write the server-side code required to manage the list items. Essentially, we need
a function to load the list of items, and another to save the order of the list. (We will look at
how these functions are utilized shortly.)

In addition to these two functions, we also need to include a basic wrapper function to
connect to the database. In larger applications you would typically use some kind of database
abstraction (such as the Zend_Db class we integrated in Chapter 2).

All of the code in this section belongs in the items.php file.

Connecting to the Database
Listing 5-11 shows the code used to connect to the MySQL database.

Listing 5-11. The dbConnect() Function, Which Connects to a MySQL Database Called
ch05_example (items.php)

<?php
function dbConnect()
{

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 159

9063CH05CMP2 10/29/07 8:39 PM Page 159

$link = mysql_connect('localhost', 'phpweb20', 'myPassword');
if (!$link)

return false;

if (!mysql_select_db('ch05_example')) {
mysql_close($link);
return false;

}

return true;
}

If the connection cannot be made (either to the server, or to the database after connect-
ing to the server) then false is returned; otherwise true is returned. Since selecting the
database in MySQL is a separate step from connecting to the server, we include a call to close
the connection if the database cannot be selected.

Retrieving the List Items
The getItems() function returns an array of all the items in the list. Items are returned in an
associative array, with the item ID as the key and the item title as the array value. Listing 5-12
shows the code for getItems().

Listing 5-12. The getItems() Function, Which Returns an Associative Array of the Rows from the
Table Items (items.php)

function getItems()
{

$query = 'select item_id, title from items order by ranking, lower(title)';
$result = mysql_query($query);

$items = array();
while ($row = mysql_fetch_object($result)) {

$items[$row->item_id] = $row->title;
}

return $items;
}

In this function, we sort the list by each item’s ranking value. This is the value that is
updated when the list order is changed. Initially, there is no ranking value for items, so we use
the title column as the secondary ordering field.

Processing and Saving the List Order
Finally, we must save the new list order to the database after a user drags a list item to a new
location. In the processItemsOrder() function, we retrieve the new order from the post data
(using PHP’s $_POST superglobal), and then update the database. If this action fails, false is
returned; this will occur if the new ordering data isn’t found in $_POST. If the new list order is
saved, true is returned.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS160

9063CH05CMP2 10/29/07 8:39 PM Page 160

Listing 5-13 shows the processItemsOrder() function.

Listing 5-13. The processItemsOrder() Function, Which Takes the New List Order from the Post
Data and Saves It to the Database (items.php)

function processItemsOrder($key)
{

if (!isset($_POST[$key]) || !is_array($_POST[$key]))
return false;

$items = getItems();

$ranking = 1;
foreach ($_POST[$key] as $id) {

if (!array_key_exists($id, $items))
continue;

$query = sprintf('update items set ranking = %d where item_id = %d',
$ranking,
$id);

mysql_query($query);
$ranking++;

}

return true;
}

?>

Processing Ajax Requests on the Server Side: processor.php
In the previous section, we covered the code used to manage the list of items. We will now look
at processor.php, the script responsible for handling Ajax requests and interfacing with the
functions in items.php.

As mentioned earlier, there are two different Ajax requests to handle. The first is the load
action, which returns the list of items as XML. This action is handled by calling the getItems()
function, and then looping over the returned items and generating XML based on the data.

The second action is save, which is triggered after the user changes the order of the
sortable list. This action results in a call to the processItemsOrder() function we just looked at.

Listing 5-14 shows the contents of the processor.php file.

Listing 5-14. Loading and Saving Ajax Requests (processor.php)

<?php
require_once('items.php');

if (!dbConnect())
exit;

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 161

9063CH05CMP2 10/29/07 8:39 PM Page 161

$action = isset($_POST['action']) ? $_POST['action'] : '';

switch ($action) {
case 'load':

$items = getItems();
$xmlItems = array();
foreach ($items as $id => $title)

$xmlItems[] = sprintf('<item id="%d" title="%s" />',
$id,
htmlSpecialChars($title));

$xml = sprintf('<items>%s</items>',
join("\n", $xmlItems));

header('Content-type: text/xml');
echo $xml;
exit;

case 'save':
echo (int) processItemsOrder('items');
exit;

}
?>

The first thing we do in this code is include the items.php file and call dbConnect(). If this
function call fails, there’s no way the Ajax requests can succeed, so we exit right away. The
JavaScript code we will look at in the next section will handle this situation.

We then use a switch statement to determine which action to perform, based on the value
of the action element in the $_POST array. This allows for easy expansion if another Ajax
request type needs to be added. If the action isn’t recognized in the switch, nothing happens
and the script execution simply ends.

Handling the Load Action
To handle the load action, we first retrieve the array of items. We then loop over them and
generate XML for the list. We use htmlSpecialChars() to escape the data so that valid XML is
produced. Technically speaking, this wouldn’t be sufficient in all cases, but for this example it
will suffice.

The resulting XML will look like the following:

<items>
<item id="1" title="Bicycle" />
<item id="2" title="Car" />
<item id="3" title="Chair" />
<item id="4" title="Door" />
<item id="5" title="House" />
<item id="6" title="Table" />
<item id="7" title="Window" />

</items>

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS162

9063CH05CMP2 10/29/07 8:39 PM Page 162

Finally, we send this XML data. To tell the requester what kind of data is being returned,
the content-type header is sent with text/xml as its value.

Handling the Save Action
All processing for the save action is taken care of by the processItemsOrder() function, so it is
relatively simple to handle this request. The items value is passed as the first argument, as this
corresponds to the value in the post data holding the item order.

The processItemsOrder() function returns true if the list order was successfully updated.
To indicate this to the JavaScript, we return 1 for success. Any other value will be treated as
failure. As such, we can simply cast the return value of processItemsOrder() using (int) to
return a 1 on success.

Creating the Client-Side Application Logic: scripts.js
We will now look at the JavaScript code used to make and handle all Ajax requests, including
loading the items list initially, making it sortable with Scriptaculous, and handling any changes
in the order of the list. All the code listed in this section is from the scripts.js file in this chap-
ter’s source code.

Application Settings
We first define a few settings that are used in multiple areas. Using a hash to store options at
the start of the script makes altering code behavior very simple. Listing 5-15 shows the hash
used to store settings.

Listing 5-15. The JavaScript Hash That Stores Application Settings (scripts.js)

var settings = {
containerId : 'container',
statusId : 'status',
processUrl : 'processor.php',
statusSuccessColor : '#99ff99',
statusErrorColor : '#ff9999'

};

The containerId value specifies the ID of the element that holds the list items (that is,
where the of list items will go). The statusId value specifies the element where
status messages will appear.

The value for processUrl is the URL where Ajax requests are sent. statusSuccessColor
is the color used to highlight the status box when an Ajax request is successful, while
statusErrorColor is used when an Ajax request fails.

Initializing the Application with init()
To begin this simple Ajax application, we call the init() function. Listing 5-16 shows the code
for init().

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 163

9063CH05CMP2 10/29/07 8:39 PM Page 163

Listing 5-16. The init() Function, Which Begins this Example Ajax Application (scripts.js)

function init()
{

$(settings.statusId).defaultContent = $(settings.statusId).innerHTML;
loadItems();

}

You might find the first line of this function to be slightly confusing. Essentially,
what it does is save the initial content from the status container in a new property called
defaultContent (remember that in index.php we had the string (nothing to report) in the
status container). This allows us to change the contents of the status container back to this
value after showing a new status message.

Next, we call the loadItems() function, which fetches the list of items from the server and
displays them to the user. We will look at this function shortly.

In order to call this function, we use the onload event. Using Prototype’s Event.observe()
method, we set the init() function to run once the page has finished loading. This is shown in
Listing 5-17.

Listing 5-17. Setting init() to Run once the Page Finishes Loading—Triggered by the
window.onload Event (scripts.js)

Event.observe(window, 'load', init);

■Note As we saw earlier in this chapter, using Event.observe() to handle the page onload event is
preferred over using <body onload= "init()">.

Updating the Status Container with setStatus()
Before we go over the main function calls in this example, we will look at the setStatus() util-
ity function. This function is used to update the status message, and it uses Scriptaculous to
highlight the status box (with green for success, or red for error).

Listing 5-18 shows the code for setStatus(). The first argument to this function specifies
the text to appear in the status box. Note that there is also an optional second argument that
indicates whether or not an error occurred. If setStatus() is called with this second argument
(with a value of true), the message is treated as though it occurred as a result of an error.
Essentially, this means the status box will be highlighted with red.

Listing 5-18. The setStatus() Function, Which Displays a Status Message to the User (scripts.js)

function setStatus(msg)
{

var isError = typeof arguments[1] == 'boolean' && arguments[1];
var status = $(settings.statusId);

var options = {

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS164

9063CH05CMP2 10/29/07 8:39 PM Page 164

startcolor : isError ?
settings.statusErrorColor :
settings.statusSuccessColor,

afterFinish : function() {
this.update(this.defaultContent);

}.bind(status)
};

status.update(msg);
new Effect.Highlight(status, options);

}

The options hash holds the options for the Scriptaculous effect we will be using
(Effect.Highlight). First, we specify the starting color based on whether or not an error
occurred, and then we specify code to run after the effect has completed.

In the init() function, we stored the initial content of the status container in the
defaultContent property. Here we change the status content back to this value after the effect
completes.

Notice that we are making use of bind(), which was explained earlier in this chapter. Even
though we haven’t created this code in a class, we can bind a function to an arbitrary element,
allowing us to use this within that function to refer to that element.

Next, we call the Prototype update() method to set the status message. We then create a
new instance of the Effect.Highlight class to begin the highlight effect on the status box.
Once again, because this is a class, it must be instantiated using the new keyword.

Loading the List of Items with loadItems()
The loadItems() function initiates the load Ajax request. This function is somewhat straight-
forward—it is the onSuccess callback loadItemsSuccess that is more complicated.

Listing 5-19 shows the code for loadItems(), including a call to the setStatus() function
we just covered.

Listing 5-19. The loadItems() Function, Which Initiates the Load Ajax Request (scripts.js)

function loadItems()
{

var options = {
method : 'post',
parameters : 'action=load',
onSuccess : loadItemsSuccess,
onFailure : loadItemsFailure

};

setStatus('Loading items');
new Ajax.Request(settings.processUrl, options);

}

In this code, we specify the action=load string as the parameters value. This action value
is used in processor.php to determine which Ajax request to handle.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 165

9063CH05CMP2 10/29/07 8:39 PM Page 165

Handling the Response from the Ajax Request in loadItems()
We will now look at the onSuccess and onFailure callbacks for the Ajax request in the previous
section. The onFailure callback is handled by the loadItemsFailure() function shown in List-
ing 5-20, while the onSuccess callback is handled by the loadItemsSuccess() function shown
in Listing 5-21.

Listing 5-20. The onFailure Callback Handler (scripts.js)

function loadItemsFailure(transport)
{

setStatus('Error loading items', true);
}

In this function, we simply set an error status message by passing true as the second
parameter to setStatus().

Listing 5-21. The onSuccess Callback Handler (scripts.js)

function loadItemsSuccess(transport)
{

// Find all <item></item> tags in the return XML, then cast it into
// a Prototype Array
var xml = transport.responseXML;
var items = $A(xml.documentElement.getElementsByTagName('item'));

// If no items were found there's nothing to do
if (items.size() == 0) {

setStatus('No items found', true);
return;

}

// Create an array to hold items in. These will become the tags.
// By storing them in an array, we can pass this array to Builder when
// creating the surrounding . This will automatically take care
// of adding the items to the list
var listItems = $A();

// Use Builder to create an element for each item in the list, then
// add it to the listItems array
items.each(function(s) {

var elt = Builder.node('li',
{ id : 'item_' + s.getAttribute('id') },
s.getAttribute('title'));

listItems.push(elt);
});

// Finally, create the surrounding element, giving it the className

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS166

9063CH05CMP2 10/29/07 8:39 PM Page 166

// property (for styling purposes), and the 'items' values as an Id (for
// form processing - Scriptaculous uses this as the form item name).
// The final parameter is the element we just created
var list = Builder.node('ul',

{ className : 'sortable', id : 'items' },
listItems);

// Get the item container and clear its content
var container = $(settings.containerId);
container.update();

// Add the to the empty container
container.appendChild(list);

// Finally, make the list into a Sortable list. All we need to pass here
// is the callback function to use after an item has been dropped in a
// new position.
Sortable.create(list, { onUpdate : saveItemOrder.bind(list) });

}

The preceding code has been documented inline to show you how it works. The only
new things in this code we haven’t yet covered are the calls to the Scriptaculous functions
Builder.node() and Sortable.create().

The following code shows the HTML equivalent of the elements created using the
Builder.node() function:

<ul id="items" class="sortable">
<li id="item_1">Bicycle
<li id="item_2">Car
<li id="item_3">Chair
<li id="item_4">Door
<li id="item_5">House
<li id="item_6">Table
<li id="item_7">Window

This list is then made into a sortable list by passing it as the first parameter to
Sortable.create(). Additionally, the saveItemOrder() function is specified as the function to
be called after the user moves a list item to a new location. Once again, we use bind(), allow-
ing us to use this inside of saveItemOrder() to refer to the #items list.

Handling a Change to the List Order with saveItemOrder()
A call to the saveItemOrder() function will initiate the second Ajax request, save. This function
shouldn’t be called directly, but only as the callback function on the sortable list, to be trig-
gered after the list order is changed. Listing 5-22 shows the code for saveItemOrder().

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 167

9063CH05CMP2 10/29/07 8:39 PM Page 167

Listing 5-22. The saveItemOrder Callback, Triggered After the Sortable List Order is Changed
(scripts.js)

function saveItemOrder()
{

var options = {
method : 'post',
parameters : 'action=save&' + Sortable.serialize(this),
onSuccess : saveItemOrderSuccess,
onFailure : saveItemOrderFailure

};

new Ajax.Request(settings.processUrl, options);
}

In this code, we once again create an options hash to pass to Ajax.Request(). This time, we
set the action value inside of parameters to save. Additionally, we use Sortable.serialize() to
create appropriate form data for the order of the list. This is the data that is processed in the PHP
function processItemsOrder() from items.php.

The value of parameters will look something like the following:

action=save&items[]=1&items[]=2&items[]=3&items[]=4&items[]=5&items[]=6&items[]=7

Each value for items[] corresponds to a value in the items database table (with the item_
part automatically removed).

Handling the Response from the Ajax Request in saveItemOrder()
Finally, we must handle the onSuccess and onFailure events for the save Ajax request. Listing
5-23 shows the code for the onFailure callback saveItemOrderFailure(), while Listing 5-24
shows the code for the onSuccess callback saveItemOrderSuccess().

Listing 5-23. The saveItemOrderFailure() Callback, Used for the onFailure Event (scripts.js)

function saveItemOrderFailure(transport)
{

setStatus('Error saving order', true);
}

If saving the order of the list fails, we simply call setStatus() to indicate this, marking the
status message as an error by passing true as the second parameter.

Handling the onSuccess event is also fairly straightforward. To determine whether the
request was successful, we simply check to see if the response contains 1. If so, the request was
successful. Once again we call setStatus() to notify the user. If the request wasn’t successful,
we call saveItemOrderFailure() to handle the error.

Listing 5-24. The saveItemOrderSuccess() Callback, Used for the onSuccess Event (scripts.js)

function saveItemOrderSuccess(transport)
{

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS168

9063CH05CMP2 10/29/07 8:39 PM Page 168

if (transport.responseText != '1')
return saveItemOrderFailure(transport);

setStatus('Order saved');
}

If you now load the index.php file created in Listing 5-8 in your web browser you will be
shown a list of items that you can now drag and drop. When you drop an item to a new loca-
tion an Ajax request will be performed, updating the order saved in the database.

Summary
As you have seen in this chapter, the Prototype JavaScript library is a very powerful library that
provides a lot of useful functionality, as well as making cross-browser scripting simpler. We
also looked at the Scriptaculous library and created a simple Ajax application that made use of
its highlight effect and sortable control.

In the next chapter, we will build on the HTML code we created in Chapter 2 by using
some powerful CSS techniques to style our web application. Once we have the HTML and CSS
in place, we can add new functionality that makes use of the JavaScript techniques we have
learned in this chapter.

CHAPTER 5 ■ INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS 169

9063CH05CMP2 10/29/07 8:39 PM Page 169

9063CH05CMP2 10/29/07 8:39 PM Page 170

Styling the Web Application

At this stage in the development of our Web 2.0 application, we have created some basic
templates and a few different forms (for user registration and login), but we haven’t applied
any customized styling to these forms. In this chapter we are going to start sprucing up our
site. In addition to making the forms we have already created look much better, we are also
going to put styles and layout in place to help with development in following chapters.

We will be covering a number of topics in this chapter, including the following:

• Adding navigation and search engine optimization elements, such as the document
title, page headings, and breadcrumb trails

• Creating a set of generic global styles that can easily be applied throughout all tem-
plates (such as forms and headings) using Cascading Style Sheets (CSS)

• Allowing for viewing on devices other than a desktop computer (such as creating a
print-only style sheet for “printer-friendly” pages)

• Integrating the HTML and CSS into the existing Smarty templates, and using Smarty
templates to easily generate maintainable HTML

• Creating an Ajax-based form validator for the user registration form created in Chapter 4

Adding Page Titles and Breadcrumbs
Visually indicating to users where they are in the structure of a web site is very important for
the site’s usability, and many web sites overlook this. A user should easily be able to identify
where they are and how they got there without having to retrace their steps.

To do this, we must assign a title to every page in our application. Once we have the titles,
we can set up a breadcrumb system. A breadcrumb trail is a navigational tool that shows users
the hierarchy of pages from the home page to where they currently are. Note that this differs
from how the web browser’s history works—the breadcrumb system essentially shows all of
the parent sections the current page is in, not the trail of specific pages the user visited to get
to the current page.

A breadcrumb system might look like this:

Home > Products > XYZ Widget

In this example, the current page would be XYZ Widget, while Home would be hyperlinked to
the web site’s home page, and Products would link to the appropriate page.

171

C H A P T E R 6

9063Ch06CMP2 11/13/07 7:56 PM Page 171

To name the pages, we need to define a title in each action handler of each controller (for
example, to add a title to the account login page we will add it to the loginAction() method of
the AccountController PHP class). Some titles will be dynamically generated based on the pur-
pose of the action (such as using the headline of a news article as the page title when displaying
that article), while others will be static. You could argue about whether the title of a page should
be determined by the application logic (that is, in the controller file) or by the display logic
(determined by the template). In some special cases titles will need to be determined in the
template, but it is important to always define a page title in the controller actions to build up a
correct breadcrumb trail. If the page titles were defined within templates, it would be very diffi-
cult to construct the breadcrumb trail.

■Note In larger web applications, where the target audience includes people not only from your country
but also other countries, you need to consider internationalization and localization (also known as i18n and
L10n, with the numbers indicating the number of letters between the starting and finishing letters). Interna-
tionalization and localization take into account a number of international differences, including languages
and formatting of numbers, currencies, and dates. In the case of page titles, you would fetch the appropriate
page title for the given language based on the user’s settings, rather than hard-coding the title in the PHP
code. The Zend_Translate component of the Zend Framework can help with implementation of i18n
and L10n.

To implement the title and breadcrumb system, we need to make two changes to the way
we create application controllers:

1. We must implement the Breadcrumbs class, which is used to hold each of the bread-
crumb steps. The Breadcrumbs object will be assigned to the template, so we can easily
output the trail in the header.tpl file.

2. We must build a trail in each controller action with the steps that lead up to the action.
The steps (and number of steps) will be different for each action, depending on its spe-
cific purpose.

The Breadcrumbs Class
This is a class that simply holds an array of the steps leading up to the current page. Each element
of the array has a title and a link associated with it. Listing 6-1 shows the code for Breadcrumbs,
which we will store in Breadcrumbs.php in the /var/www/phpweb20/include directory.

Listing 6-1. Tracking the Trail to the Current Page with the Breadcrumbs Class
(Breadcrumbs.php)

<?php
class Breadcrumbs
{

private $_trail = array();

CHAPTER 6 ■ STYLING THE WEB APPLICATION172

9063Ch06CMP2 11/13/07 7:56 PM Page 172

public function addStep($title, $link = '')
{

$this->_trail[] = array('title' => $title,
'link' => $link);

}

public function getTrail()
{

return $this->_trail;
}

public function getTitle()
{

if (count($this->_trail) == 0)
return null;

return $this->_trail[count($this->_trail) - 1]['title'];
}

}
?>

This class is very short and straightforward, consisting of just three methods: one to add a
step to the breadcrumbs trail (addStep()), one to retrieve the trail (getTrail()), and one to
determine the page title using the final step of the trail (getTitle()).

To use Breadcrumbs, we instantiate it in the init() method of the CustomControllerAction
class. This makes it available to all classes that extend from this class. Additionally, we will
add a link to the web site home page by calling addStep('Home', '/') after we instantiate
Breadcrumbs.

■Note This object is freshly created for every action that is dispatched. This means that even if you
forward from one action to another in the same request, the breadcrumbs trail is recreated (since the
controller object is reinstantiated).

Next, we need to add the postDispatch() function to CustomControllerAction. This func-
tion will be executed once a controller action has completed. We will use this function to
assign the breadcrumbs trail and the page title to the template, since postDispatch() is called
prior to the automatic view renderer displaying the template.

Listing 6-2 shows the updated version of CustomControllerAction.php, which now instan-
tiates Breadcrumbs and assigns it to the template.

Listing 6-2. Instantiating and Assigning the Breadcrumbs Class (CustomControllerAction.php)

<?php
class CustomControllerAction extends Zend_Controller_Action
{

CHAPTER 6 ■ STYLING THE WEB APPLICATION 173

9063Ch06CMP2 11/13/07 7:56 PM Page 173

public $db;
public $breadcrumbs;

public function init()
{

$this->db = Zend_Registry::get('db');

$this->breadcrumbs = new Breadcrumbs();
$this->breadcrumbs->addStep('Home', '/');

}

// ... other code

public function postDispatch()
{

$this->view->breadcrumbs = $this->breadcrumbs;
$this->view->title = $this->breadcrumbs->getTitle();

}
}

?>

■Note When we add the title of the current page to the trail, we don’t need to add its URL, since the user
is already on this page and doesn’t need to navigate to it.

Generating URLs
Before we go any further, we need to consider how to generate URLs for each step we add to
the breadcrumbs. For example, if we wanted to link to the account login page, the URL would
be /account/login. In this instance, the controller name is account and the action name is
login.

The simplest solution is to hard-code this URL both in the PHP code (when creating the
breadcrumbs) and in the template (when creating hyperlinks). However, hard-coding URLs
doesn’t give you any flexibility to change the format of the URL. For example, if you decide to
move your web application to a subdirectory of your server instead of the root directory, all of
your hard-coded URLs would be incorrect.

■Tip If you did decide to use a subdirectory, you would call $controller->setBaseUrl('/path/to/base')
in the index.php bootstrap file. This could then be retrieved by calling $request->getBaseUrl() when
inside a controller action, as you will see shortly.

CHAPTER 6 ■ STYLING THE WEB APPLICATION174

9063Ch06CMP2 11/13/07 7:56 PM Page 174

Generating URLs in Controller Actions
We now need to write a function that generates a URL based on the controller and action
names passed to it. To help us with URL generation, we will use the Url helper that comes with
Zend_Controller. The only thing to be aware of is that this helper will not prefix the generated
URL with a slash, or even with the base URL (as mentioned in the preceding tip). Because of
this, we must make a slight modification by extending this helper—we will create a new func-
tion called getUrl().

Listing 6-3 shows the getUrl() function we will add to CustomControllerAction.php. This
code uses the Url helper to generate the URL, and then prepends the base URL and a slash at
the start. The other change made in this file modifies the home link that is generated so it calls
the new getUrl() function, rather than hard-coding the slash.

Listing 6-3. Creating a Function to Generate Application URLs (CustomControllerAction.php)

<?php
class CustomControllerAction extends Zend_Controller_Action
{

// ... other code

public function init()
{

// ... other code

$this->breadcrumbs->addStep('Home', $this->getUrl(null, 'index'));
}

public function getUrl($action = null, $controller = null)
{

$url = rtrim($this->getRequest()->getBaseUrl(), '/') . '/';
$url .= $this->_helper->url->simple($action, $controller);

return $url;
}

// ... other code
}

?>

■Note The call to rtrim() is included because the base URL may end with a slash, in which case the URL
would have // at the end.

Now within each controller action we can call $this->getUrl() directly. For example,
if we wanted to generate the URL for the login page, we would call $this->getUrl('login',
'account').

CHAPTER 6 ■ STYLING THE WEB APPLICATION 175

9063Ch06CMP2 11/13/07 7:56 PM Page 175

■Note This code uses the simple() method on the Url helper, which is used to generate a URL from an
action and a controller. In later chapters we will define custom routes, which means the format of URLs is
more complex. This helper also provides a method called url(), which is used to generate URLs based on
the defined routes.

Generating URLs in Smarty Templates
Before we go any further, we must also cater for URL generation within our templates. To
achieve this, we will implement a Smarty plug-in called geturl. Doing so will allow us to
generate URLs by using {geturl} in templates. For instance, we could generate a URL for
the login page like this:

{geturl action='login' controller='account'}

Additionally, we will allow the user to omit the controller argument, meaning that the current
controller would be used.

■Tip The preceding code is an example of a Smarty function call. The three main types of plug-ins are
functions, modifiers, and blocks. Modifiers are functions that are applied to strings that are being output
(making a string uppercase with {$myString|upper}, for example) while blocks are used to define output
that wraps whatever is between the opening and closing tags (such as {rounded_box} Inner content.
{/rounded_box}). In the case of geturl, we will use a Smarty function in order to perform a specific oper-
ation based on the provided arguments; that function isn’t being applied to an existing string, so it is not a
modifier.

A Smarty plug-in is created by defining a PHP function called smarty_type_name(), where
type is either function, modifier, or block. In our case, since the plug-in is called geturl, the
function is called smarty_function_geturl().

■Tip There are other plug-in types available, such as output filters (which modify template output after it
has been generated), compiler functions (which change the behavior of the template compiler), pre and post
filters (which modify template source prior to or immediately after compilation), and resources (which load
templates from a source other than the defined template directory). These could be the subject of their own
book, so I can’t cover them all here, but this section will at least give you a good idea of how to implement
your own function plug-ins.

All plug-ins should be stored in one of the registered Smarty plug-in directories. Smarty
comes with its own set of plug-ins, and in Chapter 2 we created our own directory in which to
store custom plug-ins (./include/Templater/plugins). The filename of plug-ins follows the

CHAPTER 6 ■ STYLING THE WEB APPLICATION176

9063Ch06CMP2 11/13/07 7:56 PM Page 176

format type.name.php, so in our case the file is named function.geturl.php. Smarty will
automatically load the plug-in as soon as we try to access it in a template.

The code for the geturl plug-in is shown in Listing 6-4. It should be written to
./include/Templater/plugins/function.geturl.php.

Listing 6-4. The Smarty geturl Plug-In That Uses the Zend_Controller URL Helper
(function.geturl.php)

<?php
function smarty_function_geturl($params, $smarty)
{

$action = isset($params['action']) ? $params['action'] : null;
$controller = isset($params['controller']) ? $params['controller'] : null;

$helper = Zend_Controller_Action_HelperBroker::getStaticHelper('url');

$request = Zend_Controller_Front::getInstance()->getRequest();

$url = rtrim($request->getBaseUrl(), '/') . '/';
$url .= $helper->simple($action, $controller);

return $url;
}

?>

All function plug-ins in Smarty retrieve an array of parameters as the first argument and
the Smarty object as the second argument. The array of parameters is generated using the
arguments specified when calling the function. In other words, calling the geturl function
using {geturl action='login' controller='account'} will result in the $params array being
the same as if you used the following PHP code:

<?php
$params = array(

'action' => 'login',
'controller' => 'account'

);
?>

The function must do its own initialization and checking of the specified parameters. This
is why the code in Listing 6-4 checks for the existence of the action and controller parame-
ters in the first two lines of the function.

Next the Url helper and the current request are retrieved using the provided functions.
You will notice that the code we use to generate the actual URL is almost identical to that in
the CustomControllerAction class.

Finally, the URL is returned to the template, meaning it is output directly. This allows us to
use it inside forms and hyperlinks (such as <form action="{geturl …}">).

CHAPTER 6 ■ STYLING THE WEB APPLICATION 177

9063Ch06CMP2 11/13/07 7:56 PM Page 177

■Tip The function in Listing 6-4 returns the generated URL so it is output directly to the template. You
may prefer to write it to a variable in your template so you can reuse the URL as required. The convention
for this in Smarty is to pass an argument called assign, whose value is then used as the variable name.
For instance, you could call the function using {geturl action='login' controller='account'
assign='myUrl'}. By including $smarty->assign($params['assign'], $url) in the plug-in instead
of returning the value, you can then access $myUrl from within your template. Typically you would check for
the existence of assign and output the value normally if it is not specified.

Now, if you need to link to another controller action within a template, you should be
using the {geturl} plug-in. This may be a normal hyperlink, or it may be a form action.

■Note At this point I make the assumption that existing templates have been updated to use the
{geturl} plug-in. Try updating the existing templates for registration, login, and updating details (located
in the ./templates/account directory) that we created in Chapter 4 so the forms and any other links in
the page use {geturl}. Alternatively, the downloadable source code for this and remaining chapters will
use {geturl} wherever it should.

Setting the Title and Trail for Each Controller Action
We now have the ability to set the page title and breadcrumb trail for all pages in our web
application, so we must update the AccountController class we created in Chapter 3 to use
these features.

First, we want all action handlers in this controller to have a base breadcrumb trail of
“Home: Account”, with additional steps depending on the action. To add the “Account” bread-
crumb step automatically, we will define the init() method in this class, which calls the
Breadcrumbs::addStep() method.

We must also call parent::init(), because the init() method in CustomControllerAction
sets up other important data. In fact, this parent method instantiates Breadcrumbs, so it must
be called before adding the breadcrumbs step.

By automatically adding the “Account” step for all actions in this controller, we are effec-
tively naming the index action for this controller Account. This means that in the indexAction()
function we don’t need to set a title, as Breadcrumbs::getTitle() will work this out for us auto-
matically.

Listing 6-5 shows the changes we must make to the AccountController class to set up the
trail for the register and registercomplete actions. No change is required for the index
action. Note that we also set the base URL for the controller in the init() method and change
the redirect URL upon successful registration.

Listing 6-5. Defining the Page Titles and Trails for the Index and Registration Actions
(AccountController.php)

<?php

CHAPTER 6 ■ STYLING THE WEB APPLICATION178

9063Ch06CMP2 11/13/07 7:56 PM Page 178

class AccountController extends CustomControllerAction
{

public function init()
{

parent::init();
$this->breadcrumbs->addStep('Account', $this->getUrl(null, 'account'));

}

public function indexAction()
{

// nothing to do here, index.tpl will be displayed
}

public function registerAction()
{

$request = $this->getRequest();

$fp = new FormProcessor_UserRegistration($this->db);

if ($request->isPost()) {
if ($fp->process($request)) {

$session = new Zend_Session_Namespace('registration');
$session->user_id = $fp->user->getId();
$this->_redirect($this->getUrl('registercomplete'));

}
}

$this->breadcrumbs->addStep('Create an Account');
$this->view->fp = $fp;

}

public function registercompleteAction()
{

// ... other code here

$this->breadcrumbs->addStep('Create an Account',
$this->getUrl('register'));

$this->breadcrumbs->addStep('Account Created');

$this->view->user = $user;
}

// ... other code here

}
?>

CHAPTER 6 ■ STYLING THE WEB APPLICATION 179

9063Ch06CMP2 11/13/07 7:56 PM Page 179

■Note You can try adding titles to each of the other actions in this controller (although the logout action
will not require it), or you can simply download the source for this chapter, which will be fully updated to use
the breadcrumbs system.

Because we define the title of the section in the controller’s init() method, we typically
don’t need to define a title in indexAction(), since the title added in init() will be adequate.
Next, we specify the title as “Create an Account” in the registerAction() function. This
string is added to the trail as well as being assigned to the template as $title (this is done
in CustomControllerAction’s postDispatch() method, as we saw in Listing 6-2).

Creating a Smarty Plug-In to Output Breadcrumbs
The breadcrumb trail has been assigned to templates as is, meaning that we can call the
getTrail() method to return an array of all of the trail steps. The problem with this is that it
clutters the template, especially when you consider some of the options that can be used.

Instead, we will create another Smarty plug-in: a function called breadcrumbs. With this
function, we will be able to output the trail based on a number of different options. This func-
tion is reusable, and you’ll be able to use it for other sites you create with Smarty. This should
always be a goal when developing code such as this.

Listing 6-6 shows the contents of function.breadcrumbs.php, which is stored in the
./include/Templater/plugins directory. This code basically loops over each step in the bread-
crumb trail and generates a hyperlink and a displayable title. Since it is optional for steps to
have a link, a title is only generated if no link is included. The same class and file naming con-
ventions apply as in the geturl plug-in discussed previously (in the “Generating URLs in
Smarty Templates” section), and as before it is best to initialize all parameters at the beginning
of the function.

Listing 6-6. A Custom Smarty Plug-In Used to Output the Breadcrumb Trail
(function.breadcrumbs.php)

<?php
function smarty_function_breadcrumbs($params, $smarty)
{

$defaultParams = array('trail' => array(),
'separator' => ' > ',
'truncate' => 40);

// initialize the parameters
foreach ($defaultParams as $k => $v) {

if (!isset($params[$k]))
$params[$k] = $v;

}

// load the truncate modifier
if ($params['truncate'] > 0)

CHAPTER 6 ■ STYLING THE WEB APPLICATION180

9063Ch06CMP2 11/13/07 7:56 PM Page 180

require_once $smarty->_get_plugin_filepath('modifier', 'truncate');

$links = array();
$numSteps = count($params['trail']);
for ($i = 0; $i < $numSteps; $i++) {

$step = $params['trail'][$i];

// truncate the title if required
if ($params['truncate'] > 0)

$step['title'] = smarty_modifier_truncate($step['title'],
$params['truncate']);

// build the link if it's set and isn't the last step
if (strlen($step['link']) > 0 && $i < $numSteps - 1) {

$links[] = sprintf('%s',
htmlSpecialChars($step['link']),
htmlSpecialChars($step['title']),
htmlSpecialChars($step['title']));

}
else {

// either the link isn't set, or it's the last step
$links[] = htmlSpecialChars($step['title']);

}
}

// join the links using the specified separator
return join($params['separator'], $links);

}
?>

After the array of links has been built in this function, we create a single string to be
returned by joining on the separator option. The default value for the separator is >, which we
preescape. It is preescaped because some characters you might prefer to use aren’t typable, so
you can specify the preescaped version when calling the plug-in. An example of this is the »
symbol, which we can use by calling {breadcrumbs separator=' » '}.

When we generate the displayable title for each link, we make use of the Smarty truncate
modifier. This allows us to restrict the total length of each breadcrumb link by specifying the
maximum number of characters in a given string. If the string is longer than that number, it is
chopped off at the end of the previous word and “...” is appended. For instance, if you were
to truncate “The Quick Brown Fox Jumped over the Lazy Dog” to 13 characters, it would
become “The Quick...”. This is an improvement over the PHP substr() function, since
substr() will simply perform a hard break in the middle of a word (so the example string
would become “The Quick Bro”).

CHAPTER 6 ■ STYLING THE WEB APPLICATION 181

9063Ch06CMP2 11/13/07 7:56 PM Page 181

■Tip In a Smarty template, you would use {$string|truncate}, but we can use the truncate modifier
directly in our PHP code by first loading the modifier (using $smarty->_get_plugin_filepath() to
retrieve the full path of the plug-in and then passing the plug-in type and name as the arguments) and then
calling smarty_modifier_truncate() on the string.

The final thing to note in this function is that the URLs and titles are escaped as required
when adding elements to the $links array. This ensures that valid HTML is generated and also
prevents cross-site scripting (XSS) and cross-site request forgery (CSRF). This is explained in
more detail in Chapter 7.

Displaying the Page Title
The final step is to display the title and breadcrumbs in the site templates, and to update the
links to use the geturl plug-in. Listing 6-7 shows the changes to be made to header.tpl, where
we now display the page title within the <title> tag as well as within an <h1> tag. Additionally,
we use the new {breadcrumbs} plug-in to easily output the breadcrumb trail.

Listing 6-7. Outputting the Title and Breadcrumbs in the Header Template (header.tpl)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<title>{$title|escape}</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>
<body>

<div>
Home
{if $authenticated}

| Your Account
| <a href="{geturl controller='account'

action='details'}">Update Your Details
| <a href="{geturl controller='account'

action='logout'}">Logout
{else}

| <a href="{geturl controller='account'
action='register'}">Register

| Login
{/if}

<hr />

{breadcrumbs trail=$breadcrumbs->getTrail()}

CHAPTER 6 ■ STYLING THE WEB APPLICATION182

9063Ch06CMP2 11/13/07 7:56 PM Page 182

{if $authenticated}
<hr />
<div>

Logged in as
{$identity->first_name|escape} {$identity->last_name|escape}
(<a href="{geturl controller='account'

action='logout'}">logout)
</div>

{/if}

<hr />

<h1>{$title|escape}</h1>

Figure 6-1 shows the page, now that it includes the page title and breadcrumbs.

Figure 6-1. The Account Created page, showing the page title as well as the full trail of how the
page was reached

Integrating the Design into the Application
We are now at the stage where we can create the application layout by using a more formal
design in the header and footer templates and styling it using Cascading Style Sheets (CSS). In
this section, we will first determine which elements we want to include on pages, and then
create a static HTML file (allowing us to see a single complete page), which we will break up
into various parts that can be integrated into the site templates.

CHAPTER 6 ■ STYLING THE WEB APPLICATION 183

9063Ch06CMP2 11/13/07 7:56 PM Page 183

Creating the Static HTML
Figure 6-2 shows the design we will use for the web application (including CSS, which we will
integrate in the next section), as viewed in Firefox. The layout developed in this chapter has
been tested with Firefox 2, Internet Explorer 6 and 7, and Safari.

■Note It is worth mentioning here that this book is devoted to the development side of web applications,
not the design side. As such, the look and feel we use for the web application will be straightforward in com-
parison to what a professional web designer would come up with. Hopefully, though, the techniques here
can help you in marking up a professional design into HTML and CSS.

Figure 6-2. The web page design we will use for the web application: a cross-browser, fluid,
table-free layout

The key elements of this layout include:

• Three columns with a fluid middle column and fixed-size left and right columns

• No tables to set the columns

• A header area (for a logo), which can also be expanded to include other elements (such
as advertising)

• A tabbed navigation system that allows users to see which section of the site they are in

• A breadcrumb trail and page title

CHAPTER 6 ■ STYLING THE WEB APPLICATION184

9063Ch06CMP2 11/13/07 7:56 PM Page 184

It is actually somewhat difficult to get a multiple-column layout with a single fluid central
column without using tables. This cross-browser solution is adapted from Matthew Levine’s
Holy Grail technique from “A List Apart” (http://www.alistapart.com/articles/holygrail).

The following HTML code shows the basic structure of how our main site template will be
structured. We will integrate this into our templates shortly.

<html>
<head>
</head>
<body>

<div id="header">
</div>

<div id="nav">
</div>

<div id="content-container" class="column">
</div>

<div id="left-container" class="column">
</div>

<div id="right-container" class="column">
</div>

<div id="footer">
</div>

</body>
</html>

As you can see in this HTML code, the center column (#content-container) appears
before the other columns. This helps with search engine optimization, as the core page con-
tent is earlier in the file, and is therefore treated as being of greater priority in the document.

■Note Placing the center column first is also an accessibility feature, since users who rely on screen read-
ers will reach the relevant content sooner.

The preceding code simply demonstrates at the most basic level how the elements of the
page piece together. Let’s now take a look at the full markup before we integrate it into the
templates. Listing 6-8 shows the HTML code that we will be splitting up for use in the tem-
plates. We must also include calls to the Smarty plug-ins we created in order to generate links
and for displaying breadcrumbs. For now though, we just include placeholders for these,
which we will replace with Smarty code in Listing 6-9.

CHAPTER 6 ■ STYLING THE WEB APPLICATION 185

9063Ch06CMP2 11/13/07 7:56 PM Page 185

■Note If you’re anything like me—a programmer rather than a designer—it can be useful to see a site
design statically before it is integrated into the application. Typically when I build a new web site or web
application, I work from either prebuilt HTML templates such as this or from a Photoshop design which I
then convert into static HTML with corresponding CSS.

Listing 6-8. The Complete HTML Code Used in Figure 6-2 (listing-6.8.html)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<title>Sample HTML Layout</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" href="/css/styles.css" type="text/css" media="all" />

</head>
<body>

<div id="header">
</div>

<div id="nav">

<li class="active">Home
Menu Item 1
Menu Item 2
Menu Item 3

</div>

<div id="content-container" class="column">
<div id="content">

<div id="breadcrumbs">
Home »
Sample HTML Layout

</div>

<h1>Sample HTML Layout</h1>

<p>
Center column

</p>
</div>

</div>

CHAPTER 6 ■ STYLING THE WEB APPLICATION186

9063Ch06CMP2 11/13/07 7:56 PM Page 186

<div id="left-container" class="column">
<div class="box">

Left column box 1
</div>

<div class="box">
Left column box 2

</div>
</div>

<div id="right-container" class="column">
<div class="box">

Right column box
</div>

</div>

<div id="footer">
Practical Web 2.0 Application Development With PHP, by Quentin Zervaas.

</div>
</body>

</html>

In this code, we first create the #header block, which is left empty. We will display the logo
in this block by using a CSS background image. Of course, you could choose to include the
logo here using an tag—I have left it blank here because we will be using this block to
include a “print-only” logo (which we will cover in the “Creating a Print-Only Style Sheet”
section in this chapter).

Next, we use an unordered list () to display the web site navigation. You could argue
that this list is in fact in order, so the tag may be used instead. In any case, the correct
semantics involve using an HTML list.

■Tip Using an unordered (or ordered) list lends itself to scalability very well. For example, if you were
using JavaScript and CSS to build a drop-down navigation system (one that expands the navigation on
mouseover), using nested tags would work perfectly. Additionally, if the user’s web browser doesn’t
render a JavaScript menu solution, they could easily navigate the site because the links would be structured
for them.

After defining the main content area, we populate the left and right columns. The content
that appears in these columns will be split up into separate boxes, so we give the divs within
these columns a class of .box to easily define that structure. We will define this style shortly in
the style sheet.

Let’s now take a look at how this markup is rendered in Firefox with no styles defined.
Figure 6-3 demonstrates how everything gets rendered from top to bottom exactly as it is
defined in the HTML. Additionally, you can see how the navigation is displayed horizontally,
which we will also fix in the CSS.

CHAPTER 6 ■ STYLING THE WEB APPLICATION 187

9063Ch06CMP2 11/13/07 7:56 PM Page 187

Figure 6-3. The web page design we will use for the web application before it has had styles
applied to it

Moving the HTML Markup into Smarty Templates
The next step in styling our web application is to integrate the HTML from Listing 6-8 into our
existing templates. This primarily involves modifying the header.tpl and footer.tpl files, but
there are also some minor changes that need to be made to other templates.

In this section, we will go over all of the changes required to integrate this design. The
steps are as follows:

• Copy the top half of the HTML file into header.tpl.

• Copy the bottom half of the HTML file into footer.tpl.

• Keep the dynamic variables in place in the header (namely the browser title, page title,
and breadcrumbs).

• Highlight the active section in the navigation based on a variable passed in from the
action templates, and modify the action templates to tell header.tpl which section to
highlight in the navigation.

■Note The “top half” of the design referred to in the preceding list is all markup prior to the content for the
body of each controller action, while the “bottom half” is all markup after the end of the controller action
content. In Listing 6-8, the top half is all code from the start of the file until the breadcrumbs (including the
breadcrumbs). Everything else inside the #content element will be defined in each action’s template.

CHAPTER 6 ■ STYLING THE WEB APPLICATION188

9063Ch06CMP2 11/13/07 7:56 PM Page 188

One other thing to note is that we don’t yet have content to place in either of the side
columns, so we will use the right column to display the details of the currently logged-in user,
and we will simply leave a place marker in the left column until these columns are populated.

If you haven’t done so already, copy the logo.gif and logo-print.gif files into the images
directory from the book’s source code. We will create the styles.css file that is loaded in the
header later in this chapter.

Modifying header.tpl
To make the necessary changes to header.tpl, we can just copy some of the HTML in Listing
6-8 into this file—from the beginning of the listing down to where the page heading is dis-
played. We then include the calls to {breadcrumbs} and {geturl} where appropriate.

Listing 6-9 shows the new version of header.tpl (in the ./templates directory). This ver-
sion loads the external style sheet and uses variables for the breadcrumbs and title unlike the
static values in Listing 6-8. This code should replace the code previously in the header.tpl file.

Listing 6-9. Integrating the Design into the Header Template (header.tpl)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>{$title|escape}</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" href="/css/styles.css" type="text/css" media="all" />

</head>
<body>
<div id="header">
</div>

<div id="nav">

<li{if $section == 'home'} class="active"{/if}>

Home

{if $authenticated}
<li{if $section == 'account'} class="active"{/if}>
Your Account

Logout

{else}
<li{if $section == 'register'} class="active"{/if}>
Register

<li{if $section == 'login'} class="active"{/if}>
Login

CHAPTER 6 ■ STYLING THE WEB APPLICATION 189

9063Ch06CMP2 11/13/07 7:56 PM Page 189

{/if}

</div>

<div id="content-container" class="column">
<div id="content">

<div id="breadcrumbs">
{breadcrumbs trail=$breadcrumbs->getTrail() separator=' » '}

</div>

<h1>{$title|escape}</h1>

There are a few things to notice in this template:

• The site navigation has been modified so the geturl plug-in is used to generate the
links, while the “Update Details” link has been removed (we will include this in the right
column in footer.tpl).

• The value of the $section variable is checked to determine which navigation item
should be highlighted. To highlight the item, the CSS class .active is applied. We must
define the $section variable when we load the header.tpl template.

• The breadcrumbs separator is specified as » (which has the entity name ») for a
slightly fancier look. Spaces must also be included on either side of this character.

• The “Logged in as…” information is removed. This will also move to the right column
(in footer.tpl).

• We no longer bother to check the $section variable for the logout link because after log-
ging out a user is directed right back to the login page.

Modifying footer.tpl
In order to finish integrating this template, we must add the corresponding section of markup
from Listing 6-8 to the site footer. Listing 6-10 shows the code that will replace the code in the
footer.tpl file (in the ./templates directory). Note that this code includes details about the
currently logged-in user in a box in the right column, and it includes a link to “Update details”.

Listing 6-10. Integrating the Design into the Site Footer (footer.tpl)

</div>
</div>

<div id="left-container" class="column">
<div class="box">
Left column placeholder

</div>
</div>

CHAPTER 6 ■ STYLING THE WEB APPLICATION190

9063Ch06CMP2 11/13/07 7:56 PM Page 190

<div id="right-container" class="column">
<div class="box">
{if $authenticated}
Logged in as
{$identity->first_name|escape} {$identity->last_name|escape}
(logout).
Update details.

{else}
You are not logged in.
Log in or
register now.

{/if}
</div>

</div>

<div id="footer">
Practical PHP Web 2.0 Applications, by Quentin Zervaas.

</div>
</body>

</html>

■Tip If you haven’t yet tried, you should be able to validate the generated markup with no warnings or errors
using the W3C validator at http://validator.w3.org. In fact, you could have done so prior to this chapter,
as we are developing standards-compliant code. It is important when developing your CSS and templates to
check the validity of both your HTML/XHTML and your CSS (using http://jigsaw.w3.org/css-validator),
as it is easy to accidentally put something in your code that breaks the validation. Chris Pederick’s Web Devel-
oper toolbar for Firefox (http://chrispederick.com/work/web-developer) has quick-access links to
validate HTML and CSS code.

Highlighting the Active Navigation Section
The new header.tpl in Listing 6-9 includes code to check the value of the $section variable to
determine which section to highlight. We must now update each of the controller action tem-
plates so each one defines the $section variable. This is done when including the header
template.

For example, to highlight the “Home” link, the following code would be used to include
header.tpl:

{include file='header.tpl' section='home'}

Note that we don’t use $ in front of section when using a variable name as the attribute value
in Smarty, but we do use it when referring to the variable in header.tpl.

Listing 6-11 shows the updated version of index.tpl, which now highlights the correspond-
ing entry in the main navigation. Note that there may be situations where no item is selected.

CHAPTER 6 ■ STYLING THE WEB APPLICATION 191

9063Ch06CMP2 11/13/07 7:56 PM Page 191

Listing 6-11. Highlighting the “Home” Link in the Header Template (index.tpl)

{include file='header.tpl' section='home'}

Web site home

{include file='footer.tpl'}

■Note Try updating each of the other controller action templates so the correct section is highlighted.
You can check what the value needs to be by checking the header.tpl file. Specifically, you will need to
update each of the files in the ./templates/account directory to use {include file='header.tpl'
section='account'} rather than {include file='header.tpl'}. This is fairly simple to test, since you
only need to visit each page and check that the navigation is highlighted properly. Alternatively, you can
download the source code for this chapter.

Constructing the CSS
Now that we’ve integrated the HTML markup into our Smarty templates, we can incorporate
the CSS so the page displays nicely as the three-column layout we discussed. All styles will
be stored in a file called styles.css, which will reside in the css directory of the web site
(/var/www/phpweb20/htdocs/css).

■Note There’s no particular reason for choosing this directory, other than that it keeps the files organized.
You may find that an internal section of your web site may require its own CSS file—for example, it might
require a large number of custom styles that you don’t want to include in the main site’s CSS file (why slow
down the loading of the home page with extra styles that aren’t required?). Creating a separate directory for
your CSS files will help you keep the files organized, just as you might organize images.

Specifying Media Types and Loading the CSS File
Later in this chapter we will look at creating a print-only style sheet, so we must keep in mind
that we need to provide styles for different media types. There are two different ways of telling
the browser which media type is being used: the @media rule and the media attribute (used
when loading the CSS file with a <link> tag). For our application, we will use the @media CSS
rule, but we will look at them both here first.

■Note I’m not necessarily advocating using @media over loading a separate style sheet with <link>;
however, using @media is my personal preference in most cases, since it means fewer files are loaded when
a user visits the site, reducing page-load time and server overhead.

CHAPTER 6 ■ STYLING THE WEB APPLICATION192

9063Ch06CMP2 11/13/07 7:56 PM Page 192

To load separate style sheets for the screen and for printing, you could use the following
HTML code:

<link rel="stylesheet" href="screen.css" type="text/css" media="screen" />
<link rel="stylesheet" href="print.css" type="text/css" media="print" />

Alternatively, if you wanted to use the @media rule, you could load a single style sheet and
separate the media types within that file. First, you would load the file specifying media="all"
so this style sheet would be used regardless of what type of device is viewing the page:

<link rel="stylesheet" href="styles.css" type="text/css" media="all" />

Next, you would use the @media rule to separate the media types. Within styles.css, you
would use the following:

.some-css-item { color : #000; }

@media screen {
.some-css-item { color : #f00; }

}

@media print {
.some-css-item { color : #00f; }

}

In this example, the global styles for .some-css-item would use the color black, while red
(#f00) would be used for screen, and blue (#00f) would be used when printing.

Other media types you might use include aural (for screen-reading software) and hand-
held (for handheld devices, such as a phone with a small screen and limited capabilities).

■Tip According to the Apple Developer Connection web site at http://developer.apple.com/iphone
/designingcontent.html, you can specify a style sheet specifically for the Apple iPhone by using the
only keyword in combination with the screen media type. Other devices will ignore the only keyword and
therefore not use the style sheet. For example, to load the iphone.css file only for people viewing on an
iPhone you can use <link rel="stylesheet" href="iphone.css" type="text/css" media="only
screen and (max-device-width: 480px)" />.

Creating the Application CSS
The next step is to create the first CSS code in our web application. In this section I will briefly
describe the custom CSS that is used. The Holy Grail technique mentioned earlier is explained
by Matthew Levine at http://www.alistapart.com/articles/holygrail. The entire CSS file is
listed at the end of this section so you can see how it all fits together.

Creating the Three-Column Layout
Since the Holy Grail article describes how the fluid three-column layout works, I will not
describe those techniques here. The important thing to note is that we are setting both of the

CHAPTER 6 ■ STYLING THE WEB APPLICATION 193

9063Ch06CMP2 11/13/07 7:56 PM Page 193

side columns to be 300 pixels wide. If you want to use a different size, you will need to modify
the values in the code accordingly.

body { margin : 0; padding : 0 300px; min-width : 600px; }

#header, #footer, #nav { margin : 0 -300px 0 -300px; }

.column { float : left; position : relative; }
#content-container { width : 100%; padding : 0; }
#left-container { width : 300px; margin-left : -100%; right : 300px; }
#right-container { width : 300px; margin-right : -300px; }

#footer { clear : both; }

* html #left-container { left : 300px; }

If you were to view the HTML code from Listing 6-8 using only the preceding CSS, the
display in Firefox would be similar to the screen in Figure 6-4. The bottom half of this figure
shows the Firebug console as it integrates into Firefox.

■Tip Firebug is arguably the most powerful web development plug-in available for Firefox. While the Web
Developer toolbar has been around for longer and is also very useful, the CSS and DOM inspection capabili-
ties, as well as the ability to debug subrequests made with XMLHttpRequest, make it a must-have plug-in.
You can download Firebug from http://www.getfirebug.com.

Figure 6-4. Using Firebug to see the layout properties of the three-column layout

CHAPTER 6 ■ STYLING THE WEB APPLICATION194

9063Ch06CMP2 11/13/07 7:56 PM Page 194

CHAPTER 6 ■ STYLING THE WEB APPLICATION 195

Styling the Page Header
In Figure 6-2, there was a logo displayed in a header block that hasn’t appeared in subsequent
figures. To include this logo, we must set the background to use an image in the CSS. This
allows us to include other code in #header as we need. For instance, when we implement
printer-friendly styles later in this chapter, we will include a printer-friendly logo in this area,
since CSS backgrounds typically aren’t included when people print web pages.

Here is the code used to style the #header div:

#header {
background : url(../images/logo.gif) no-repeat 5px center #f22;
height : 45px;
border-bottom : 1px solid #922;

}

We first set the background properties. The path used in url() is relative to the CSS file,
not to the HTML document that loads the CSS file. By using no-repeat, we tell the browser to
include the background image only once. The image is also positioned 5 pixels from the left of
the div and centered vertically. Finally, the background color is set to a shade of red (to match
the background color of logo.gif).

Next, we set the height of the div to 45 pixels, which is slightly taller than the image. Since
#header is empty, we must give it a height so the browser will make it big enough for the back-
ground image to appear.

Finally, we add a dark red border to the bottom of the div. We will also be using this color
when we join the navigation to the header.

Styling the Tabbed Navigation Bar
The navigation bar consists of horizontal tabs created as an unordered list. In order to make
the unordered list horizontal, we set the display property of list items () to be inline. Addi-
tionally, we need to consider browser defaults for unordered lists: Internet Explorer uses a
margin, and Firefox uses padding on the left of each element. We remove this by setting both
the padding and margin to 0. Additionally, each list item will display a bullet point, which we
can remove by using list-style : none.

■Tip A useful way to deal with browsers that have different default styles is to use a “reset” style sheet.
This is an extra style sheet that you load in your pages to give all elements the same style across all
browsers (where relevant). The Yahoo Developer Network provides a reset style sheet that you can use
(http://developer.yahoo.com/yui/reset), although Eric Meyer has developed his own, which he
based on Yahoo’s. You can find his latest reset style sheet at http://meyerweb.com/eric/thoughts/
2007/05/01/reset-reloaded, or his original article at http://meyerweb.com/eric/thoughts/2007/
04/12/reset-styles. One thing to be aware of is that using an extra style sheet may result in extra page-
load time. You may prefer to just include your own reset styles as you need them to keep your CSS file
smaller.

9063Ch06CMP2 11/13/07 7:56 PM Page 195

The following code styles the navigation bar. This code defines not only the layout of
the navigation (making the list horizontal), but also the style of links in the navigation. The
.active class highlights the navigation item that represents the section of the user’s current
page. We use this style when we check for the $section variable in header.tpl.

#nav {
margin-top : -1px;
margin-bottom : 20px;
font-size : 0.9em;
text-transform : uppercase;

}

#nav ul {
margin : 0;
padding : 4px 0;
text-align : center;

}

#nav li {
list-style : none;
padding : 0;
margin : 0;
display : inline;

}

#nav a {
background : #922;
color : #aaa;
text-decoration : none;
padding : 4px 8px;
text-align : center;
border : 1px solid #922;
border-top : none;
margin : 0 3px;

}

#nav a:hover {
color : #fff;
text-decoration : underline;

}

#nav li.active a {
color : #fff;
background : #f22;
font-weight : bold;

}

CHAPTER 6 ■ STYLING THE WEB APPLICATION196

9063Ch06CMP2 11/13/07 7:56 PM Page 196

Setting the Global Styles
In addition to setting styles for specific containers or areas on a page, we must also define a set
of global styles. They are called global styles because each selector applies to every occurrence
in a page of its respective element(s).

The following code sets the heading style, the text font and size, and the style for links.
Take the img style as an example. Every time an image is used in the page, it will have no bor-
der—even if it is hyperlinked. Each global style can be overridden on a case-by-case basis.

body {
color : #333;
background : #fafafa;
font-family : Verdana, Arial, Helvetica, sans-serif;
font-size : 0.75em;

}

h1 { font-size : 1.7em; margin-top : 0; }
h2 { font-size : 1.5em; }
h3 { font-size : 1.3em; }
h4 { font-size : 1.1em; }
h5 { font-size : 1.0em; }
h1, h2, h3, h4, h5 { font-family : Georgia, serif; color : #f22; }

img { border : 0; }
form { margin : 0; }

a { color : #f22; background : none; text-decoration : underline; }
a:hover { color : #fff; background : #f22; text-decoration : none; }

In this code, we set the base font size to 0.75em. While the specific value used here isn’t
important, the fact that we use ems is. A single unit of em (1 em) is the width of the “m”
character in the current font family and size. In other words, you could interpret a font-size
directive inside the body as saying “set the font size to 75 percent of the browser’s default size.”
Using ems allows the browser to scale fonts as required (most noticeably when a user selects
“increase font size” or “decrease font size” in their browser).

■Note We could also use ems instead of pixels for other measurements in the style sheet, such as for the
column widths or border sizes. However, I have chosen not to in order to have more precise control over
the on-screen layout.

Styling the Page Content
The remaining page areas to be styled are the content areas of the three columns. This
includes creating the .box class, since all side-column content will appear inside various
divs using this style.

CHAPTER 6 ■ STYLING THE WEB APPLICATION 197

9063Ch06CMP2 11/13/07 7:56 PM Page 197

The following styles format the various content areas of the page, including the page
footer and the breadcrumb trail:

#content-container { background : #fff; }

#content {
border : 1px solid #eee;
padding : 10px;
line-height : 1.8em;

}

#breadcrumbs {
font-size : 0.8em;
color : #ccc;

}

#breadcrumbs a { color : #aaa; }
#breadcrumbs a:hover { background : #aaa; color : #fff; }

#left-container .box, #right-container .box {
margin : 0 10px 10px 10px;
padding : 10px;
border : 1px solid #eee;
background : #fff;
font-size : 0.9em;
line-height : 1.6em;

}

#footer {
color : #999;
font-size : 0.8em;
padding : 10px;
text-align : center;

}

This concludes the selectors for setting up global styles and styling the screen media
type according to the design in Figure 6-2. We will add further elements as we require them
throughout the book (including later in this chapter for styling forms), but the base styles
defined here will suffice in most situations.

Creating a Print-Only Style Sheet
Many web sites offer a “print this page” link on their pages. Traditionally, this will link to
another page on the site that repeats the content while stripping out all of the elements that
have no relevance when printed (such as site navigation or a search form). By using print-only
style sheets, we can mimic this behavior without the need for a secondary page of the same
content. All we need to do is define styles for the print media type, as we saw earlier.

CHAPTER 6 ■ STYLING THE WEB APPLICATION198

9063Ch06CMP2 11/13/07 7:56 PM Page 198

Before we do this, we should at least compare the two methods: using a secondary page as
opposed to using a print style sheet. The advantages of using a print style sheet are as follows:

• The user doesn’t need to navigate to another page in order to print content.

• You, as the developer, don’t need to code in extra functionality to serve a stripped-down
page (you will have to create a style sheet for this page anyway).

• The server does not have to serve an extra page, reducing server load and bandwidth use.

• Your web site statistics will be more accurate (although this isn’t much of a problem,
since you could always filter these extra entries out).

On the other hand, the advantages of using a secondary print page instead of a print style
sheets are as follows:

• It will make more sense to users, as they will be able to see that the content is indeed
stripped down.

• Users are more used to this method.

• Users might want to print the page exactly as it appears on screen, but a print style
sheet won’t allow them to do this (unless they use an advanced tool, which will allow
them to block certain style sheets).

• Users probably won’t rely on there being a print style sheet, because most developers
don’t provide one.

Note that the advantages of using secondary print pages stem from the fact that people
are more used to using them. Ultimately, you must decide how you want to do this; since this
is a book on Web 2.0 development, we will follow the CSS standard and implement code as it
was intended. After all, adhering to standards was one of the aspects of Web 2.0 I defined in
Chapter 1.

Modifying the Screen Style Sheet
There are essentially two key things we want to do in creating a print style sheet for our web
application. The first is to hide elements that don’t need to be printed, which in this case
means the navigation and left and right columns. The second is to add a header that will be
printed on all pages.

Typically, web browsers will strip out background colors and images when printing pages
(users can generally change this setting, but most won’t). To deal with this, we will place a
printer-friendly image in our HTML. This forces the browser to print the logo; however, we
must then alter the screen style sheet so this image isn’t normally displayed on the screen.

Listing 6-12 shows how we can add the printer-friendly logo to the header.tpl template.

Listing 6-12. Including a Printer-Friendly Logo in the Header Template (header.tpl)

<!-- // ... other code -->

<div id="header">

CHAPTER 6 ■ STYLING THE WEB APPLICATION 199

9063Ch06CMP2 11/13/07 7:56 PM Page 199

</div>

<!-- // ... other code -->

We then just need to add a rule to the screen media-type section of the style sheet that hides
this logo when the user views the page in their browser.

We also need to add rules to the print media-type section of the style sheet to hide the
elements that we don’t want to print (the side columns and the navigation). The following
code shows how this is achieved (ignoring the remainder of the style sheet for now).

@media screen {
#header img { display : none; }

}

@media print {
#nav, #left-container, #right-container { display : none; }

}

Figure 6-5 shows how the page will look if you use the print preview tool in Firefox, com-
pared to how the page normally looks in the browser. As an exercise, you may want to add
extra styles to the print style sheet so the printable page has a nicer layout.

Figure 6-5. Comparing the screen and print styles of the same page

CHAPTER 6 ■ STYLING THE WEB APPLICATION200

9063Ch06CMP2 11/13/07 7:56 PM Page 200

As a final note on this topic, you can easily add sections you want to include when print-
ing, yet don’t want to include when viewed on screen. This is just the opposite of how we hid
the navigation and side columns; simply include them in the HTML markup, and then hide
them in the screen section of the style sheet. This is effectively the same thing we did with the
print-only logo.

The Full Application Style Sheet
Now that we have looked at all of the sections that make up the style sheet (including global
styles, screen-only styles, and print-only styles), we can see how it all pieces together. Listing
6-13 shows the full CSS file with all the styles we have looked at in this chapter. This code
should be written to the styles.css file in ./htdocs/css.

Listing 6-13. The CSS Used to Implement the Three-Column Layout (styles.css)

@media screen {

/**
* Global elements
*/

body {
color : #333;
background : #fafafa;
font-family : Verdana, Arial, Helvetica, sans-serif;
font-size : 0.75em;

}

h1 { font-size : 1.7em; margin-top : 0; }
h2 { font-size : 1.5em; }
h3 { font-size : 1.3em; }
h4 { font-size : 1.1em; }
h5 { font-size : 1.0em; }
h1, h2, h3, h4, h5 { font-family : Georgia, serif; color : #f22; }

img { border : 0; }
form { margin : 0; }

a { color : #f22; background : none; text-decoration : underline; }
a:hover { color : #fff; background : #f22; text-decoration : none; }

/**
* Setup the 3 column layout
*/

CHAPTER 6 ■ STYLING THE WEB APPLICATION 201

9063Ch06CMP2 11/13/07 7:56 PM Page 201

body { margin : 0; padding : 0 300px; min-width : 300px; }

#header, #footer, #nav { margin : 0 -300px 0 -300px; }

.column { float : left; position : relative; }
#content-container { width : 100%; padding : 0; }
#left-container { width : 300px; margin-left : -100%; right : 300px; }
#right-container { width : 300px; margin-right : -300px; }

#footer { clear : both; }

* html #left-container { left : 300px; }

/**
* Style the main page areas
*/
#header {

background : url(../images/logo.gif) no-repeat 5px center #f22;
height : 45px;
border-bottom : 1px solid #922;

}
#header img { display : none; }

#content-container { background : #fff; }

#content {
border : 1px solid #eee;
padding : 10px;
line-height : 1.8em;

}

#breadcrumbs {
font-size : 0.8em;
color : #ccc;
margin-bottom : 10px;

}

#breadcrumbs a { color : #aaa; }
#breadcrumbs a:hover { background : #aaa; color : #fff; }

#left-container .box, #right-container .box {
margin : 0 10px 10px 10px;
padding : 10px;
border : 1px solid #eee;
background : #fff;

CHAPTER 6 ■ STYLING THE WEB APPLICATION202

9063Ch06CMP2 11/13/07 7:56 PM Page 202

font-size : 0.9em;
line-height : 1.6em;

}

#footer {
color : #999;
font-size : 0.8em;
padding : 10px;
text-align : center;

}

/**
* Tabbed navigation
*/

#nav {
margin-top : -1px;
margin-bottom : 20px;
font-size : 0.9em;
text-transform : uppercase;

}

#nav ul {
margin : 0;
padding : 4px 0;
text-align : center;

}

#nav li {
list-style : none;
padding : 0;
margin : 0;
display : inline;

}

#nav a {
background : #922;
color : #aaa;
text-decoration : none;
padding : 4px 8px;
text-align : center;
border : 1px solid #922;
border-top : none;
margin : 0 3px;

}

CHAPTER 6 ■ STYLING THE WEB APPLICATION 203

9063Ch06CMP2 11/13/07 7:56 PM Page 203

#nav a:hover {
color : #fff;
text-decoration : underline;

}

#nav li.active a {
color : #fff;
background : #f22;
font-weight : bold;

}
}

@media print {

/**
* Elements to hide
*/
#nav, #left-container, #right-container { display : none; }

}

Styling the Application Web Forms
In Chapter 4 we created three forms for the user system: a registration form, a login form, and
a fetch-password form. Since forms play such an important part in interactive web sites, we
must make our forms easy for users to understand and use. Let’s look at how to style these
forms. Each form should meet the following requirements:

• Elements must be clearly labeled.

• Errors that occur should be highlighted.

• A submit button must be included.

In Chapter 4 we used a Smarty template called error.tpl to output errors. This template
outputs a div regardless of whether an error has occurred, since this allows us to use it as a
placeholder for JavaScript-generated errors. As such, we must hide this div if no error has
occurred.

First, we style the .error div. This div will have a red background with white text so it
stands out. Additionally, we will add a rule so that if the error div occurs inside the .row class
(the container we use to hold each form element), we will shrink the font slightly.

div.error {
background : #a00;
padding : 5px;
margin : 5px 0;
color : #fff;

}

CHAPTER 6 ■ STYLING THE WEB APPLICATION204

9063Ch06CMP2 11/13/07 7:56 PM Page 204

form .row div.error {
font-size : 0.8em;
line-height : 1em;

}

Next, we will style the .row class, which holds each element. We will add a margin to the
top and bottom of each .row, and then float the label left (allowing us to set its display type to
block instead of the default of inline) and give it a width of 150px. If you set the width when its
display type is inline, this will be ignored.

form .row { margin : 10px 0; clear : both; }
form .row label {

width : 150px;
float : left;
display : block;
font-weight : bold;

}

Next, we set the default widths of text inputs, using the following CSS:

form .row input[type=text] { width : 230px; }
form .row input[type=password] { width : 230px; }

Be aware that Internet Explorer 6 does not understand CSS selectors based on element
attribute values (although Internet Explorer 7 does). An alternative would be to simply use
.row input, but this would affect check boxes and radio buttons (and any other type of
<input>). The other alternative is to explicitly set a class name on the input, and then style
that class accordingly.

Finally, we will set the CAPTCHA image to align with the other input elements by setting
its left margin, and then we’ll create a simple style to hold submit buttons.

form .captcha { margin-left : 150px; }
form .submit {

padding : 5px;
margin-top : 10px;
background : #eee;

}

Listing 6-14 shows how this new CSS code fits into the styles.css file. I have omitted the
parts not relevant to display forms.

Listing 6-14. The Application Style Sheet Including Styling of Forms and Errors (styles.css)

@media screen {
/* ... other code */

/**
* Forms
*/

CHAPTER 6 ■ STYLING THE WEB APPLICATION 205

9063Ch06CMP2 11/13/07 7:56 PM Page 205

div.error {
background : #a00;
padding : 5px;
margin : 5px 0;
color : #fff;

}

form .row div.error {
font-size : 0.8em;
line-height : 1em;

}

form .row { margin : 10px 0; clear : both; }

form .row label {
width : 150px;
float : left;
display : block;
font-weight : bold;

}

form .row input[type=text] { width : 230px; }
form .row input[type=password] { width : 230px; }

form .captcha { margin-left : 150px; }

form .submit {
padding : 5px;
margin-top : 10px;
background : #eee;

}

/* ... other code */
}

Note that these are all somewhat generic styles, and while they will work fine for most
situations, they may not suit every type of form you create—you may need to create new form
styles in some situations. However, these styles do work well for the registration form, the
login form, and the fetch-password form, as you can see in Figure 6-6.

CHAPTER 6 ■ STYLING THE WEB APPLICATION206

9063Ch06CMP2 11/13/07 7:56 PM Page 206

Figure 6-6. The registration form, now styled and showing errors usefully

Loading Prototype and Scriptaculous
In Chapter 5 we took a look at the Prototype and Scriptaculous JavaScript libraries, which we
will make heavy use of in later chapters. Since the examples used in that chapter were inde-
pendent of the application we are developing, we did not actually load these libraries for our
application. We will now update the header.tpl template to automatically load these libraries
in the <head> section of the template. For more discussion on loading each of these libraries,
refer to Chapter 5.

Listing 6-15 shows the lines we will add to header.tpl to load Prototype and Scriptaculous.
The lines not listed here that we added earlier in this chapter remain the same.

Listing 6-15. Loading Prototype and Scriptaculous Automatically (header.tpl)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<title>{$title|escape}</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" href="/css/styles.css" type="text/css" media="all" />

CHAPTER 6 ■ STYLING THE WEB APPLICATION 207

9063Ch06CMP2 11/13/07 7:56 PM Page 207

<script type="text/javascript" src="/js/prototype.js"></script>
<script type="text/javascript"

src="/js/scriptaculous/scriptaculous.js"></script>

<!-- // ... other code -->

Implementing Client-Side Form Validation
Now that we have looked at how Prototype and Scriptaculous work and have added styles to
the site, we can revisit the user registration form. In this section, we will add client-side form
validation to the user registration form using JavaScript and Ajax. Adding client-side valida-
tion improves usability since the user will receive feedback about any invalid form values
more quickly.

Specifically, we will check that each of the form fields contain valid values when the user
clicks the submit button to register. If everything appears correct, we will allow the form to be
sent to the server. Note that we will still have our server-side validation in place (as imple-
mented in Chapter 4), so even if the user doesn’t have JavaScript enabled, they cannot
circumvent any of the data checks.

Rather than duplicating the server-side validation we already have in place, we will make
some small changes to the existing code so it can be used for Ajax validation in addition to the
normal registration. The changes we will implement include the following:

• Modifying the FormProcessor_UserRegistration class so we have the option of validat-
ing form data without actually creating the user if no errors occur

• Changing the way the registerAction() method of AccountController works so that if
the action is requested via Ajax, a JSON response is sent containing any errors that
occurred

• Creating a JavaScript class to trigger the form validation, as well as submitting the form
once all values have been verified

In actual fact, the form validation we are implementing here still uses the server in that it
submits the data to the server for validation. We could add simple validation (such as checking
for empty fields) without communicating with the server, but more complicated checks such
as determining whether or not a username is already in use require server interaction.
Although the client-side validation still uses the server for validation, it is quicker than doing a
normal post-back since the page doesn’t need to be reloaded.

■Note In this particular example, all validation is done using the FormProcessor_UserRegistration
class. The client-side code we will implement is really just a proxy to this class. This means we can easily
expand the form-processing capabilities in the future by modifying FormProcessor_UserRegistration—
the JavaScript we develop in this section will scale automatically.

CHAPTER 6 ■ STYLING THE WEB APPLICATION208

9063Ch06CMP2 11/13/07 7:56 PM Page 208

Adding JSON Support to CustomControllerAction
In Chapter 5 we briefly looked at JSON (JavaScript Object Notation), which can be used to
easily send data between client and server in Ajax requests. Implementing this form validator
gives us our first chance of using JSON in this application.

In order to return JSON data from controller actions, we will add a new method to the
CustomControllerAction class. Since we need to send a certain content type HTTP header for
JSON data, it is much simpler to add this method once rather than sending the header manu-
ally each time we need to send JSON data.

Listing 6-16 shows the sendJson() method we will add to the CustomControllerAction.php
file in ./include.

Listing 6-16. A Utility Method to Send JSON Data from Controller Actions
(CustomControllerAction.php)

<?php
class CustomControllerAction extends Zend_Controller_Action
{

// ... other code

public function sendJson($data)
{

$this->_helper->viewRenderer->setNoRender();

$this->getResponse()->setHeader('content-type', 'application/json');
echo Zend_Json::encode($data);

}
}

?>

The first thing that we do here is disable autorendering of the view, since we’re not
outputting with a template. For more discussion of how the automatic view rendering in
Zend_Controller works, refer to Chapter 2.

Next, we must send the appropriate content-type header. By default, PHP will send a con-
tent type of text/html, which will work in this case, but it is not technically correct. According
to RFC 4627 (which can be found at http://www.ietf.org/rfc/rfc4627.txt), the official MIME
type for JSON data is application/json.

Finally, we can call Zend_Json::encode() to encode the $data array.

Modifying the Form Processor
The next step in implementing client-side form validation is to add an extra option to the
FormProcessor_UserRegistration class so form data can be checked without actually creating
a new user account. We do this so the JavaScript code can determine whether the form data is
correct before submitting the actual form.

To achieve this, we will add a new method to this class called validateOnly(). If this
method is called with an argument value of true, the form will be processed, but even if there
are no errors, the new user database row will not be created.

CHAPTER 6 ■ STYLING THE WEB APPLICATION 209

9063Ch06CMP2 11/13/07 7:56 PM Page 209

Listing 6-17 shows the changes we need to make to the UserRegistration.php file in the
./include/FormProcessor directory.

Listing 6-17. Adding the Ability to Only Validate the Registration Form (UserRegistration.php)

<?php
class FormProcessor_UserRegistration extends FormProcessor
{

protected $db = null;
public $user = null;
protected $_validateOnly = false;

public function __construct($db)
{

// ... other code
}

public function validateOnly($flag)
{

$this->_validateOnly = (bool) $flag;
}

public function process(Zend_Controller_Request_Abstract $request)
{

// ... other code

// if no errors have occurred, save the user
if (!$this->_validateOnly && !$this->hasError()) {

$this->user->save();
unset($session->phrase);

}

// return true if no errors have occurred
return !$this->hasError();

}
}

?>

Modifying the Registration Controller Action
In order to make use of the validation-only mode of the form processor, as well as to return
a JSON response of any errors, we must now make some changes to the registerAction()
method of the AccountController class. If the request was submitted using Ajax, we want the
method just to validate the form and return any errors by calling the sendJson() method we
just created. Conversely, if the request wasn’t submitted using Ajax, we want this method to
behave as normal—that is, to process the user registration and then redirect the confirmation
page once complete.

CHAPTER 6 ■ STYLING THE WEB APPLICATION210

9063Ch06CMP2 11/13/07 7:56 PM Page 210

Detecting Ajax Requests
Using Zend_Controller we can easily determine whether a request came from an Ajax subre-
quest by calling the isXmlHttpRequest() method on the request object that is available inside
controller actions. Internally, this method looks for the presence of the X-Requested-With
HTTP header. If the value of this header is XMLHttpRequest, this method returns true.

This header is not automatically set when using XMLHttpRequest to initiate HTTP
subrequests, but Prototype will set this header automatically. This means the Prototype
Ajax.Request class is compatible with the isXmlHttpRequest() method from the Zend_
Controller_Request_Http class.

Returning Form Errors Using JSON
Now that you know how to detect Ajax requests, we can make the necessary changes to the
registerAction() method in the AccountController class. If the request was initiated using
XMLHttpRequest, we will call the validateOnly() method we just implemented and send back
any errors using JSON. Note that we can call the getErrors() method on the form processor to
retrieve an array of all errors (this will be an empty array if there are no errors).

Listing 6-18 shows the changes to the AccountController.php file in ./include/Controllers.

Listing 6-18. Adding Form Validation for Ajax Requests (AccountController.php)

<?php
class AccountController extends CustomControllerAction
{

// ... other code

public function registerAction()
{

$request = $this->getRequest();

$fp = new FormProcessor_UserRegistration($this->db);
$validate = $request->isXmlHttpRequest();

if ($request->isPost()) {
if ($validate) {

$fp->validateOnly(true);
$fp->process($request);

}
else if ($fp->process($request)) {

$session = new Zend_Session_Namespace('registration');
$session->user_id = $fp->user->getId();
$this->_redirect($this->getUrl('registercomplete'));

}
}

if ($validate) {
$json = array(

CHAPTER 6 ■ STYLING THE WEB APPLICATION 211

9063Ch06CMP2 11/13/07 7:56 PM Page 211

'errors' => $fp->getErrors()
);
$this->sendJson($json);

}
else {

$this->breadcrumbs->addStep('Create an Account');
$this->view->fp = $fp;

}
}

// ... other code
}

?>

To gain an understanding of what the return JSON data may look like, let’s look at a quick
example. According to the FormProcessor_UserRegistration class, if the user enters a user-
name that is already in use, the following line is executed:

$this->addError('username', 'The selected username already exists');

If this were the only error to occur, the following JSON data would be generated:

{"errors":{"username":"The selected username already exists"}}

This means that if you assigned this JSON data to a JavaScript variable called json, you
could access the error using json.errors.username, like this:

var json = {
"errors" : {

"username" : "The selected username already exists"
}

}

alert(json.errors.username);

Creating the JavaScript Form Validator
Now that we have added the necessary PHP code to implement client-side validation, we can
implement the client-side portion of code. To do this, we will create a JavaScript class called
UserRegistrationForm to trigger validation of the form and to display errors. Then we will
attach this class to the existing HTML form.

This class essentially performs the following steps:

1. Observes the existing HTML form so that when it is submitted, the JavaScript valida-
tion is triggered.

2. Clears any existing errors that are being displayed (just in case the user already sub-
mitted the form).

3. Submits the form data to the server for validation using Ajax.

CHAPTER 6 ■ STYLING THE WEB APPLICATION212

9063Ch06CMP2 11/13/07 7:56 PM Page 212

4. Accepts the response, which contains any errors that occurred.

• If there are no errors, tells the browser to submit the form normally.

• If there are errors, loops over them and displays each one on the form.

Because all of the error containers are already in place on the form, it is a simple matter to
write the error message to the error container and then call the show() method on it (this is a
method Prototype adds to all HTML elements, as we saw in Chapter 5). For more discussion of
how to create JavaScript classes using Prototype, refer to Chapter 5.

Initializing the UserRegistrationForm JavaScript Class
To begin this class, we will first declare the class and then implement its constructor (the
initialize() method). In this constructor, we will store the form as a property of the class,
and then observe the onsubmit event on it. We’ll complete the constructor by calling the
resetErrors() method (which we will look at next) to ensure no errors are being shown.

Listing 6-19 shows the declaration and constructor of the UserRegistrationForm class.
This code should be written to a file called UserRegistrationForm.class.js in the ./htdocs/js
directory.

Listing 6-19. Initializing the Registration Form Validation Class (UserRegistrationForm.class.js)

UserRegistrationForm = Class.create();

UserRegistrationForm.prototype = {

form : null,

initialize : function(form)
{

this.form = $(form);
this.form.observe('submit', this.onSubmit.bindAsEventListener(this));

this.resetErrors();
},

Hiding Form Errors
Next, we will implement a utility method to help us clear any error messages. Whenever the
form is submitted, we want to call this method to clear errors from any previous attempt—if a
user attempts to submit the form multiple times, a different set of errors may occur. Since all
errors on the form are contained within elements that have the .error class, we can simply
find all of those elements and hide them.

Listing 6-20 shows the code we need to add to UserRegistrationForm.class.js to clear
all errors. This code first uses the Prototype getElementsBySelector() method to find the
elements and then calls the invoke() enumerator method to hide each of them.

CHAPTER 6 ■ STYLING THE WEB APPLICATION 213

9063Ch06CMP2 11/13/07 7:56 PM Page 213

Listing 6-20. Clearing All Form Errors with resetErrors() (UserRegistrationForm.class.js)

resetErrors : function()
{

this.form.getElementsBySelector('.error').invoke('hide');
},

Displaying Form Errors
To complement the hiding of form errors, we also need the ability to show errors. We will
implement the showError() method, which takes the name of the error’s form field as the first
argument and the error message as the second argument.

The biggest challenge in this method is to locate the error container that corresponds to
the given form field. To find this element, we use the Prototype DOM traversal functions (up()
and down()) to locate the element. We make the assumption that the error container is within
the same parent element as the form input. Therefore, we can find the parent element of the
form element and look within that parent for an element with the class name .error.

Listing 6-21 shows the code for the showError() method, which also goes in
UserRegistrationForm.class.js.

Listing 6-21. Writing the Error Message to a Form Element’s Error Container
(UserRegistrationForm.class.js)

showError : function(key, val)
{

var formElement = this.form[key];
var container = formElement.up().down('.error');

if (container) {
container.update(val);
container.show();

}
},

Handling the Form Submission
In Listing 6-19 we observed the onsubmit event on the user registration form. This means that
when the form is submitted, the onSubmit() method in the UserRegistrationForm class is
called.

The goal of onSubmit() is to initiate an Ajax request that submits the form data to the
registerAction() method of the AccountController class. Since this request will be initiated
using Ajax, the changes we made in Listing 6-18 will come into play (that is, processing the
form but not creating the user if there are no errors).

The onSubmit() method begins by calling Event.stop(). This means that the browser
won’t submit the form as usual once this method has been called. This allows us to control
the submission of the form (we will submit it once we ensure no errors have occurred in the
form). Additionally, we make a call to resetErrors() so that any errors from a previous sub-
mission attempt are removed.

CHAPTER 6 ■ STYLING THE WEB APPLICATION214

9063Ch06CMP2 11/13/07 7:56 PM Page 214

Listing 6-22 shows the code for the onSubmit() method in the
UserRegistrationForm.class.js file.

Listing 6-22. Submitting the Form Data for Validation via Ajax (UserRegistrationForm.class.js)

onSubmit : function(e)
{

Event.stop(e);

var options = {
parameters : this.form.serialize(),
method : this.form.method,
onSuccess : this.onFormSuccess.bind(this)

};

this.resetErrors();
new Ajax.Request(this.form.action, options);

},

We make use of the original form method and action based on the values in the HTML
code. This means that if we ever change the URL for the registration form, we don’t need to
make any changes to this JavaScript code.

Additionally, we can easily scale the form, since we call the serialize() method on it to
retrieve all form values. This method is provided by Prototype.

Handling the Form Validation Response
In Listing 6-22 we specified that a method called onFormSuccess() would be used to handle the
response from the form validation. In this JSON data, we are expecting an array called errors
that holds all of the errors that occurred in the form validation. We can decode this data using
the evalJSON() method.

If this array contains one or more values, then an error has occurred. In that case, we
must loop over each of these errors and call showError() for each error. Note that we also must
look for the first element within the form with the class .error, since we have a global error
message container at the top of the form (as discussed in Chapter 4). This line of code in our
JavaScript makes this global error message appear.

If the errors array is empty, we can assume the form values were all valid and tell the
browser to submit the form by calling the submit() method on the form element.

Listing 6-23 shows the code for the onFormSuccess() method, and the closing of the
UserRegistrationForm class.

Listing 6-23. Handling the Form Validation Response (UserRegistrationForm.class.js)

onFormSuccess : function(transport)
{

var json = transport.responseText.evalJSON(true);
var errors = $H(json.errors);

if (errors.size() > 0) {

CHAPTER 6 ■ STYLING THE WEB APPLICATION 215

9063Ch06CMP2 11/13/07 7:56 PM Page 215

this.form.down('.error').show();
errors.each(function(pair) {

this.showError(pair.key, pair.value);
}.bind(this));

}
else {

this.form.submit();
}

}
};

■Note When calling each() on the errors array, we call bind() on the function so this refers to the
UserRegistrationForm object. For further discussion on binding JavaScript class methods using Proto-
type, refer to Chapter 5.

Loading the UserRegistrationForm Class
Finally, we must make use of the JavaScript class we just implemented. To do so, we will load
the JavaScript file in the registration form template and then instantiate the class. Since this
class relies on Prototype, make sure you have added the code to load prototype.js as
instructed earlier in this chapter.

Listing 6-24 shows the changes to register.tpl in ./templates/account. In addition to
loading the JavaScript, we also give an ID to the form so we can refer to it when instantiating
the UserRegistrationForm class.

Listing 6-24. Loading and Instantiating the Form Validation Class (register.tpl)

{include file='header.tpl' section='register'}

<form method="post"
action="{geturl action='register'}"
id="registration-form">

<!-- // form elements go here -->

</form>

<script type="text/javascript" src="/js/UserRegistrationForm.class.js"></script>
<script type="text/javascript">

new UserRegistrationForm('registration-form');
</script>

{include file='footer.tpl'}

CHAPTER 6 ■ STYLING THE WEB APPLICATION216

9063Ch06CMP2 11/13/07 7:56 PM Page 216

This completes the client-side form validation. If you now try to submit a form with
invalid values, you will be shown the error messages as before; however, the page isn’t
reloaded and the response is displayed much more quickly.

Summary
In this chapter we created a basic web design for our Web 2.0 application and integrated it into
the existing Smarty templates. This included creating a fluid table-free layout that works well
in all major browsers. We then revisited the forms we created in Chapter 2 and set up styles for
them so they would be formatted nicely and display errors in a way that is easy to understand.

Following this, we changed the site header template so Prototype and Scriptaculous
would be automatically loaded. We immediately made use of Prototype by adding client-side
form validation to the user registration form. We implemented this using Ajax and JSON.

While the content in this chapter didn’t include much Web 2.0 content, it was still very
important, as we started to bring together the look and feel of the site, while keeping the
HTML markup to a minimum. This sets a solid base for integrating JavaScript code that will
run efficiently, as well as being accessible and easy to maintain. This will also help in the load-
ing speed of the site, which in turn improves the experience of users while keeping the load of
your server (and the bandwidth it uses) to a minimum.

In Chapter 7 we will start to build the blogging system of our web application. This will set
the basis for the remainder of the book, as all features following on from here tie into this sys-
tem. It also means we can really start to look at the features that define a Web 2.0 application.

CHAPTER 6 ■ STYLING THE WEB APPLICATION 217

9063Ch06CMP2 11/13/07 7:56 PM Page 217

9063Ch06CMP2 11/13/07 7:56 PM Page 218

Building the Blogging System

Now that users can register and log in to the web application, it is time to allow them to
create their own blogs. In this chapter, we will begin to build the blogging functionality for
our Web 2.0 application. We will implement the tools that will permit each user to create and
manage their own blog posts.

In this chapter, we will be adding the following functionality to our web application:

• Enable users to create new blog posts. A blog post will consist of a title, the date sub-
mitted, and the content (text or HTML) relating to the post. We will implement the form
(and corresponding processing code) that allows users to enter this content, and that
correctly filters submitted HTML code so JavaScript-based attacks cannot occur. This
form will also be used for editing existing posts.

• Permit users to preview new posts. This simple workflow system will allow users to
double-check a post before sending it live. When a user creates a new post, they will
have an option to either preview the post or send it live immediately. When previewing
a post, they will have the option to either send it live or to make further changes.

• Notify users of results. We will implement a system that notifies the user what has hap-
pened when they perform an action. For instance, when they choose to publish one of
their blog posts, the notification system will flash a message on the screen confirming
this action once it has happened.

There are additional features we will be implementing later in this book (such as tags, images,
and web feeds); in this chapter we will simply lay the groundwork for the blog.

There will be some repetition of Chapter 3 in this chapter when we set up database tables
and classes for modifying the database, but I will keep it as brief as possible and point out the
important differences.

Because there is a lot of code to absorb in developing the blog management tools, Chap-
ter 8 also deals with implementing the blog manager. In this chapter we will primarily deal
with creating and editing blog posts; in the next chapter we will implement a what-you-see-is-
what-you-get (WYSIWYG) editor to help format blog posts.

Creating the Database Tables
Before we start on writing the code, we must first create the database tables. We are going to
create one table to hold the main blog post information and a secondary table to hold extra
properties for each post (this is much like how we stored user information). This allows us to

219

C H A P T E R 7

9063Ch07CMP2 11/13/07 8:06 PM Page 219

expand the data stored for blog posts in the future without requiring significant changes to the
code or the database table. This is important, because in later chapters we will be expanding
upon the blog functionality, and there will be extra data to be stored for each post.

Let’s now take a look at the SQL required to create these tables in MySQL. The table defi-
nitions can be found in the schema-mysql.sql file (in the /var/www/phpweb20 directory). The
equivalent definitions for PostgreSQL can be found in the schema-pgsql.sql file. Listing 7-1
shows the SQL used to create the blog_posts and blog_posts_profile tables.

Listing 7-1. SQL to Create the blog_posts Table in MySQL (schema-mysql.sql)

create table blog_posts (
post_id serial not null,
user_id bigint unsigned not null,

url varchar(255) not null,
ts_created datetime not null,
status varchar(10) not null,

primary key (post_id),
foreign key (user_id) references users (user_id)

) type = InnoDB;

create index blog_posts_url on blog_posts (url);

create table blog_posts_profile (
post_id bigint unsigned not null,
profile_key varchar(255) not null,
profile_value text not null,

primary key (post_id, profile_key),
foreign key (post_id) references blog_posts (post_id)

) type = InnoDB;

In blog_posts we link (using a foreign key constraint) to the users table, as each post will
belong to a single user. We also store a timestamp of the creation date. This is the field we
will primarily be sorting on when displaying blog posts, since a blog is essentially a journal
that is organized by the date of each post.

We will use the url field to store a permanent link for the post, generated dynamically
based on the title of the post. Additionally, since we will be using this field to load blog posts
(as you will see in Chapter 9), we create an index on this field in the database to speed up SQL
select queries that use this field.

The other field of interest here is the status field, which we will use to indicate whether or
not a post is live. This will help us implement the preview functionality.

The blog_posts_profile table is almost a duplicate of the users_profile table, but it links
to the blog_posts table instead of the users table.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM220

9063Ch07CMP2 11/13/07 8:06 PM Page 220

■Note As discussed in Chapter 3, when using PostgreSQL we use timestamptz instead of datetime
for creating timestamp fields. Additionally, we use int for a foreign key to a serial (instead of bigint
unsigned). Specifying the InnoDB table type is MySQL-specific functionality so constraints will be enforced.

Setting Up DatabaseObject and Profile Classes
In this section, we will add new models to our application that allow us to control data in the
database tables we just created. We do this the same way we managed user data in Chapter 3.
That is, we create a DatabaseObject subclass to manage the data in the blog_posts table, and
we create a Profile subclass to manage the blog_posts_profile table.

It may appear that we’re duplicating some code, but the DatabaseObject class makes it
very easy to manage a large number of database tables, as you will see. Additionally, we will
add many functions to the DatabaseObject_BlogPost class that aren’t relevant to the Data-
baseObject_User class.

Creating the DatabaseObject_BlogPost Class
Let’s first take a look at the DatabaseObject_BlogPost class. Listing 7-2 shows the contents of
the BlogPost.php file, which should be stored in the ./include/DatabaseObject directory.

Listing 7-2. Managing Blog Post Data (BlogPost.php in ./include/DatabaseObject)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

public $profile = null;

const STATUS_DRAFT = 'D';
const STATUS_LIVE = 'L';

public function __construct($db)
{

parent::__construct($db, 'blog_posts', 'post_id');

$this->add('user_id');
$this->add('url');
$this->add('ts_created', time(), self::TYPE_TIMESTAMP);
$this->add('status', self::STATUS_DRAFT);

$this->profile = new Profile_BlogPost($db);
}

protected function postLoad()
{

$this->profile->setPostId($this->getId());

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 221

9063Ch07CMP2 11/13/07 8:06 PM Page 221

$this->profile->load();
}

protected function postInsert()
{

$this->profile->setPostId($this->getId());
$this->profile->save(false);
return true;

}

protected function postUpdate()
{

$this->profile->save(false);
return true;

}

protected function preDelete()
{

$this->profile->delete();
return true;

}
}

?>

■Caution This class relies on the Profile_BlogPost class, which we will be writing shortly, so this class
will not work until we add that one.

This code is somewhat similar to the DatabaseObject_User class in that we initialize the
$_profile variable, which we eventually populate with an instance of Profile_BlogPost. Addi-
tionally, we use callbacks in the same manner as DatabaseObject_User. Many of the utility
functions in DatabaseObject_User were specific to managing user data, so they’re obviously
excluded from this class.

The key difference between DatabaseObject_BlogPost and DatabaseObject_User is that
here we define two constants (using the const keyword) to define the different statuses a blog
post can have. Blog posts in our application will either be set to draft or live (D or L).

We use constants to define the different statuses a blog post can have because these val-
ues never change. Technically you could use a static variable instead; however, static variables
are typically used for values that are set once only, at runtime.

Additionally, by using constants we don’t need to concern ourselves with the actual value
that is stored in the database. Rather than hard-coding a magic value of D every time you want
to refer to the draft status, you can instead refer to DatabaseObject_BlogPost::STATUS_DRAFT in
your code. Sure, it’s longer in the source code, but it’s much clearer when reading the code,
and the internal cost of storage is the same.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM222

9063Ch07CMP2 11/13/07 8:06 PM Page 222

Creating the Profile_BlogPost Class
The Profile_BlogPost class that we use to control the profile data for each post is almost iden-
tical to the Profile_User class. The only difference between the two is that we name the utility
function setPostId() instead of setUserId().

The code for this class is shown in Listing 7-3 and is to be stored in BlogPost.php in the
./include/Profile directory.

Listing 7-3. Managing Blog Post Profile Data (BlogPost.php in ./include/Profile)

<?php
class Profile_BlogPost extends Profile
{

public function __construct($db, $post_id = null)
{

parent::__construct($db, 'blog_posts_profile');

if ($post_id > 0)
$this->setPostId($post_id);

}

public function setPostId($post_id)
{

$filters = array('post_id' => (int) $post_id);
$this->_filters = $filters;

}
}

?>

Creating a Controller for Managing Blog Posts
In its current state, our application has three MVC controllers: the index, account, and utility
controllers. In this section, we will create a new controller class called BlogmanagerController
specifically for managing blog posts.

This controller will handle the creation and editing of blog posts, the previewing of posts
(as well as sending them live), as well as the deletion of posts. This controller will not perform
any tasks relating to displaying a user’s blog publicly (either on the application home page or
on the user’s personal page); we will implement this functionality in Chapter 9.

Extending the Application Permissions
Before we start creating the controller, we must extend the permissions in the
CustomControllerAclManager class so only registered (and logged-in) users can access it.
The way we do this is to first deny all access to the blogmanager controller, and then allow
access for the member user role (which automatically also opens it up for the administrator
user type, because administrator inherits from member). We must also add blogmanager as a
resource before access to it can be controlled.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 223

9063Ch07CMP2 11/13/07 8:06 PM Page 223

In the constructor of the CustomerControllerAclManager.php file (located in
./include/Controllers), we will add the following three lines in this order:

$this->acl->add(new Zend_Acl_Resource('blogmanager'));
$this->acl->deny(null, 'blogmanager');
$this->acl->allow('member', 'blogmanager');

Listing 7-4 shows how you should add them to this file.

Listing 7-4. Adding Permissions for the Blog Manager Controller
(CustomControllerAclManager.php)

<?php
class CustomControllerAclManager extends Zend_Controller_Plugin_Abstract
{

// ... other code

public function __construct(Zend_Auth $auth)
{

$this->auth = $auth;
$this->acl = new Zend_Acl();

// add the different user roles
$this->acl->addRole(new Zend_Acl_Role($this->_defaultRole));
$this->acl->addRole(new Zend_Acl_Role('member'));
$this->acl->addRole(new Zend_Acl_Role('administrator'), 'member');

// add the resources we want to have control over
$this->acl->add(new Zend_Acl_Resource('account'));
$this->acl->add(new Zend_Acl_Resource('blogmanager'));
$this->acl->add(new Zend_Acl_Resource('admin'));

// allow access to everything for all users by default
// except for the account management and administration areas
$this->acl->allow();
$this->acl->deny(null, 'account');
$this->acl->deny(null, 'blogmanager');
$this->acl->deny(null, 'admin');

// add an exception so guests can log in or register
// in order to gain privilege
$this->acl->allow('guest', 'account', array('login',

'fetchpassword',
'register',
'registercomplete'));

// allow members access to the account management area
$this->acl->allow('member', 'account');

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM224

9063Ch07CMP2 11/13/07 8:06 PM Page 224

$this->acl->allow('member', 'blogmanager');

// allow administrators access to the admin area
$this->acl->allow('administrator', 'admin');

}

// ... other code
}

?>

Refer back to Chapter 3 if you need a reminder of how Zend_Acl works and how we use it
in this application.

The BlogmanagerController Actions
Let’s now take a look at a skeleton of the BlogmanagerController class, which at this stage
lists each of the different action handlers we will be implementing in this chapter (except for
indexAction(), which will be implemented in Chapter 8). Listing 7-5 shows the contents of
BlogmanagerController.php, which we will store in the ./include/Controllers directory.

Listing 7-5. The Skeleton for the BlogmanagerController Class (BlogmanagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

public function init()
{

parent::init();
$this->breadcrumbs->addStep('Account', $this->getUrl(null, 'account'));
$this->breadcrumbs->addStep('Blog Manager',

$this->getUrl(null, 'blogmanager'));

$this->identity = Zend_Auth::getInstance()->getIdentity();
}

public function indexAction()
{

}

public function editAction()
{

}

public function previewAction()
{

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 225

9063Ch07CMP2 11/13/07 8:06 PM Page 225

}

public function setstatusAction()
{

}
}

?>

As part of the initial setup for this controller, I’ve added in the calls to build the appropri-
ate breadcrumb steps. Additionally, since all of the actions we will add to this controller will
require the user ID of the logged-in user, I’ve also provided easy access to the user identity
data by assigning it to an object property.

There are four controller action methods we must implement to complete this phase of
the blog management system:

• indexAction(): This method will be responsible for listing all posts in the blog. At the
top of this page, a summary of each of the current month’s posts will be shown. Previ-
ous months will be listed in the left column, providing access to posts belonging to
other months. This will be implemented in Chapter 8.

• editAction(): This action method is responsible for creating new blog posts and editing
existing posts. If an error occurs, this action will be displayed again in order to show
these errors.

• previewAction(): When a user creates a new post, they will have the option of preview-
ing it before it is sent live. This action will display their blog post to them, giving them
the option of making further changes or publishing the post. This action will also be
used to display a complete summary of a single post to the user.

• setstatusAction(): This method will be used to update the status of a post when a
user decides to publish it live. This will be done by setting the post’s status from
DatabaseObject_BlogPost::STATUS_DRAFT to DatabaseObject_BlogPost::STATUS_LIVE.
Once it has been sent live, previewAction() will show a summary of the post and con-
firm that it has been sent live. The setstatusAction() method will also allow the user
to send a live post back to draft or to delete blog posts. A confirmation message will be
shown after a post is deleted, except the user will be redirected to indexAction() (since
the post will no longer exist, and they cannot be redirected back to the preview page).

Linking to Blog Manager
Before we start to implement the actions in BlogmanagerController, let’s quickly create a link
on the account home page to the blog manager. Listing 7-6 shows the new lines we will add to
the index.tpl file from the ./templates/account directory.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM226

9063Ch07CMP2 11/13/07 8:06 PM Page 226

Listing 7-6. Linking to the Blog Manager from the Account Home Page (index.tpl)

{include file='header.tpl' section='account'}

Welcome {$identity->first_name}.

View all blog posts
<a href="{geturl controller='blogmanager'

action='edit'}">Post new blog entry

{include file='footer.tpl'}

The other link we will add is in the main navigation across the top of the page. This item
will only be shown to logged-in users. Listing 7-7 shows the new lines in the header.tpl navi-
gation (in ./templates), which creates a new list item labeled “Your Blog”.

Listing 7-7. Linking to the Blog Manager in the Site Navigation (header.tpl)

<!-- // ... other code -->
<div id="nav">

<li{if $section == 'home'} class="active"{/if}>
Home

{if $authenticated}
<li{if $section == 'account'} class="active"{/if}>
Your Account

<li{if $section == 'blogmanager'} class="active"{/if}>
Your Blog

Logout

{else}
<!-- // ... other code -->

{/if}

<!-- // ... other code -->

At this point, there is no template for the indexAction() method of BlogmanagerController,
meaning that if you click the new link from this listing, you will see an error. Listing 7-8 shows
the code we need to write to the ./templates/blogmanager/index.tpl file as an intermediate
solution—we will build on this template in Chapter 8. You will need to create the ./templates/
blogmanager directory before writing this file since it’s the first template we’ve created for this
controller.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 227

9063Ch07CMP2 11/13/07 8:06 PM Page 227

Listing 7-8. The Blog Manager Index (index.tpl)

{include file='header.tpl' section='blogmanager'}

<form method="get" action="{geturl action='edit'}">
<div class="submit">

<input type="submit" value="Create new blog post" />
</div>

</form>

{include file='footer.tpl'}

Now when a user is logged in to their account, they will see a link in the main navigation
allowing them to visit the blog post management area. At this stage, when they visit this page
they will only see a button allowing them to create a new blog post. We will now implement
this blog post creation functionality.

Creating and Editing Blog Posts
We will now implement the functionality that will allow users to create new blog posts and
edit existing posts. To avoid duplication, both the creating and editing of posts use the same
code. Initially, we will implement this action using a <textarea> as the input method for users
to enter their blog posts. In Chapter 8, we will implement a what-you-see-is-what-you-get
(WYSIWYG) editor to replace this text area.

The fields we will be prompting users to complete are as follows:

• A title for the post entry. This is typically a short summary or headline of the post. Later
in development, all blog posts will be accessible via a friendly URL. We will generate the
URL based on this title.

• The submission date for the post. For new posts, the current date and time will be
selected by default, but we will allow members to modify this date.

• The blog post content. Users will be able to enter HTML tags in this field. We will write
code to correctly filter this HTML to prevent unwanted tags or JavaScript injection. As
mentioned previously, we will use a text area for this field, to be replaced with a WYSI-
WYG editor in Chapter 8.

We will first create a form that users will use to create new or edit existing blog posts. Next,
we will implement the editAction() method for the BlogmanagerController class. Finally, we
will write a class to process the blog post submission form (FormProcessor_BlogPost).

Creating the Blog Post Submission Form Template
The first step in creating the form for submitting or editing blog posts is to create the form
template. The structure of this template is very similar to the registration form, except that the
form fields differ slightly.

Listing 7-9 shows the first part of the edit.tpl template, which is stored in the
./templates/blogmanager directory. Note that the form action includes the id parameter,

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM228

9063Ch07CMP2 11/13/07 8:06 PM Page 228

which means that when an existing post is submitted, the form updates that post in the
database and doesn’t create a new post.

Listing 7-9. The Top Section of the Blog Post Editing Template (edit.tpl)

{include file='header.tpl' section='blogmanager'}

<form method="post" action="{geturl action='edit'}?id={$fp->post->getId()}">

{if $fp->hasError()}
<div class="error">

An error has occurred in the form below. Please check
the highlighted fields and resubmit the form.

</div>
{/if}

<fieldset>
<legend>Blog Post Details</legend>

<div class="row" id="form_title_container">
<label for="form_title">Title:</label>
<input type="text" id="form_title"

name="username" value="{$fp->title|escape}" />
{include file='lib/error.tpl' error=$fp->getError('title')}

</div>

Next, we must display date and time drop-down boxes. We will use the {html_select_date}
and {html_select_time} Smarty functions to simplify this. These plug-ins generate form ele-
ments to select the year, month, date, hour, minute, and second. (You can read about these
plug-ins at http://smarty.php.net/manual/en/language.custom.functions.php.)

We can customize how each of these plug-ins work by specifying various parameters. In
both functions, we will specify the prefix argument. This value is prepended to the name
attribute of each of the generated form elements. Next, we will specify the time argument. This
is used to set the preselected date and time. If this value is null (as it will be for a new post),
the current date and time are selected.

By default, the year drop-down will only include the current year, so to give the user a
wider range of dates for their posts, we will specify the start_year and end_year attributes.
These can be either absolute values (such as 2007), or values relative to the current year (such
as –5 or +5).

■Note The {html_select_date} function is clever in that if you specify a date in the time parameter
that falls outside of the specified range of years, Smarty will change the range of years to start (or finish) at
the specified year.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 229

9063Ch07CMP2 11/13/07 8:06 PM Page 229

We will customize the time drop-downs by setting the display_seconds attribute to false
(so only hours and minutes are shown), as well as setting use_24_hours to false. This changes
the range of hours from 0–23 to 1–12 and adds the meridian drop-down.

Listing 7-10 shows the middle section of the edit.tpl template, which outputs the date
and time drop-downs as well as an error container for the field.

Listing 7-10. Outputting the Date and Time Drop-Downs in the Template (edit.tpl)

<div class="row" id="form_date_container">
<label for="form_date">Date of Entry:</label>

{html_select_date prefix='ts_created'
time=$fp->ts_created
start_year=-5
end_year=+5}

{html_select_time prefix='ts_created'
time=$fp->ts_created
display_seconds=false
use_24_hours=false}

{include file='lib/error.tpl' error=$fp->getError('date')}
</div>

We will complete this template by outputting the text area used for entering the blog post,
as well as the form submit buttons. This text area is the one we will eventually replace with a
WYSIWYG editor.

When displaying the submit buttons, we will include some basic logic to display user-
friendly messages that relate to the context in which the form is used. For new posts, we will
give the user the option to send the post live or to preview it. For existing posts that are already
live, only the option to save the new details will be given. If the post already exists but is not
yet published, we will give the user the same options as for new posts.

We will include the name="preview" attribute in the submit button used for previews. This is
the value we will check in the form processor to determine whether or not to send a post live
immediately. If the other submit button is clicked, the preview value is not included in the form.

■Tip Using multiple submit buttons on a form is not often considered by developers but it is very useful for
providing users with multiple options for the same data. If there are multiple submit buttons, the browser
only uses the value of the button that was clicked, and not any of the other submit buttons. Thus, by giving
each button a different name, you can easily determine which button was clicked within your PHP code.

Listing 7-11 shows the remainder of the edit.tpl file. Note that if you view the blog
manager edit page in your browser now, you will see an error, since the $fp variable isn’t yet
defined.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM230

9063Ch07CMP2 11/13/07 8:06 PM Page 230

Listing 7-11. The Remainder of the Post Submission Template (edit.tpl)

<div class="row" id="form_content_container">
<label for="form_content">Your Post:</label>
<textarea name="content">{$fp->content|escape}</textarea>
{include file='lib/error.tpl' error=$fp->getError('content')}

</div>
</fieldset>

<div class="submit">
{if $fp->post->isLive()}

{assign var='label' value='Save Changes'}
{elseif $fp->post->isSaved()}

{assign var='label' value='Save Changes and Send Live'}
{else}

{assign var='label' value='Create and Send Live'}
{/if}

<input type="submit" value="{$label|escape}" />
{if !$fp->post->isLive()}

<input type="submit" name="preview" value="Preview This Post" />
{/if}

</div>

</form>

{include file='footer.tpl'}

In this template, we use the {assign} Smarty function to set the label for the submit but-
tons. This function allows you to create template variables on the fly. Using it has the same effect
as assigning variables from your PHP code. The name argument is the name the new variable will
have in the template, while the value argument is the value to be assigned to this variable.

■Note Be careful not to overuse {assign}; you may find yourself including application logic in your tem-
plates if you use it excessively. In this instance, we are only using it to help with the display logic—we are
using it to create temporary placeholders for button labels so we don’t have to duplicate the HTML code
used to create submit buttons.

Instantiating FormProcessor_BlogPost in editAction()
The next step in being able to create or edit blog posts is to implement editAction() in the
BlogmanagerController class. We will use the same controller action for displaying the edit
form and for calling the form processor when the user submits the form. This allows us to eas-
ily display any errors that occurred when processing the form, since the code will fall through
to display the template again if an error occurs.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 231

9063Ch07CMP2 11/13/07 8:06 PM Page 231

Since we are using this action to edit posts as well as create new posts, we need to check
for the id parameter in the URL, as this is what will be passed in to the form processor as the
third argument if an existing post is to be edited.

We then fetch the user ID from the user’s identity and instantiate the FormProcessor_
BlogPost class, which we will implement shortly. The form processor will try to load an exist-
ing blog post for that user based on the ID passed in the URL. If it is unable to find a matching
record for the ID, it behaves as though a new post is being created.

The next step is to check whether the action has been invoked by submitting the blog post
submission form. If so, we need to call the process() method of the form processor. If the
form is successfully processed, the user will be redirected to the previewAction() method. If
an error occurs, the code falls through to creating the breadcrumbs and displaying the form
(just as it would when initially viewing the edit blog post page).

Note that the breadcrumbs include a check to see whether an existing post is being edited
(which is done by checking if the $fp->post object has been saved). If it is, we include a link
back to the post preview page in the breadcrumb trail.

Listing 7-12 shows the full contents of editAction() from the BlogmanagerController.php
file, which concludes by assigning the $fp object to the view so it can be used in the template
we created previously.

Listing 7-12. The editAction() Method, Which Displays and Processes the Form
(BlogmanagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

// ... other code

public function editAction()
{

$request = $this->getRequest();
$post_id = (int) $this->getRequest()->getQuery('id');

$fp = new FormProcessor_BlogPost($this->db,
$this->identity->user_id,
$post_id);

if ($request->isPost()) {
if ($fp->process($request)) {

$url = $this->getUrl('preview') . '?id=' . $fp->post->getId();
$this->_redirect($url);

}
}

if ($fp->post->isSaved()) {
$this->breadcrumbs->addStep(

'Preview Post: ' . $fp->post->profile->title,
$this->getUrl('preview') . '?id=' . $fp->post->getId()

);

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM232

9063Ch07CMP2 11/13/07 8:06 PM Page 232

$this->breadcrumbs->addStep('Edit Blog Post');
}
else

$this->breadcrumbs->addStep('Create a New Blog Post');

$this->view->fp = $fp;
}

// ... other code
}

?>

■Note Regardless of whether the user chooses to preview the post or to send the post live straight away,
they are still redirected to the post preview page after a post has been saved. The difference between send-
ing a post live and previewing it is the status value that is stored with the post, which determines whether or
not other people will be able to read the post.

Implementing the FormProcessor_BlogPost Class
Finally, we need to implement the FormProcessor_BlogPost class, which is used to process
the blog post edit form. Just as we did for user registration, we are going to extend the
FormProcessor class to simplify the tasks of sanitizing form values and storing errors. Because
we’re using the same class for both creating new posts and editing existing posts, we need to
handle this in the constructor.

Listing 7-13 shows the constructor for the FormProcessor_BlogPost class, which accepts
the database connection and the ID of the user creating the post as the first two arguments.
The third argument is optional, and if specified is the ID of the post to be edited. Omitting
this argument (or passing a value of 0, since our primary key sequence only generates values
greater than 0) indicates a new post will be created. This code should be written to a file called
BlogPost.php in the ./include/FormProcessor directory.

Listing 7-13. The Constructor for FormProcessor_BlogPost (BlogPost.php)

<?php
class FormProcessor_BlogPost extends FormProcessor
{

protected $db = null;
public $user = null;
public $post = null;

public function __construct($db, $user_id, $post_id = 0)
{

parent::__construct();

$this->db = $db;

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 233

9063Ch07CMP2 11/13/07 8:06 PM Page 233

$this->user = new DatabaseObject_User($db);
$this->user->load($user_id);

$this->post = new DatabaseObject_BlogPost($db);
$this->post->loadForUser($this->user->getId(),

$post_id);

if ($this->post->isSaved()) {
$this->title = $this->post->profile->title;
$this->content = $this->post->profile->content;
$this->ts_created = $this->post->ts_created;

}
else

$this->post->user_id = $this->user->getId();
}

public function process(Zend_Controller_Request_Abstract $request)
{

// ... other code
}

}
?>

The purpose of the constructor of this class is to try to load an existing blog post based on
the third argument. If the blog post can be loaded, the class is being used to edit an existing
post; otherwise it is being used to process the form for a new blog post.

An important feature of this code is that we use a new method called loadForUser(),
which is a custom loader method for DatabaseObject_BlogPost. This ensures that the loaded
post belongs to the corresponding user. If we didn’t check this, it would be possible for a user
to edit the posts of any other user simply by manipulating the URL.

Listing 7-14 shows the code for loadForUser(), which we will add to
DatabaseObject_BlogPost. In order to write a custom loader for DatabaseObject, we simply
need to create an SQL select query with the desired conditions (where statements) that
retrieves all of the columns in the table, and pass that query to the internal _load() method.

We will use the helper function getSelectFields() to retrieve an array of the columns to
fetch in the custom loader SQL (the values in this array are determined by the columns speci-
fied in the class constructor). There is also a small optimization at the start of the function that
bypasses performing the SQL if invalid values are specified for $user_id and $post_id.

This function should be added to the BlogPost.php file in the ./include/DatabaseObject
directory.

Listing 7-14. A Custom Loader for DatabaseObject_BlogPost (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM234

9063Ch07CMP2 11/13/07 8:06 PM Page 234

public function loadForUser($user_id, $post_id)
{

$post_id = (int) $post_id;
$user_id = (int) $user_id;

if ($post_id <= 0 || $user_id <= 0)
return false;

$query = sprintf(
'select %s from %s where user_id = %d and post_id = %d',
join(', ', $this->getSelectFields()),
$this->_table,
$user_id,
$post_id

);

return $this->_load($query);
}

// ... other code
}

?>

Looking back to the constructor for the form processor in Listing 7-13, if an existing blog
post was successfully loaded, we initialize the form processor with the values of the loaded
blog post. This is so that those existing values will be shown in the form. If an existing post
wasn’t loaded, we set the user_id property to be that of the loaded user. This means that when
the post is saved in the process() method (as we will shortly see), the user_id property has
already been set.

Next, we must process the submitted form by implementing the process() method in
FormProcessor_BlogPost. The steps involved in processing this form are as follows:

1. Check the title and ensure that a value has been entered.

2. Validate the date and time submitted for the post.

3. Filter unwanted HTML out of the blog post body.

4. Check whether or not the post should be sent live immediately.

5. Save the post to the database.

First, to check the title we need to initialize and clean the value using the sanitize()
method we first used in Chapter 3. To restrict the length of the title to a maximum of 255 char-
acters (the maximum length of the field in our database schema), we pass the value through
substr(). If you try to insert a value into the database longer than the field’s definition, the
database will simply truncate the variable anyway. We then check the title’s length, recording
an error if the length is zero.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 235

9063Ch07CMP2 11/13/07 8:06 PM Page 235

Note that this isn’t very strict checking at all. You may want to extend this check to ensure
that at least some alphanumeric characters have been entered. Listing 7-15 shows the code
that initializes and checks the title value.

Listing 7-15. Validating the Blog Post Title (BlogPost.php)

<?php
class FormProcessor_BlogPost extends FormProcessor
{

// ... other code

public function process(Zend_Controller_Request_Abstract $request)
{

$this->title = $this->sanitize($request->getPost('username'));
$this->title = substr($this->title, 0, 255);

if (strlen($this->title) == 0)
$this->addError('title', 'Please enter a title for this post');

// ... other code
}

}
?>

Next, we need to process the submitted date and time to ensure that the specified date is
real. We don’t really mind what the date and time are, as long as it is a real date (so November
31, for instance, would fail).

To simplify the interface, we showed users a 12-hour clock (rather than a 24-hour clock),
so we need to check the meridian (“am/pm”) value and adjust the submitted hour accord-
ingly. We will also use the max() and min() functions to ensure the hour is a value from 1 to 12
and the minute is a value from 0 to 59.

Finally, once the date and time have been validated, we will use the mktime() function to
create a timestamp that we can pass to DatabaseObject_BlogPost.

■Note Beginning in PHP 5.2.0 there is a built-in DateTime class available, which can be used to create
and manipulate timestamps. It remains to be seen how popular this class will be. I have chosen to use exist-
ing date manipulation functions that most users will already be familiar with.

The code used to initialize and validate the date and time is shown in Listing 7-16. Once
we create the timestamp, we must store it in the form processor object so the value can be
used when outputting the form again if an error occurs.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM236

9063Ch07CMP2 11/13/07 8:06 PM Page 236

Listing 7-16. Initializing and Processing the Date and Time (BlogPost.php)

<?php
class FormProcessor_BlogPost extends FormProcessor
{

// ... other code

public function process(Zend_Controller_Request_Abstract $request)
{

// ... other code

$date = array(
'y' => (int) $request->getPost('ts_createdYear'),
'm' => (int) $request->getPost('ts_createdMonth'),
'd' => (int) $request->getPost('ts_createdDay')
);

$time = array(
'h' => (int) $request->getPost('ts_createdHour'),
'm' => (int) $request->getPost('ts_createdMinute')
);

$time['h'] = max(1, min(12, $time['h']));
$time['m'] = max(0, min(59, $time['m']));

$meridian = strtolower($request->getPost('ts_createdMeridian'));
if ($meridian != 'pm')

$meridian = 'am';

// convert the hour into 24 hour time
if ($time['h'] < 12 && $meridian == 'pm')

$time['h'] += 12;
else if ($time['h'] == 12 && $meridian == 'am')

$time['h'] = 0;

if (!checkDate($date['m'], $date['d'], $date['y']))
$this->addError('ts_created', 'Please select a valid date');

$this->ts_created = mktime($time['h'],
$time['m'],
0,
$date['m'],
$date['d'],
$date['y']);

// ... other code
}

}
?>

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 237

9063Ch07CMP2 11/13/07 8:06 PM Page 237

Next, we must initialize the blog post body. Since we are allowing a limited set of HTML
to be used by users, we must filter the data accordingly. We will write a method called
cleanHtml() to do this.

Listing 7-17 shows how we will retrieve the content value from the form, as well as the
method we use to filter it (cleanHtml()). This method has been left blank for now, but in the
next section we will look more closely at filtering the HTML, which is a very important aspect
of securing web-based applications.

Listing 7-17. Initializing and Processing the Blog Post Content (BlogPost.php)

<?php
class FormProcessor_BlogPost extends FormProcessor
{

// ... other code

public function process(Zend_Controller_Request_Abstract $request)
{

// ... other code

$this->content = $this->cleanHtml($request->getPost('content'));

// ... other code
}

// temporary placeholder
protected function cleanHtml($html)
{

return $html;
}

}
?>

■Tip You may want to specify a maximum length for blog posts (such as a maximum of 5000 characters),
although users will likely find this restrictive and annoying. If you were to do this, you could create a new
configuration setting in the settings.ini file that defines the maximum length. Note that you would also
need to take the HTML tags into consideration. For instance, even though we are allowing some HTML tags,
you might want to strip all tags before determining the length of a post.

At this point in the code, the submitted form data will have been read from the form and
validated. However, before we save the post, we must determine whether the user wants to
preview the post or send it live straight away. We do this by checking for the presence of the
preview variable in the submitted form. Since we are using two submit buttons on the form,
we must name the buttons differently so we can determine which one was clicked. We named

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM238

9063Ch07CMP2 11/13/07 8:06 PM Page 238

the preview button preview (see Listing 7-12), so if the preview value is set in the form, we
know the user clicked that button. (This test can be seen in Listing 7-19.)

In order to make the post live, we must set the status value of the blog post to STATUS_LIVE
(since a post is marked as preview initially by default). We will create a new method called
sendLive() in the DatabaseObject_BlogPost class to help us with this—it is shown in Listing 7-18.

Listing 7-18. Easily Setting a Blog Post to Live Status (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

public $profile = null;

const STATUS_DRAFT = 'D';
const STATUS_LIVE = 'L';

// ... other code

public function sendLive()
{

if ($this->status != self::STATUS_LIVE) {
$this->status = self::STATUS_LIVE;
$this->profile->ts_published = time();

}
}

public function isLive()
{

return $this->isSaved() && $this->status == self::STATUS_LIVE;
}

}
?>

In the preceding code, we also set a profile variable (that is, a value that is written to
the blog_posts_profile table) called ts_published, which stores a timestamp of when the
post was set live. Note that the post still needs to be saved after calling this function. The
ts_published variable is only set if the status value is actually being changed. In order to
check whether or not a post is live, we also add a helper method called isLive() to this class,
which returns true if the status value is self::STATUS_LIVE.

In Listing 7-19 we continue implementing the form processor. We first check whether or
not any errors have occurred by using the hasError() method. If no errors have occurred, we
set the values of the DatabaseObject_BlogPost object and then mark the post as published if
required. Finally, we save the database record and return from process().

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 239

9063Ch07CMP2 11/13/07 8:06 PM Page 239

Listing 7-19. Saving the Database Record and Returning from the Processor (BlogPost.php)

<?php
class FormProcessor_BlogPost extends FormProcessor
{

// ... other code

public function process(Zend_Controller_Request_Abstract $request)
{

// ... other code

// if no errors have occurred, save the blog post
if (!$this->hasError()) {

$this->post->profile->title = $this->title;
$this->post->ts_created = $this->ts_created;
$this->post->profile->content = $this->content;

$preview = !is_null($request->getPost('preview'));
if (!$preview)

$this->post->sendLive();

$this->post->save();
}

// return true if no errors have occurred
return !$this->hasError();

}

// ... other code
}

?>

We are nearly at the stage where we can create new blog posts. However, before the form
we have created will work, we must perform one final step: create a unique URL for each post.
We will now complete this step.

Generating a Permanent Link to a Blog Post
One thing we have overlooked so far is the setting of the url field we created in the blog_posts
table. Every post in a user’s blog must have a unique value for this field, as the value is used to
create a URL that links directly to the respective blog post.

We will generate this value automatically, based on the title of the blog post (as specified
by the user when they create the post). We can automate the generation of this value by using
the preInsert() method in the DatabaseObject_BlogPost class. This method is called immedi-
ately prior to executing the SQL insert statement when creating a new record.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM240

9063Ch07CMP2 11/13/07 8:06 PM Page 240

■Note Generating the URL automatically when creating the blog post doesn’t give users the opportunity to
change the URL. If they were able to change this value, it would somewhat defeat the purpose of a perma-
nent link. However, if the user chooses to change the title of their post, the URL will no longer be based on
the title. You may want to add an option to the form to let users change the URL value—to simplify matters, I
have not included this option.

There are four steps to generating a unique URL:

1. Turn the title value into a string that is URL friendly. To do this, we will ensure that only
letters, numbers, and hyphens are included. Additionally, we will make the entire
string lowercase for uniformity. We will make the string a maximum of 30 characters,
which should be enough to ensure uniqueness. For example, a title of “Went to the
movies” could be turned into went-to-the-movies. Note that these rules aren’t hard
and fast—you can adapt them as you please.

2. Check whether or not the generated URL already exists for this user. If it doesn’t,
proceed to step 4.

3. If the URL already exists, create a unique one by appending a number to the end of the
string. So if went-to-the-movies already existed, we would make the URL went-to-the-
movies-2. If this alternate URL already existed, we would use went-to-the-movies-3.
This process can be repeated until a unique URL is found.

4. Set the URL field in the blog post to the generated value.

Listing 7-20 shows the generateUniqueUrl() method, which we will now add to the
BlogPost.php file in ./include/DatabaseObject. This method accepts a string as its value and
returns a unique value to be used as the URL. The listing also shows the preInsert() method,
which calls generateUniqueUrl(). Remember that preInsert() is automatically called when
the save() method is called for new records.

Listing 7-20. Automatically Setting the Permanent Link for the Post (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

protected function preInsert()
{

$this->url = $this->generateUniqueUrl($this->profile->title);
return true;

}

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 241

9063Ch07CMP2 11/13/07 8:06 PM Page 241

// ... other code already in this class

protected function generateUniqueUrl($title)
{

$url = strtolower($title);

$filters = array(
// replace & with 'and' for readability
'/&+/' => 'and',

// replace non-alphanumeric characters with a hyphen
'/[^a-z0-9]+/i' => '-',

// replace multiple hyphens with a single hyphen
'/-+/' => '-'

);

// apply each replacement
foreach ($filters as $regex => $replacement)

$url = preg_replace($regex, $replacement, $url);

// remove hyphens from the start and end of string
$url = trim($url, '-');

// restrict the length of the URL
$url = trim(substr($url, 0, 30));

// set a default value just in case
if (strlen($url) == 0)

$url = 'post';

// find similar URLs
$query = sprintf("select url from %s where user_id = %d and url like ?",

$this->_table,
$this->user_id);

$query = $this->_db->quoteInto($query, $url . '%');
$result = $this->_db->fetchCol($query);

// if no matching URLs then return the current URL
if (count($result) == 0 || !in_array($url, $result))

return $url;

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM242

9063Ch07CMP2 11/13/07 8:06 PM Page 242

// generate a unique URL
$i = 2;
do {

$_url = $url . '-' . $i++;
} while (in_array($_url, $result));

return $_url;
}

}
?>

■Note The position of these functions in the file is not important, but I tend to keep the callbacks near the
top of the classes and put other functions later on in the code.

At the beginning of generateUniqueUrl(), we apply a series of regular expressions to
filter out unwanted values and to clean up the string. This includes ensuring the string only
has letters, numbers, and hyphens in it, as well as ensuring that multiple hyphens don’t
appear consecutively in the string. We also trim any hyphens from the start and end of the
string. As a final touch to make the string nicer, we replace the & character with the word and.

■Tip As an exercise, you may want to change this portion of the function to use a custom filter that
extends from Zend_Filter. To do this, you would create a class called Zend_Filter_CreateUrl (or
something similar) that implements the filter() method.

Next, we check the database for any other URLs belonging to the current user that begin
with the URL we have just generated. This is done by fetching other URLs that were previously
generated from the same value, and then looping until we find a new value that isn’t in the
database.

At this stage, the code is sufficiently developed that you will be able to use the form at
http://phpweb20/blogmanager/edit to create a new blog post. However, we will continue to
develop the blog management area in this chapter.

Filtering Submitted HTML
In this application, we allow anybody that signs up (using the registration form created earlier)
to submit their own content. Because of this, we need to protect against malicious users
whose goal is to attack the web site or its users. This is crucial to ensuring the security of web
applications such as this one, where any user can submit data. In situations where only
trusted users will be submitting data, filtering data is not as critical, but when anybody can
sign up, it is extremely important.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 243

9063Ch07CMP2 11/13/07 8:06 PM Page 243

The primary thing we want to protect against is a malicious user submitting JavaScript in
one of their posts, which is then executed by another user who views their blog. There are sev-
eral common ways a malicious user might try to inject JavaScript code into their postings:

• Inserting <script> tags into the submitted data. A script tag can either load an exter-
nal JavaScript file (by specifying the src attribute), or it can contain any number of
commands inline that perform malicious actions.

• Adding DOM event handlers to other nonmalicious tags. Manipulating other tags,
such as hyperlinks or images, to include JavaScript can be just as effective as using
<script> tags directly. An example would be adding a mouseover event to an image,
such as .

■Note This hasn’t been a problem in earlier user-submitted data we have processed because we have
passed it to the sanitize() method of FormProcessor, which strips all tags from the data. Additionally,
when we have outputted this data, we have used the Smarty escape modifier, which means that even if
an HTML tag such as <script> were to get through our processing, it would be output to screen as
<script>, meaning that any code included would not be treated as JavaScript by the browser.

Why Filter Embedded JavaScript?
You may wonder what it matters if a user manages to inject JavaScript code into one of their
posts. After all, how bad could it possibly be if somebody makes a pop-up window appear on
somebody else’s screen?

■Note Making a pop-up window appear is one of the simplest and least harmful attacks that can be
achieved.

The biggest problem occurs when another authenticated user views the malicious post.
Some examples of the damage that could occur are as follows:

• The JavaScript could dynamically send the user’s cookies to some third-party web site.
This could potentially allow the malicious user to hijack the victim’s session, since ses-
sion IDs are usually stored in cookies. The malicious user could then masquerade as an
authenticated user on the web site. This is known as a cross-site scripting (XSS) attack.

• The JavaScript could submit a form or visit some other URL on the current web site that
deletes a post in the victim’s blog, or that updates their password. This is called a cross-
site request forgery (CSRF) attack.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM244

9063Ch07CMP2 11/13/07 8:06 PM Page 244

Types of Filtering
There are two ways we can filter out HTML tags from submitted data:

• Define a white list of tags that users are allowed to use. We then strip out every other
tag.

• Define a black list of tags that are not allowed to be used. We then strip out only these
tags and allow the rest.

Whether you use a white list or a black list comes down to personal preference and how
the system will be used in the future. I prefer the white list in this situation, since there are so
many HTML tags and a white list allows you to fully control what can be used. For example, if
a browser introduced a new tag called <doSomethingMalicious> (as an extreme example), a
white list would automatically prevent the use of this, while a black list would allow it until we
added it to the list.

This is the white list of tags and attributes we will use:

• Allow the <a>, , , , , <i>, , , , <p>, and
 tags.

• For the <a> tag, allow the href, target, and name attributes.

• For the tag, allow the src and alt attributes.

This automatically rules out the use of any event attributes in tags (such as onmouseover or
onclick).

You could potentially choose to allow the style attribute, since you might not care how
users choose to manipulate the styles and colors. However, if you’re going to display posts
from a number of different users on a single page, you will want to be a bit fussier about how
they are displayed.

Implementing the cleanHtml() Method
Now that we have defined which tags and attributes are acceptable, we must implement the
cleanHtml() method in FormProcessor_BlogPost, which we created in Listing 7-17.

Thankfully, the Zend_Filter component of the Zend Framework provides a filter called
Zend_Filter_StripTags, which gives us some flexibility in setting our tag and attribute
requirements. We can either pass an array of allowed tags and an array of allowed attributes,
or we can pass a single array where the key is the allowed tag and the element is an array of
allowed attributes for that tag.

Note, though, that there is a special case we must deal with: the href attribute value for
hyperlinks. Browsers will execute inline JavaScript code if it begins with javascript:. The sim-
plest test case for this is to create a link as follows:

Open alert box

To deal with this special case, we will simply replace any occurrences of javascript: that
occur within any tags. This can be achieved easily using preg_replace().

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 245

9063Ch07CMP2 11/13/07 8:06 PM Page 245

■Caution Be aware of tags similar to <a> that aren’t in our white list, such as <area> (used in image
maps), which also define an href attribute. Web browsers will also allow JavaScript to be embedded using
javascript: so you must also filter these tags if you decide to use them.

Listing 7-21 shows the code for cleanHtml(), which defines the list of allowed tags and
attributes we covered above, and then filters the passed-in HTML and returns it to be inserted
into the database. The highlighted code should be included in the BlogPost.php file in the
./include/FormProcessor directory.

Listing 7-21. Using Zend_Filter_StripTags to Clean Submitted HTML (BlogPost.php)

<?php
class FormProcessor_BlogPost extends FormProcessor
{

static $tags = array(
'a' => array('href', 'target', 'name'),
'img' => array('src', 'alt'),
'b' => array(),
'strong' => array(),
'em' => array(),
'i' => array(),
'ul' => array(),
'li' => array(),
'ol' => array(),
'p' => array(),
'br' => array()

);

// ... other code

protected function cleanHtml($html)
{

$chain = new Zend_Filter();
$chain->addFilter(new Zend_Filter_StripTags(self::$tags));
$chain->addFilter(new Zend_Filter_StringTrim());

$html = $chain->filter($html);

$tmp = $html;
while (1) {

// Try and replace an occurrence of javascript:
$html = preg_replace('/(<[^>]*)javascript:([^>]*>)/i',

'$1$2',
$html);

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM246

9063Ch07CMP2 11/13/07 8:06 PM Page 246

// If nothing changed this iteration then break the loop
if ($html == $tmp)

break;

$tmp = $html;
}

return $html;
}

}
?>

The regular expression in Listing 7-21 looks for an occurrence of the string javascript:
within the < and > characters (thereby allowing the term to be written in the normal blog post
text). Whatever is matched before javascript: in the string is held in $1 for the replacement,
and the text afterwards is held in $2.

Because this pattern only replaces one instance of javascript: at a time, we need to
keep looping until all instances have been found. We do this by checking whether the string
returned from preg_replace() is different from the one returned on the previous call. If these
strings are the same, all instances of javascript: have been removed.

Consider a string such as the following:

javascript: is bad!

After this string is processed by preg_replace(), it becomes

javascript: is bad!

This version of the string is perfectly safe and won’t result in any JavaScript being executed
when the link is clicked (the link however, is invalid, and will likely result in an error).

Creating a New Blog Post
Aside from including the WYSIWYG editor, the form for submitting new blog posts and the
corresponding form processor are now complete, meaning that users can now create new
blog posts by logging in to their accounts and either clicking the “Post new blog entry”
link or browsing to the blog manager (using the main navigation) and clicking the button
labeled “Create new blog post”. The URL of the form we just created is http://phpweb20/
blogmanager/edit.

Figure 7-1 shows how the form looks when viewed in Firefox. As you can see, the text area
holding the post is somewhat small and almost unusable. If you would prefer not to use a
WYSIWYG editor, you could add a style to the CSS file to make this field larger (such as form
.row textarea { width : 230px; height : 60px; }); however, since we will be replacing this
in the next chapter, I have not worried about it.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 247

9063Ch07CMP2 11/13/07 8:06 PM Page 247

■Note The WYSIWYG editor we will integrate in Chapter 8 will automatically display a text area if the
user’s browser is unable to show the “proper” version. Additionally, it will size the text area to the size
the WYSIWYG editor would have been.

Figure 7-1. Creating a new blog post

If you try to submit this form, you will be redirected to the preview action of the controller
after successful completion, which we have not yet implemented. Additionally, although the
form has the ability to update existing blog posts, there is not yet any way for users to view
their existing posts, meaning that they cannot reach this form to edit their posts. We will add
the list of existing posts in Chapter 8.

Previewing Blog Posts
The next step in implementing blog management tools is to provide a preview of each post to
the user. We will implement the previewAction() method of BlogmanagerController, which is
used to show a single post to a user, giving them options to either publish or unpublish the
post (depending on its existing status). Additionally, users will be able to edit or delete their
posts using the buttons we will add to this page, and we will expand these options in the
future to include tag management (Chapter 10), image management (Chapter 11), and loca-
tion management (Chapter 13).

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM248

9063Ch07CMP2 11/13/07 8:06 PM Page 248

Creating the Preview Action
The previewAction() method will display the details of the post, while also giving the user the
option to edit or delete the post. Additionally, the user will be able to make draft posts live, or
to unpublish posts that are already live.

These options will be handled by the setstatusAction() method that we will implement
in the next section, but for now we will implement the previewAction() method and its associ-
ated template.

Listing 7-22 shows the content we will add to BlogmanagerController.php (in ./include/
Controllers). If the selected post is unable to be loaded for the logged-in user, the user is
redirected back to the blog manager index page. You could choose to display a “post not found”
message, but since they could only access such a URL by manually typing it, this extra level of
user friendliness is simply overkill.

Listing 7-22. Loading a Blog Post for Preview (BlogmanagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

// ... other code

public function previewAction()
{

$post_id = (int) $this->getRequest()->getQuery('id');

$post = new DatabaseObject_BlogPost($this->db);
if (!$post->loadForUser($this->identity->user_id, $post_id))

$this->_redirect($this->getUrl());

$this->breadcrumbs->addStep('Preview Post: ' . $post->profile->title);

$this->view->post = $post;
}

// ... other code
}

?>

Implementing the Preview Template
Now we will look at the preview.tpl template, which we will use to show a blog post to
its owner. Listing 7-23 shows the first half of this template, which we will store in the
./templates/blogmanager directory. We will enhance this template using JavaScript (created
in Listing 7-26).

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 249

9063Ch07CMP2 11/13/07 8:06 PM Page 249

Listing 7-23. The First Half of the Preview Template (preview.tpl)

{include file='header.tpl' section='blogmanager'}

<script type="text/javascript" src="/js/blogPreview.js"></script>

<form method="post"
action="{geturl controller='blogmanager' action='setstatus'}"
id="status-form">

<div class="preview-status">
<input type="hidden" name="id" value="{$post->getId()}" />
{if $post->isLive()}

<div class="status live">
This post is live on your blog. To unpublish
it click the Unpublish post button below.
<div>

<input type="submit" value="Unpublish post"
name="unpublish" id="status-unpublish" />

<input type="submit" value="Edit post"
name="edit" id="status-edit" />

<input type="submit" value="Delete post"
name="delete" id="status-delete" />

</div>
</div>

■Note This template won’t work until we complete it below—we’re currently in the middle of an {if}
statement.

In the preceding code, the status box that is created is for live listings only. This is deter-
mined by calling the isLive() method on the post. Listing 7-24 shows the remainder of this
template, which shows similar code for unpublished listings.

Listing 7-24. The Second Half of the Preview Template (preview.tpl)

{else}
<div class="status draft">

This post is not yet live on your blog. To publish
it on your blog, click the button below.
<div>

<input type="submit" value="Publish post"
name="publish" id="status-publish" />

<input type="submit" value="Edit post"
name="edit" id="status-edit" />

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM250

9063Ch07CMP2 11/13/07 8:06 PM Page 250

<input type="submit" value="Delete post"
name="delete" id="status-delete" />

</div>
</div>

{/if}
</div>

</form>

<div class="preview-date">
{$post->ts_created|date_format:'%x %X'}

</div>

<div class="preview-content">
{$post->profile->content}

</div>

{include file='footer.tpl'}

As you can see, after the if/else statement is closed, we output the date and time of the
post, as well as the content of the post. To output the date and time, we use the date_format
modifier, which uses the same arguments as the PHP strftime() function. We use the %x
switch to output the current date and %X for the current time, both using the preferred repre-
sentation for the current locale.

Next we need to add some new styles to format the status box and the date and time. We
will show the status box in green for published posts and in orange for unpublished posts.
Listing 7-25 shows the new styles we will add to the ./htdocs/css/styles.css file.

Listing 7-25. New Styles Used to Format the Blog Post Preview (styles.css)

@media screen {

/* ... other code */

/**
* Status boxes
*/

div.status {
padding : 5px;
margin : 5px 0;

}

.status.live {
color : #fff;
background : #070;

}

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 251

9063Ch07CMP2 11/13/07 8:06 PM Page 251

.status.draft {
color : #fff;
background : #fa0;

}

/**
* Previewing of blog posts
*/

.preview-status form { margin-top : 5px; }

.preview-status { margin-bottom : 10px; }

.preview-date {
font-size : 0.9em;
color : #999;

}
}

/* ... other code */

■Tip To apply styles to elements with multiple class names (as we did with <div class="status
live">), you simply include both class names without spacing in the CSS file. So, in this case, we can apply
styles to .status.live. Note that the support of this functionality in Internet Explorer 6 is somewhat unpre-
dictable, and the order of the classes can sometimes affect how the markup is rendered (so in IE6
.live.status may behave differently than .status.live), depending on the makeup of other styles in
the style sheet.

Requesting Confirmation for User Actions
Finally, as a way to improve the interface, we will display a confirmation box when a user tries to
publish (or unpublish) a blog post, as well as when they try to delete a post. To help with this, we
will now create a new JavaScript file in which we observe the click events on each of those but-
tons. For further details on how Prototype’s Event.observe() works, refer to Chapter 5.

Listing 7-26 shows the code we will add to the ./htdocs/js/blogPreview.js file (this file
was loaded by the code in Listing 7-23). In this code, we check that each element exists before
trying to observe the click event, since the publish button won’t be shown for posts that are
already published, and the unpublish button won’t be shown for draft posts.

Listing 7-26. Attaching Click Events to the Post Preview Buttons (blogPreview.js)

Event.observe(window, 'load', function() {

var publishButton = $('status-publish');

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM252

9063Ch07CMP2 11/13/07 8:06 PM Page 252

var unpublishButton = $('status-unpublish');
var deleteButton = $('status-delete');

if (publishButton) {
publishButton.observe('click', function(e) {

if (!confirm('Click OK to publish this post'))
Event.stop(e);

});
}

if (unpublishButton) {
unpublishButton.observe('click', function(e) {

if (!confirm('Click OK to unpublish this post'))
Event.stop(e);

});
}

if (deleteButton) {
deleteButton.observe('click', function(e) {

if (!confirm('Click OK to permanently delete this post'))
Event.stop(e);

});
}

});

■Note This code goes inside the window onload event to ensure that the button elements exist in the
DOM when this code is executed.

In the preceding code we want to stop the form from being submitted if the user clicks
cancel in any of the confirmation boxes. To achieve this, we call the Event.stop() method.

■Note You may be more familiar with returning false from links or forms to prevent the browser from
proceeding. In Prototype’s event handling, this does not apply—to prevent an event from propagating (that
is, from following the link or submitting the form) after the event has been handled, you must call
Event.stop(). This is covered in more detail in Chapter 5.

Figure 7-2 shows the preview page for a post that has not yet been published. Note that
the buttons will not work until we implement the setstatus action.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 253

9063Ch07CMP2 11/13/07 8:06 PM Page 253

Figure 7-2. Previewing a blog post that is not yet live

Updating the Status of a Blog Post
In Listings 7-23 and 7-24 we created a form to update the status of a blog post. We must now
implement the controller action to handle the processing of this form. In addition to changing
the status or deleting the post, we also added an option to edit posts. If the user clicks the edit
button, we need to redirect them to the edit action we created earlier.

Completing setstatusAction()
Since the earlier version of setstatusAction() we created was empty, we will complete the
method with the code shown in Listing 7-27.

Listing 7-27. Handling the Different Types of Status Updates (BlogmanagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

// ... other code

public function setstatusAction()
{

$request = $this->getRequest();
$post_id = (int) $request->getPost('id');

$post = new DatabaseObject_BlogPost($this->db);
if (!$post->loadForUser($this->identity->user_id, $post_id))

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM254

9063Ch07CMP2 11/13/07 8:06 PM Page 254

$this->_redirect($this->getUrl());

// URL to redirect back to
$url = $this->getUrl('preview') . '?id=' . $post->getId();

if ($request->getPost('edit')) {
$this->_redirect($this->getUrl('edit') . '?id=' . $post->getId());

}
else if ($request->getPost('publish')) {

$post->sendLive();
$post->save();

}
else if ($request->getPost('unpublish')) {

$post->sendBackToDraft();
$post->save();

}
else if ($request->getPost('delete')) {

$post->delete();

// Preview page no longer exists for this page so go back to index
$url = $this->getUrl();

}

$this->_redirect($url);
}

// ... other code
}

?>

Once again, as in previewAction(), we initialize the post ID and try to load the record
based on that value and the user ID of the logged-in user. Since we are accessing the request
variables several times in the method, it makes the code somewhat more readable to assign
the request to $request.

Next, we define the return URL. This is where the user will be redirected to after the cur-
rent action has completed (apart from the edit and delete actions). This URL is simply the
preview page for the given blog post.

To determine which action to take, we simply need to check for the presence of the
appropriate variable in the request post data. For example, if the user clicks the publish
button, publish will be set in the post data, but the other buttons won’t be.

In order to unpublish a live blog post, we will use a helper function called sendBackToDraft(),
which does nothing more than set the status value of the post to DatabaseObject_BlogPost::
STATUS_DRAFT. The function—which we will add to ./include/DatabaseObject/BlogPost.php—is
provided more for completeness than anything, since we already have the sendLive() function.
The sendBackToDraft() function is shown in Listing 7-28.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 255

9063Ch07CMP2 11/13/07 8:06 PM Page 255

Listing 7-28. The sendBackToDraft() Function (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public function sendBackToDraft()
{

$this->status = self::STATUS_DRAFT;
}

// ... other code
}

?>

Referring back to Listing 7-27, you can see that it’s simply a matter of calling the delete()
method on the DatabaseObject_BlogPost object to delete the post. Since the preview page for
this post will no longer be valid (since the post doesn’t exist), we will change the URL to redi-
rect the user back to the blog manager index page.

■Note If you look closely at setstatusAction(), you will notice that if you pass in a valid post ID but not
a valid action, all that occurs is that the user is redirected to the post preview page. You can take advantage
of this if you want to provide a submit button to reach the preview page.

Notifying the User
As the code stands now, the user isn’t informed when a change is made. For example, when a
post is deleted, the user is simply redirected back to the blog manager index page and is not
told that the post was actually deleted. While this is not a huge problem when sending a post
live (or changing it back to draft) due to the colored box we use to display the status, it is still
good practice to inform them of the change that was made. It is also important after updating
an existing post to notify the user that the changes have been saved.

To achieve this, we are going to display a message to the user after they arrive on the
“next” page (that is, the page we redirect them to after competing the chosen action). One
thing to be aware of is that the new page needs to know about the status message somehow.
To do this, we will store the message in the user’s session, and then remove it from the session
once they have viewed it (to prevent it from continually being shown).

Fortunately, Zend_Controller provides us with functionality to achieve this. The
FlashMessenger action helper class (in no way related to Adobe’s Flash technology) allows us
to easily do exactly this. It is instantiated automatically by Zend Controller when we try to
access it.

The other change we will make to our code is to assign all messages found in the flash
messenger object to the template. In the template, we will then check whether there are any
messages, and if so we can output them accordingly.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM256

9063Ch07CMP2 11/13/07 8:06 PM Page 256

■Note This flash message container will integrate nicely with any real-time operations we perform using
Ajax. We can reuse this same container to display any messages that are generated dynamically with
JavaScript. As we implement Ajax features in this book, we will use this container.

Adding FlashMessenger to CustomControllerAction
We are going to create the flash messenger in the init() function of CustomControllerAction,
which means it will be created for every single request that takes place on our site. This makes
it very useful, as we can then use it not only to tell logged-in users about updates to their blog
posts, but also to give any notification to any user (whether authenticated or not).

To instantiate the flash messenger, we simply access it from the _helper object, which is
an internal property of Zend_Controller_Action (the class which CustomControllerAction
extends from). If $this->_helper doesn’t find the flash messenger, it will automatically create
it for us.

Listing 7-29 shows the code we will add to the CustomControllerAction.php file (in the
./include directory), which includes not only additions to init(), but also assigns any mes-
sages that may be stored in the messenger to the template.

Listing 7-29. Creating the Flash Messenger and Assigning Its Messages to the Template
(CustomControllerAction.php)

<?php
class CustomControllerAction extends Zend_Controller_Action
{

public $db;
public $breadcrumbs;
public $messenger;

public function init()
{

// ... other code

$this->messenger = $this->_helper->_flashMessenger;
}

// ... other code

public function postDispatch()
{

// ... other code

$this->view->messages = $this->messenger->getMessages();
}

}
?>

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 257

9063Ch07CMP2 11/13/07 8:06 PM Page 257

Writing Messages to FlashMessenger
The next step is to write messages to the flash messenger as required. In the case of updating
the status of blog posts, we will write a message when a post is sent live, when a post is unpub-
lished, and when a post is deleted. We will make further use of the messenger in other parts of
this web application.

To add a message, we simply call $this->messenger->addMessage('The message').
Effectively, all this does is write a message to the current session, which will automatically
be deleted on the subsequent page request (meaning it is retrieved for display in the next
request and then immediately deleted).

Listing 7-30 shows a new version of the setstatusAction() function for
BlogmanagerController, which now adds messages to the $this->messenger object as required.

Listing 7-30. Adding Messages to the Messenger As Required (BlogmanagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

// ... other code

public function setstatusAction()
{

$request = $this->getRequest();
$post_id = (int) $request->getPost('id');

$post = new DatabaseObject_BlogPost($this->db);
if (!$post->loadForUser($this->identity->user_id, $post_id))

$this->_redirect($this->getUrl());

// URL to redirect back to
$url = $this->getUrl('preview') . '?id=' . $post->getId();

if ($request->getPost('edit')) {
$this->_redirect($this->getUrl('edit') . '?id=' . $post->getId());

}
else if ($request->getPost('publish')) {

$post->sendLive();
$post->save();

$this->messenger->addMessage('Post sent live');
}
else if ($request->getPost('unpublish')) {

$post->sendBackToDraft();
$post->save();

$this->messenger->addMessage('Post unpublished');
}
else if ($request->getPost('delete')) {

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM258

9063Ch07CMP2 11/13/07 8:06 PM Page 258

$post->delete();

// Preview page no longer exists for this page so go back to index
$url = $this->getUrl();

$this->messenger->addMessage('Post deleted');
}

$this->_redirect($url);
}

// ... other code
}

?>

Outputting FlashMessenger Messages on the Web Site
Finally, we must output any existing messages to the template. In order for messages to be dis-
played regardless of where the user is in the site (in other words, so we can use it in other areas
aside from managing blog posts), we add the display code to the footer.tpl template,
because we will be displaying messages in the right column.

Just like the error containers we created for form errors, we will reuse this message con-
tainer for similar messages we generate from Ajax requests. To achieve this, we check how
many messages there are available to be written. If there are none, we apply the display: none
style so the message container does not appear. Later, when we add Ajax functionality, we can
simply unhide this element as required. If there is more than one message, we will use an
unordered list () to output the messages.

Listing 7-31 shows the changes we will make to footer.tpl (in the ./templates directory),
which checks the $messages array for any messages to output. Note that if there’s only one
message, the $messages array contains only one element, so we use $messages.0 in Smarty to
access this array element.

Listing 7-31. Outputting Status Messages to the Template (footer.tpl)

</div>
</div>

<div id="left-container" class="column">
<!-- // ... other code -->

</div>

<div id="right-container" class="column">
{if $messages|@count > 0}

<div id="messages" class="box">
{if $messages|@count == 1}

Status Message:
{$messages.0|escape}

{else}

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 259

9063Ch07CMP2 11/13/07 8:06 PM Page 259

Status Messages:

{foreach from=$messages item=row}
{$row|escape}

{/foreach}

{/if}
</div>

{else}
<div id="messages" class="box" style="display:none"></div>

{/if}

<!-- // ... other code -->
</div>

<!-- // ... other code -->
</body>

</html>

■Note I have chosen to display status messages in the right column of the web site. You may prefer to
use a different location, such as between the breadcrumbs and page title in the main area of the page.
You may also want to add a close button to the #messages div to allow the user to hide the status message
window immediately. To do so, you would use Event.observe() on that close button, which would call
$('messages').hide(). When we reuse this status box later in this chapter for Ajax notifications, we will
set the box to auto-hide after a short delay.

This is all that is required to get the flash messenger working; however, it doesn’t stand out
for users very well. In order to make it stand out more, we will use the Scriptaculous Highlight
effect. To apply this effect (with the default colors and time delay), the only code we have to
use is as follows:

<script type="text/javascript">
new Effect.Highlight('messages');

</script>

In an effort to keep the page markup as clean as possible (and also to ensure that this
code doesn’t run until the Scriptaculous files have all loaded), we will make this effect run
once the page has loaded.

To do so, we will create a new file called scripts.js, which we will store in ./htdocs/js.
This file will contain any custom JavaScript we will use globally in our application (that is, on
all pages). For now, though, all we are going to do is create a function that runs once the page
has loaded. This is the equivalent of writing HTML like <body onload="someFunc()">, but we
are going to do it the “Web 2.0 way” using Prototype (that is, observing the window.onload
event properly and not cluttering up the page HTML).

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM260

9063Ch07CMP2 11/13/07 8:06 PM Page 260

Listing 7-32 shows the contents of the scripts.js file, which begins by creating a hash
called settings that we can use to hold any required settings (making the JavaScript code
more maintainable). For starters, we define the ID of the element that holds messages. Next,
we define a function that will run on page load, which currently finds the #messages element
and applies the Effect.Highlight class to it. Finally, we observe the onload event. The
Event.observe() call follows the function definition of init(), because the function would be
undefined at run time if it were the other way around.

Note that we first check that #messages is visible using the Prototype function isVisible(),
as we still include the element on the page (as a hidden element) even if there are no messages.
Internally, Effect.Highlight actually checks this for you, but it’s still good to be explicit in your
own code as to how you want it to function.

Listing 7-32. Highlighting the Messages Div after the Page Has Loaded (scripts.js)

var settings = {
messages : 'messages'

};

function init(e)
{

// check if the messages element exists and is visible,
// and if so, apply the highlight effect to it
var messages = $(settings.messages);

if (messages && messages.visible()) {
new Effect.Highlight(messages);

}
}

Event.observe(window, 'load', init);

■Note Because Effect.Highlight is a class and not a function, you must remember to use the new
keyword when applying the effect. Otherwise a JavaScript error will occur. This applies to other effects in
Scriptaculous too.

Finally, we must make the scripts.js file load from header.tpl. This file must be
included after the inclusion of both Prototype and Scriptaculous. Listing 7-33 shows the
updated version of header.tpl that loads scripts.js.

Listing 7-33. Loading scripts.js in the Web Site Header (header.tpl)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 261

9063Ch07CMP2 11/13/07 8:06 PM Page 261

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<!-- // ... other code -->
<script type="text/javascript" src="/js/prototype.js"></script>
<script type="text/javascript"

src="/js/scriptaculous/scriptaculous.js"></script>
<script type="text/javascript" src="/js/scripts.js"></script>

</head>
<body>

<!-- // ... other code -->

Figure 7-3 shows how status messages are displayed on a typical page in our web applica-
tion. This message is a result of clicking the Publish Post button on the preview page for a post.

Figure 7-3. Displaying the status message after a blog post has been sent live

Summary
In this chapter we began the implementation of the blogging functionality of our Web 2.0
application. Specifically, we added the ability to create, edit, and delete posts. We also imple-
mented a simple publishing system that allows users to preview a blog post before they
publish it. The blog posts aren’t actually published anywhere yet—we will do this in Chapter 9.

The key concepts we covered in this chapter include the following:

• Extending the permissions system as required.

• Cross-site scripting (XSS) and cross-site request forgery (CSRF) attacks and how they
can occur.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM262

9063Ch07CMP2 11/13/07 8:06 PM Page 262

• Preventing such attacks by correctly filtering user-submitted data. We achieved this by
defining a white list of allowed HTML tags and attributes, and stripping out everything
else.

• Implementing a simple notification system using the Zend_Controller flash messenger
and Scriptaculous, so users know what (if any) action has been performed.

In Chapter 8 we will continue to build on the blogging system by adding greater functionality
to the blog manager. This will include an Ajax-powered blog post listing to help users manage
their blogs, as well a WYSIWYG editor so users can format their posts more easily.

CHAPTER 7 ■ BUILDING THE BLOGGING SYSTEM 263

9063Ch07CMP2 11/13/07 8:06 PM Page 263

9063Ch07CMP2 11/13/07 8:06 PM Page 264

Extending the Blog Manager

In Chapter 7 we began implementing the blogging functionality in our web application,
which included giving users the ability to add, edit, and delete posts, as well as allowing them
to preview posts prior to sending them live.

In this chapter, we will continue to implement these blog management tools, building on
what we started in the previous chapter. The features we will implement include the following:

• Retrieving multiple posts. So far in the blog manager we load only one blog post data-
base record at a time. We will look at how to effectively retrieve large amounts of data
from the database in a single operation.

• Displaying existing blog posts. Using the functions we create to retrieve multiple blog
posts, we will create an index page used to list a user’s posts so they can preview or edit
them as required. We will make this post index Ajax-powered to help users quickly
access their previous posts.

• Integrating a WYSIWYG editor. We will implement FCKeditor, an open source What You
See Is What You Get (WYSIWYG) editor. This will allow users to easily format their blog
posts with HTML using the provided toolbar.

Once you have completed this chapter, the blog management tools will be in a sufficient
state to allow users to quickly and easily post new entries to their blogs. This will allow users to
move on (in Chapter 9) to publishing their blog so other users can view it.

Listing Blog Posts on the Blog Manager Index
Currently users are able to create new blog posts using the tools created in Chapter 7,
but there is no way to return to existing posts to edit them. For users to easily manage
their blog posts, we will now add a list of all their posts on the blog manager index page
(http://phpweb20/blogmanager).

We’ll display their posts so all of their posts from the current month are displayed at the
top of the page (with a short teaser summary of each post), with a monthly summary to the
side of this list, in the left column. The user will be able to click a month to reload the page
with the selected month’s posts showing.

Once we have completed this functionality, we will improve this code to use Ajax to fetch
a list of the selected month’s post, meaning the page will not have to be reloaded. Initially we
are creating the “non-Ajax” version of the blog manager index, which is provided for accessi-
bility and for browsers that don’t support JavaScript.

265

C H A P T E R 8

9063Ch08CMP2 11/11/07 12:35 PM Page 265

The process for achieving this is as follows:

1. Retrieving the posts for the specified month (this will default to the current month)

2. Retrieving a list of the other months that contain posts, as well as the number of posts
belonging to that month

3. Outputting the selected month’s posts with a brief summary of the post

4. Outputting the summary of months, linking back to the indexAction() method to list
those posts

Fetching Blog Posts from the Database
Before we can do anything else, we must allow multiple records to be accessed at one time in
the DatabaseObject_BlogPost class. So far, we have only ever loaded one record at a time; how-
ever, now we want to load multiple records.

To do this, we’ll write four separate static methods that we can use in this chapter, as well
as in other parts of the application (when displaying blog posts in other areas of the site):

• GetPosts(): This method will retrieve an array of posts based on the options passed in.
This includes the ability to set the offset and limit of the returned results for multipaged
data. It will return an array of DatabaseObject_BlogPost objects.

• GetPostsCount(): This method will return the total number of posts that match the
passed-in criteria. Since GetPosts() will be able to return multipaged data (in that we
can specify the offset and limit), we will need to know the total number of posts so the
number of pages can be determined.

• GetMonthlySummary(): Similar to GetPostsCount(), this method is used to return the
number of posts found for each month in the specified date range. If no date range is
specified, then all months with posts will be included.

• _GetBaseQuery(): This private method will be used by each of the previous functions to
build a query for the specified options. This is purely used to prevent code duplication.
For instance, if you wanted to add a new option to how posts are retrieved in GetPosts(),
you would want this same functionality in GetPostsCount() so an accurate count is
returned.

Creating the _GetBaseQuery() Method
Since GetPosts(), GetPostsCount(), and GetMonthlySummary() will all rely on _GetBaseQuery(),
I’ll cover the _GetBaseQuery() method first. We’ll use the Zend_Db_Select class that comes with
the Zend_Db component of the Zend Framework. This class is used to build SQL select queries.

It provides methods to easily add the various parts that make up such a query. For exam-
ple, the where() method is called to add a where clause. For more information on this class,
you can read the Zend Framework manual entry at http://framework.zend.com/manual/en/
zend.db.select.html.

To instantiate Zend_Db_Select, you can use new Zend_Db_Select($db) (where $db is the
database connection), or you can call $db->select() to retrieve a new instance.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER266

9063Ch08CMP2 11/11/07 12:35 PM Page 266

Listing 8-1 shows the complete _GetBaseQuery() function as it fits into the DatabaseObject_
BlogPost class.

Listing 8-1. The _GetBaseQuery() Function, Used to Build a SQL Select Statement (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

private static function _GetBaseQuery($db, $options)
{

// initialize the options
$defaults = array(

'user_id' => array(),
'from' => '',
'to' => ''

);

foreach ($defaults as $k => $v) {
$options[$k] = array_key_exists($k, $options) ? $options[$k] : $v;

}

// create a query that selects from the blog_posts table
$select = $db->select();
$select->from(array('p' => 'blog_posts'), array());

// filter the records based on the start and finish dates
if (strlen($options['from']) > 0) {

$ts = strtotime($options['from']);
$select->where('p.ts_created >= ?', date('Y-m-d H:i:s', $ts));

}

if (strlen($options['to']) > 0) {
$ts = strtotime($options['to']);
$select->where('p.ts_created <= ?', date('Y-m-d H:i:s', $ts));

}

// filter results on specified user ids (if any)
if (count($options['user_id']) > 0)

$select->where('p.user_id in (?)', $options['user_id']);

return $select;
}

}
?>

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 267

9063Ch08CMP2 11/11/07 12:35 PM Page 267

The first thing this method does is define an array of default options. At this stage, the
only options are the user_id parameter (to specify which user to filter returned data on) and
the from and to parameters, which define the date range of returned posts.

Next we loop over these defaults to initialize all of these values in the $options array, so
we know they will exist when we try to access them in the remainder of the method.

The next step is to instantiate Zend_Db_Select by calling $db->select(). Typically the first
thing you should do with your new instance of Zend_Db_Select is to define the tables to select
from and to define which fields to select from those tables. Each table to select from can be
specified using the from() method (you must call it once for each table).

The first argument to from() is the name of the table. You can use either a string or an
array for this argument. Using an array allows you to give an alias to the table name for later
use in the query. This array consists of one element: the value is the name of the table, while
its key is the table alias.

We will be using the blog_posts table, which we will give an alias of p. Hence, the first
argument to from() is array('p' => 'blog_posts').

The second argument to from() is the fields you want to select. You can select one field by
specifying a single string, or you can select multiple fields by using an array (where each ele-
ment corresponds to a column from the table). In our case, we use an empty array since
_GetBaseQuery() is used only to build the base options for the query. In the other methods that
call _GetBaseQuery(), we will specify which fields to select.

Next we check for the presence of the from and to parameters, which are used to filter
the posts by the date and time stored in the ts_created column of the blog_posts table. If the
options are empty, we ignore them, but if they have been specified, we add where clauses to
restrict the dates based on these timestamps.

The next thing we to do is add where clauses to filter the results on the user_id column.
The Zend_Db class takes care of quoting the values. This is extremely important since this helps
to prevent malicious users who try to attack your applications using SQL injection.

When calling the where() method, the first argument is the where clause, which can
include a question mark to indicate a placeholder for a value that should be substituted into
the clause. The second (optional) argument is the value that should be substituted in for the
question mark.

When Zend_Db quotes values, it checks their types so values are included correctly. For
example, if an array is specified (as in our case), each value is quoted accordingly (and then
joined by a comma). This allows us to pass in multiple values in the $options['user_id']
value, meaning we can filter on multiple users at once if we want to do so.

■Note Using an array as the value is designed for using in rather than an equals sign. So if
$options['user_id'] were defined as array(1, 2, 3, 4), the generated SQL would read user_id
in (1, 2, 3, 4).

Finally, we return the Zend_Db_Select object. This allows GetPosts() and GetPostsCount()
to make further additions to the query if required (which they will, as you will now see). Note
that the query generated thus far is unusable since we haven’t specified any fields to select (as
noted earlier in the discussion of the from() method).

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER268

9063Ch08CMP2 11/11/07 12:35 PM Page 268

Creating the GetPostsCount() Function
Next we define the GetPostsCount() method, which returns the total number of results that
would be returned for the passed-in criteria (that is, the number of rows that GetPosts()
would return if no limit were specified). Just like in _GetBaseQuery(), we accept an array called
$options that holds the required options for the database query. There are no options specific
to GetPostsCount(), so it simply passes on the array to _GetBaseQuery().

Listing 8-2 shows the GetPostsCount() method, which belongs in the BlogPost.php file in
the ./include/DatabaseObject directory. Since we already specified the table to select from
in _GetBaseQuery(), we pass null as the argument to from() and include only which column
to fetch—in this case count(*), since we are counting the number of rows. It then uses the
fetchOne() function to return the first element of the first returned row, which in this case will
be the total number of rows found.

Listing 8-2. The GetPostsCount() Method, Which Determines the Total Number of Rows That
Would Be Returned (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public static function GetPostsCount($db, $options)
{

$select = self::_GetBaseQuery($db, $options);
$select->from(null, 'count(*)');

return $db->fetchOne($select);
}

private static function _GetBaseQuery($db, $options)
{

// ... other code
}

}
?>

Creating the GetPosts() Function
Now that we have a good idea of how _GetBaseQuery() and GetPostsCount() work, we
can write the GetPosts() function. The idea in this function is to build the query with
_GetBaseQuery() and then add the required fields to select.

The other important task we do here and not in _GetBaseQuery() is to set the offset, limit,
and ordering options. Since these options don’t apply to GetPostsCount(), they must be done
here instead of in _GetBaseQuery().

I have split this function up into three parts so we can easily dissect it. Listing 8-3 shows
the first part of the function.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 269

9063Ch08CMP2 11/11/07 12:35 PM Page 269

Listing 8-3. The First Third of the GetPosts() Function (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public static function GetPosts($db, $options = array())
{

// initialize the options
$defaults = array(

'offset' => 0,
'limit' => 0,
'order' => 'p.ts_created'

);

foreach ($defaults as $k => $v) {
$options[$k] = array_key_exists($k, $options) ? $options[$k] : $v;

}

$select = self::_GetBaseQuery($db, $options);

// set the fields to select
$select->from(null, 'p.*');

// set the offset, limit, and ordering of results
if ($options['limit'] > 0)

$select->limit($options['limit'], $options['offset']);

$select->order($options['order']);

■Note Using Zend_Db_Select helps make queries that work on different database servers. For example,
MySQL uses LIMIT x, y or LIMIT y OFFSET x to limit the returned results, while PostgreSQL uses
OFFSET x LIMIT y (where x is the offset and y is the limit).

The next step is to perform the database query and build an array of DatabaseObject_
BlogPost objects that we can return. We use the $db->fetchAll() method to retrieve all the
database data and write it to an array. Since a single instance of the DatabaseObject subclass
(such as DatabaseObject_BlogPost) corresponds to a single database record, we need multiple
instances of this class: one for each row returned from the SQL we have just created.

To help us create this array, we use the static BuildMultiple() helper method of
DatabaseObject. We pass the name of the class (DatabaseObject_BlogPost, which we can
use __CLASS__ to dynamically generate) to this method as well as the data we’re using to build
the array of objects. Listing 8-4 shows this process. The key of each element in the array corre-
sponds to its post_id value.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER270

9063Ch08CMP2 11/11/07 12:35 PM Page 270

Listing 8-4. Creating an Array of DatabaseObject_BlogPost Objects (BlogPost.php)

// fetch post data from database
$data = $db->fetchAll($select);

// turn data into array of DatabaseObject_BlogPost objects
$posts = self::BuildMultiple($db, __CLASS__, $data);
$post_ids = array_keys($posts);

if (count($post_ids) == 0)
return array();

The process of creating the database data for GetPosts() is nearly done; however, when
we have previously used an instance of DatabaseObject_BlogPost, the object has also had a
Profile_BlogPost object attached to it as the $profile property. Since all of the important
data of the post (such as the title and content) is stored in the profile, we must load the profile
for each of the blog posts.

When a record is normally loaded with DatabaseObject, the postLoad() method is auto-
matically called. Since this would result in an SQL query for every row (in order to load the
profile), we need a more efficient solution. Instead, we are going to use a method that is
included with my Profile class that is used to create multiple Profile instances. Doing this
means only a single SQL statement is executed internally, rather than one for each blog post
for which we’re loading the profile.

We use the BuildMultiple() method of the Profile class to retrieve an array of Profile_
BlogPost objects. The first argument is the database connection, the second is the Profile
subclass to use, while the third argument consists of the IDs of the posts to load. This is effec-
tively the same as calling $profile = new Profile_BlogPost($db, $post_id) once for every
blog post.

Finally, we must match up each Profile_BlogPost object with the corresponding
DatabaseObject_BlogPost object. In both the $profiles and $posts arrays, the key corre-
sponds to the post_id of the element.

To assign each profile to its corresponding blog post, we loop over each post and look for
a matching profile record. If one isn’t found, we simply make sure we call setPostId() so we
can write to the profile if required (the profile property is set to be an instance of Profile_
BlogPost in the DatabaseObject_BlogPost constructor).

Listing 8-5 shows the conclusion of the GetPosts() method. Once again, this code belongs
in the BlogPost.php file in ./include/DatabaseObject.

Listing 8-5. Loading the Profile Data for Each Blog Post (BlogPost.php)

// load the profile data for loaded posts
$profiles = Profile::BuildMultiple(

$db,
'Profile_BlogPost',
array('post_id' => $post_ids)

);

foreach ($posts as $post_id => $post) {

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 271

9063Ch08CMP2 11/11/07 12:35 PM Page 271

if (array_key_exists($post_id, $profiles)
&& $profiles[$post_id] instanceof Profile_BlogPost) {

$posts[$post_id]->profile = $profiles[$post_id];
}
else {

$posts[$post_id]->profile->setPostId($post_id);
}

}

return $posts;
}

// ... other code
}

?>

Retrieving a Monthly Summary of Posts
As an extra utility function, we will now implement a function called GetMonthlySummary(),
which returns a summary of the number of posts in each month. Once again we use the
$options array that we pass on to _GetBaseQuery(), allowing us to easily extend the capabili-
ties of the function in the future.

This function is slightly different from GetPosts() and GetPostsCount(), since we will be
grouping the results by the year and month of each post.

Listing 8-6 shows the code for GetMonthlySummary(), which builds the query once again
using Zend_Db_Select and then calls fetchPairs() to create an array that uses the first column
(the year and month) as the key and the second column (the number of posts) as the value.

Listing 8-6. Building the SQL Query and Fetching the Post Data (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public static function GetMonthlySummary($db, $options)
{

if ($db instanceof Zend_Db_Adapter_Pdo_Mysql)
$dateString = "date_format(p.ts_created, '%Y-%m')";

else
$dateString = "to_char(p.ts_created, 'yyyy-mm')";

// initialize the options
$defaults = array(

'offset' => 0,
'limit' => 0,
'order' => $dateString . ' desc'

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER272

9063Ch08CMP2 11/11/07 12:35 PM Page 272

);

foreach ($defaults as $k => $v) {
$options[$k] = array_key_exists($k, $options) ? $options[$k] : $v;

}

$select = self::_GetBaseQuery($db, $options);
$select->from(null,

array($dateString . ' as month',
'count(*) as num_posts'));

$select->group($dateString);

$select->order($options['order']);

return $db->fetchPairs($select);
}

// ... other code
}

?>

After calling _GetBaseQuery(), we add the fields we require to the statement. To execute
the query, we call fetchPairs(). This method returns an array of the rows returned from the
SQL query. It uses the first selected column as the array key and the second selected column
as the array element.

In this code, we use the timestamp as the array key and the number of posts for that
month as the array value. The format string we pass to MySQL’s date_format() function will
generate a timestamp in the format of YYYY-MM, so in the case of November 2007, the
returned month column would have the value 2007-11.

■Note The date_format() function is specific to MySQL and will not work in other database servers.
Other servers such as PostgreSQL use the to_char() function instead, which is why we check the type of
database adapter being used in Listing 8-6.

Next we must group the data by the year/month value, before setting the ordering
options.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 273

9063Ch08CMP2 11/11/07 12:35 PM Page 273

■Note In MySQL, if you give a column alias to a function call (as we did by using date_format() as
month), you can then refer directly to the month pseudocolumn in other parts of the statement (in this case
in group by and order by). In other database servers, this syntax is not allowed—the function call must
be used explicitly in each required place. This is the reason we assigned the function call to the variable in
the PHP code ($dateString).

Assigning Recent Posts and the Monthly Summary to the
Template
Since we have just written code to retrieve posts from the database, we can now fetch all the
data we need to display on the blog manager index. We are going to retrieve two different
items:

• The posts for the selected month using the GetPosts() function (using the current
month as the default).

• The total number of posts by the logged-in user using the GetPostsCount() function.

To display data that we retrieve from GetMonthlySummary(), we are going to create a
Smarty plug-in, which we will look at shortly.

Listing 8-7 shows the code we add to the indexAction() method in the
BlogmanagerController.php file in order to fetch a summary of the blog posts for the
current user.

Listing 8-7. Calling the New Post Retrieval Functions from indexAction()
(BlogManagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

// ... other code

public function indexAction()
{

// initialize the month
$month = $this->getRequest()->getQuery('month');
if (preg_match('/^(\d{4})-(\d{2})$/', $month, $matches)) {

$y = $matches[1];
$m = max(1, min(12, $matches[2]));

}
else {

$y = date('Y'); // current year
$m = date('n'); // current month

}

$from = mktime(0, 0, 0, $m, 1, $y);

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER274

9063Ch08CMP2 11/11/07 12:35 PM Page 274

$to = mktime(0, 0, 0, $m + 1, 1, $y) - 1;

$options = array(
'user_id' => $this->identity->user_id,
'from' => date('Y-m-d H:i:s', $from),
'to' => date('Y-m-d H:i:s', $to),
'order' => 'p.ts_created desc'

);

$recentPosts = DatabaseObject_BlogPost::GetPosts($this->db,
$options);

// get the total number of posts for this user
$totalPosts = DatabaseObject_BlogPost::GetPostsCount(

$this->db,
array('user_id' => $this->identity->user_id)

);

$this->view->month = $from;
$this->view->recentPosts = $recentPosts;
$this->view->totalPosts = $totalPosts;

}

// ... other code
}

?>

The first thing we do in this action is initialize the selected month and year. By default, the
current month and year is selected, but if a valid string (in the form of YYYY-MM) is specified,
then the month and year in that string are used instead.

Once we have the month and year, we can define the from and to parameters for GetPosts().
We use mktime() to generate the start of the month, and then we find the start of the next month
and subtract 1 to find the last second in the selected month. Another way would be to use
mktime(23, 59, 59, date('n', $from), date('t', $from), date('Y', $from), since the t
parameter returns the number of days in a given month. I think the first way is simpler.

In each of the $options arrays defined in this code, the key parameter is the user_id
parameter. If this isn’t specified, then posts will be returned for all users, not just the current
user.

The final step in this method is to assign the returned data to the template.

■Note You could assign these values directly to the template (that is, $this->view->recentPosts =
DatabaseObject_BlogPost::GetPosts(…)), but I prefer to group all the template assignments together
at the end of the method so I can quickly see exactly which data will be available in the template just by
looking at the end of the method.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 275

9063Ch08CMP2 11/11/07 12:35 PM Page 275

Displaying Recent Posts in the Template
We now have all of the recent posts (if any) assigned to template, as well as a timestamp of
the month they are from. We can now write a template to output these posts. Rather than
outputting them directly to the ./templates/blogmanager/index.tpl template (that is, the
template for the indexAction() method of BlogmanagerController), we’ll create a helper
template to output the necessary HTML. We will then include this template from index.tpl.

The reason we do this is so we can easily add some Ajax functionality to this page, which
we will be doing later in the “Ajaxing the Blog Monthly Summary” section. By creating a
separate template, we can generate HTML in the background HTTP request (which uses
XMLHttpRequest) and directly display the output. Let’s forget about the Ajax part for now,
though; we will add that functionality later in this chapter.

As I mentioned, I like to store helper templates in a directory called lib, which then sepa-
rates them from the main controller action templates. Listing 8-8 shows the contents of the
month-preview.tpl template, which we store in the ./templates/blogmanager/lib directory.
Since this template is specific to the blog manager, I have created a separate lib directory in
./templates/blogmanager rather than using the “global” lib directory.

Listing 8-8. A Basic Template to Output All the Posts for a Single Month (month-preview.tpl)

<h2>{$month|date_format:'%B %Y'}</h2>

{if $posts|@count == 0}
<p>

No posts found for this month.
</p>

{else}
<dl>

{foreach from=$posts item=post}
<dt>

{$post->ts_created|date_format:'%a, %e %b'}:
getId()}">

{$post->profile->title|escape}

{if !$post->isLive()}

not published
{/if}

</dt>

<dd>
{$post->getTeaser(100)|escape}

</dd>
{/foreach}

</dl>
{/if}

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER276

9063Ch08CMP2 11/11/07 12:35 PM Page 276

This template is fairly straightforward in that it assumes a timestamp called $month is
assigned, as well as an array of DatabaseObject_BlogPost objects called $posts. The template
loops over each post and outputs it inside a definition list (<dl>). The <dl> HTML tag serves
our needs well, because we want to output the date and title of the blog (using the definition
title tag <dt>), followed by a brief summary of the content (using the definition description
tag <dd>).

To include a short summary (also known as a teaser) of the blog post, we call the
getTeaser() method from the DatabaseObject_BlogPost class. Listing 8-9 shows the code
for this method, which we add to the BlogPost.php file in ./include/DatabaseObject.

To ensure the preview of the content fits on a single line, we apply the PHP strip_tags()
function as a modifier. Additionally, we use the Smarty truncate modifier to restrict the total
length to 100 characters.

Listing 8-9. Generating a One-Line Summary of a Blog Post (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public function getTeaser($length)
{

require_once('Smarty/plugins/modifier.truncate.php');

return smarty_modifier_truncate(strip_tags($this->profile->content),
$length);

}

// ... other code
}

?>

To use the month-preview.tpl template created in Listing 8-8, we must now include it (using
Smarty’s {include} function) in the index.tpl template from the ./templates/blogmanager
directory. Listing 8-10 shows the changes to this template (which we started in Chapter 7).

Listing 8-10. Displaying a Summary of the User’s Blog and Outputting the Assigned Posts
(index.tpl)

{include file='header.tpl' section='blogmanager'}

{if $totalPosts == 1}
<p>

There is currently 1 post in your blog.
</p>

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 277

9063Ch08CMP2 11/11/07 12:35 PM Page 277

{else}
<p>

There are currently {$totalPosts} posts in your blog.
</p>

{/if}

<form method="get" action="{geturl controller='blogmanager' action='edit'}">
<div class="submit">

<input type="submit" value="Create new blog post" />
</div>

</form>

<div id="month-preview">
{include file='blogmanager/lib/month-preview.tpl'

month=$month
posts=$recentPosts}

</div>

{include file='footer.tpl'}

At the start of this template we include some basic introductory text that uses the
$totalPosts variable. Note that we change the language depending on the number of posts.
This is simple to do, yet if you look closely at many computer or web applications, developers
often seem to miss this (have you ever noticed text along the lines of “1 blog posts found”?).

The only thing to do now is to add a few extra styles to tidy up this output. We will make
the date and title appear in bold, as well as making the status text for unpublished posts a bit
smaller and not bold. Listing 8-11 shows these styles, which should be added to the
styles.css file (in ./htdocs/css).

Listing 8-11. Styling the Blog Post Summary (styles.css)

#month-preview .status {
font-weight : normal;
font-size : 0.9em;

}

#month-preview dt {
font-weight : bold;

}

If you now visit http://phpweb20/blogmanager after logging in to the web application, you
should see a display similar to Figure 8-1. The posts for the current month are now being dis-
played, although there’s no way to navigate to past months. We will add this to the template in
the next section.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER278

9063Ch08CMP2 11/11/07 12:35 PM Page 278

Figure 8-1. Displaying a summary of posts from the current month

Displaying the Monthly Summary
Now that we are displaying a summary of posts from the current month, we need a way to dis-
play posts from the other months. In Listing 8-6 we created the GetMonthlySummary() method,
which gives us an array of months and the number of posts belonging to that month.

We will now create a Smarty plug-in to retrieve this data and assign it to the template. We
could have generated this data in the indexAction() method and then assigned it directly;
however, the problem with this occurs when we want to show the same data on another page.
We would have to retrieve and assign the data on every page on which we wanted to display it.
This means if we decided to change the layout of the pages, we would need to make changes
to the PHP code, not just the templates. Using a Smarty plug-in allows us to get the data when-
ever we like.

To bring the data from GetMonthlySummary(), we are going to use Smarty code as follows:

{get_monthly_blog_summary user_id=$identity->user_id assign=summary}

Effectively what this code means is that we are going to create a custom Smarty function
called get_monthly_blog_summary. This function will take two arguments: the ID of the user the
summary is being fetched for and the name of the template variable to assign the summary to
(meaning we will be able to access the $summary variable in the template after this function has
been called).

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 279

9063Ch08CMP2 11/11/07 12:35 PM Page 279

■Note The reason we pass in the user ID instead of automatically retrieving it within the plug-in is that by
doing it this way we can use this plug-in when displaying users’ public home pages. Since the ID in that
case is dependent on the page being looked at and not which user is viewing the page, we specify the ID
using the function argument.

Listing 8-12 shows the code for this plug-in. We save this code to a file called function.get_
monthly_blog_summary.php, which we store in the ./include/Templater/plugins directory.

Listing 8-12. A Custom Smarty Plug-in to Retrieve the Blog Summary
(function.get_monthly_blog_summary.php)

<?php
function smarty_function_get_monthly_blog_summary($params, $smarty)
{

$options = array();

if (isset($params['user_id']))
$options['user_id'] = (int) $params['user_id'];

$db = Zend_Registry::get('db');

$summary = DatabaseObject_BlogPost::GetMonthlySummary($db, $options);

if (isset($params['assign']) && strlen($params['assign']) > 0)
$smarty->assign($params['assign'], $summary);

}
?>

The first thing this plug-in does is to check for the user_id parameter. If it is set, it adds it
to the $options array. We must fetch the $db object from the application registry because it is
required to make the call to GetMonthlySummary().

Finally, we determine the variable name to use for assigning the data back to the template.
As you saw earlier, we’ll use a variable called $summary. After calling get_monthly_blog_summary,
we can simply loop over the $summary array in the template as we would with any other array.

■Note You could argue that this technique is using application logic within a template, which as discussed
in Chapter 2 is a bad thing. To some degree this is application logic, although technically speaking we are
doing it only for the purpose of the view—we are not causing any application side effects. Additionally,
sometimes you need to make minor sacrifices in the way code is structured in order to provide flexibility.

Calling the Smarty Plug-in in the Side Columns
We are now going to use the plug-in we just created to output the monthly summary in the left
column of the site template. By using the plug-in, we have made it very easy to include this

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER280

9063Ch08CMP2 11/11/07 12:35 PM Page 280

data on other pages also. The one problem we now run into is that to add content to either of
the side columns, we must alter the footer.tpl template.

Since we don’t want to include this data site-wide, we must make some enhancements to
our template structure to allow us to include these additions to the left column only when
required.

To do this, we’ll pass two optional parameters when we include the footer.tpl template.
The first parameter will specify a template to use to generate content for the left column,
while the second parameter will specify a template for generating content in the right column.

First, let’s create the template that calls the get_monthly_blog_summary plug-in and out-
puts its data. This is the template we will pass to footer.tpl to output. Listing 8-13 shows the
left-column.tpl template, which we store in the ./templates/blogmanager/lib directory. Note
that we use the class name .box, because this is the class we defined earlier for styling content
areas in the side columns.

Listing 8-13. Outputting the Data from the get_monthly_blog_summary Plug-in (left-column.tpl)

{get_monthly_blog_summary user_id=$identity->user_id assign=summary}

{if $summary|@count > 0}
<div id="preview-months" class="box">

<h3>Your Blog Archive</h3>

{foreach from=$summary key=month item=numPosts}

{$month|date_format:'%B %Y'}

({$numPosts} post{if $numPosts != 1}s{/if})

{/foreach}

</div>

{/if}

Second, we must modify the index.tpl template (from ./templates/blogmanager) to tell
footer.tpl to use this template. Listing 8-14 shows the change we make to the bottom
{include} call.

Listing 8-14. Specifying the Template to Use in the Left Column of the Site (index.tpl)

{include file='header.tpl' section='blogmanager'}

{if $totalPosts == 1}
<p>

There is currently 1 post in your blog.
</p>

{else}
<p>

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 281

9063Ch08CMP2 11/11/07 12:35 PM Page 281

There are currently {$totalPosts} posts in your blog.
</p>

{/if}

<form method="get" action="{geturl controller='blogmanager' action='edit'}">
<div class="submit">

<input type="submit" value="Create new blog post" />
</div>

</form>

<div id="month-preview">
{include file='blogmanager/lib/month-preview.tpl'

month=$month
posts=$recentPosts}

</div>

{include file='footer.tpl'
leftcolumn='blogmanager/lib/left-column.tpl'}

You should also make the same change to the edit.tpl and preview.tpl templates from
the blog manager controller.

The final change is to make footer.tpl recognize the $leftcolumn and $rightcolumn
parameters and include the templates accordingly. Listing 8-15 shows the new version of
footer.tpl, which now includes the left and right templates if required. Note that for the left
column we can use the else block to display some default content. I haven’t worried about
this for the right column, since there is always authentication data shown (whether logged in
or not).

Listing 8-15. Including the Template to Generate Left and Right Column Content (footer.tpl)

</div>
</div>

<div id="left-container" class="column">
{if isset($leftcolumn) && $leftcolumn|strlen > 0}

{include file=$leftcolumn}
{else}

<div class="box">
Left column placeholder

</div>
{/if}

</div>

<div id="right-container" class="column">
<!--

// ... status messages box
// ... authentication box

-->

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER282

9063Ch08CMP2 11/11/07 12:35 PM Page 282

{if isset($rightcolumn) && $rightcolumn|strlen > 0}
{include file=$rightcolumn}

{/if}
</div>

<div id="footer">
<!-- // ... other code -->

</div>
</body>

</html>

Including Additional Data in the Side Column Sometimes
In certain instances you will want different combinations of data included in the side
columns. For example, you might want to show the blog summary and the authentication
data in the same column—but only on a particular page.

To achieve this, you would make a new template that outputs this data accordingly and
then pass this new template in as the value to $leftcolumn or $rightcolumn.

The recommended way to do this is to not include multiple content boxes in a single tem-
plate but to keep them all in separate templates and then to create an additional wrapper
template to bring them together.

For example, you might store the monthly blog summary in blog-summary-box.tpl, and
you might keep authentication data in authentication-box.tpl. You would then create
another template called some-template.tpl that might look as follows:

{include file='blog-summary-box.tpl'}
{include file='authentication-box.tpl'}

You would then use some-template.tpl as the value for $leftcolumn. To keep the code rel-
atively simple, I have chosen not to break up the templates to this degree.

Ajaxing the Blog Monthly Summary
In the previous section, we wrote code to output blog posts in the blog manager for the
selected month, with a list of all months that have posts in the side column. The way it works
now is that if a month is clicked by the user, the page reloads, displaying the posts from that
month.

We’ll now enhance this system. Instead of reloading the page for the newly selected
month, we’ll make the blog manager index page fetch the posts in the background using Ajax
and then display them on the page.

This code will still be accessible for non-JavaScript users, because the solution we have
already implemented does not rely on JavaScript. This new functionality will be built on top of
the existing functionality, meaning those who use it will have an improved experience but
those who don’t will not suffer.

The only other consideration we must make is that we’re also listing the monthly sum-
mary on the edit and preview pages. If one of the months is clicked from these pages, we will
not use Ajax to fetch the new page content but instead navigate normally to the page as we
would without this Ajax functionality.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 283

9063Ch08CMP2 11/11/07 12:35 PM Page 283

Creating the Ajax Request Output
Before we add any JavaScript code, we will create the necessary changes to generate the Ajax
request data. We can reuse the indexAction() method from BlogmanagerController.php with-
out any changes to code. All we need to do is to change its corresponding template so the page
header and footer aren’t included when the controller action is requested via Ajax.

To help with this, we’ll make a minor addition to the CustomControllerAction class.
In Chapter 6 we discussed how the isXmlHttpRequest() method worked with the Zend_
Controller_Request_Http class. This method is a simple way to determine whether the current
request was initiated using XMLHttpRequest. We’ll assign the value of this function call to all
templates.

Listing 8-16 shows the changes we make to the CustomControllerAction.php file in the
./include directory.

Listing 8-16. Adding Ajax Request Detection to Templates (CustomControllerAction.php)

<?php
class CustomControllerAction extends Zend_Controller_Action
{

// ... other code

public function postDispatch()
{

// ... other code

$this->view->isXmlHttpRequest = $this->getRequest()->isXmlHttpRequest();
}

// ... other code
}

?>

Next we modify the template for the BlogmanagerController’s indexAction() method. All
we do in this template now is check the value of the $isXmlHttpRequest variable that is auto-
matically assigned. If this value is false, then the template will generate output as previously,
whereas if it’s true, then we won’t include the page header and footer.

Listing 8-17 shows the changes we make to the index.tpl file in ./templates/blogmanager.

Listing 8-17. Altering the Output for Ajax Requests (index.tpl)

{if $isXmlHttpRequest}
{include file='blogmanager/lib/month-preview.tpl'

month=$month
posts=$recentPosts}

{else}
{include file='header.tpl' section='blogmanager'}

{if $totalPosts == 1}
<p>

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER284

9063Ch08CMP2 11/11/07 12:35 PM Page 284

There is currently 1 post in your blog.
</p>

{else}
<p>

There are currently {$totalPosts} posts in your blog.
</p>

{/if}

<form method="get" action="{geturl controller='blogmanager' action='edit'}">
<div class="submit">

<input type="submit" value="Create new blog post" />
</div>

</form>

<div id="month-preview">
{include file='blogmanager/lib/month-preview.tpl'

month=$month
posts=$recentPosts}

</div>

{include file='footer.tpl'
leftcolumn='blogmanager/lib/left-column.tpl'}

{/if}

The BlogMonthlySummary JavaScript Class
To initiate the background HTTP request to fetch the monthly summary data (using
XMLHttpRequest), we need to attach some JavaScript code to each of the links in the month
listing. To do this, we’ll create a JavaScript class called BlogMonthlySummary.

This class will be loaded and instantiated automatically when we include the left-
column.tpl template we created earlier this chapter, as you will see shortly.

Using some of the Prototype techniques you learned in Chapter 5, we can create a class to
encapsulate all the functionality we need. The general algorithm for this class is as follows:

1. Check for the existence of the link container (where the month links are listed) and the
content container (where the blog posts are listed). If either one doesn’t exist, stop exe-
cution (meaning clicking the month links will just load the respective page as normal).

2. Observe the click event for each of the links found in the link container.

3. When a link is clicked, initiate an Ajax request using the Ajax.Updater class. This class
is built on top of the Ajax.Request class and is used specifically to update an element
with the results from XMLHttpRequest.

4. Cancel the click event so the browser doesn’t follow the link href. We use the
Event.stop() method in the event handler to achieve this.

Listing 8-18 shows the contents of the BlogMonthlySummary.class.js file, which we store
in the ./htdocs/js directory.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 285

9063Ch08CMP2 11/11/07 12:35 PM Page 285

Listing 8-18. The BlogMonthlySummary JavaScript Class (BlogMonthlySummary.class.js)

BlogMonthlySummary = Class.create();

BlogMonthlySummary.prototype = {

container : null,
linkContainer : null,

initialize : function(container, linkContainer)
{

this.container = $(container);
this.linkContainer = $(linkContainer);

if (!this.container || !this.linkContainer)
return;

this.linkContainer.getElementsBySelector('a').each(function(link) {
link.observe('click', this.onLinkClick.bindAsEventListener(this));

}.bind(this));
},

onLinkClick : function(e)
{

var link = Event.element(e);

var options = {
};

new Ajax.Updater(this.container,
link.href,
options);

Event.stop(e);
}

};

After creating the class using Prototype’s Class.create() function, we define the con-
structor for the class (the initialize() method), which accepts the content container as the
first argument and the link container as the second argument.

If both of these containers are found to exist, the code continues to add the click event
handler to each of the links. This results in the onLinkClick() method being called if any of the
links are clicked.

■Note Chapter 6 discusses the Prototype event handling mechanism. You’ll also see how the bind() and
bindAsEventListener() functions work in that chapter.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER286

9063Ch08CMP2 11/11/07 12:35 PM Page 286

We begin the onLinkClick() method by determining exactly which link was clicked. This is
achieved by calling the Event.element() function with the event object passed to onLinkClick().
We will use the href attribute of the link as the URL to pass to Ajax.Updater.

Currently there are no extra options we need to pass to this Ajax request; however, we still
define the options hash since we will be using it later in this chapter.

The onLinkClick() method concludes by calling Event.stop(). This is to ensure the
browser doesn’t follow the link, thereby defeating the point of using Ajax.

Installing the BlogMonthlySummary Class
Now we must update the left-column.tpl template to load and instantiate the
BlogMonthlySummary JavaScript class.

Listing 8-19 shows the updated version of left-column.tpl, which now loads and instan-
tiates this JavaScript class. Once you reload your page, clicking these links while on the blog
manager index will refresh the middle container without reloading the whole page!

Listing 8-19. Instantiating the BlogMonthlySummary Class (left-container.tpl)

{get_monthly_blog_summary user_id=$identity->user_id assign=summary}

{if $summary|@count > 0}
<div id="preview-months" class="box">

<h3>Your Blog Archive</h3>

{foreach from=$summary key=month item=numPosts}

{$month|date_format:'%B %Y'}

({$numPosts} post{if $numPosts != 1}s{/if})

{/foreach}

</div>

<script type="text/javascript" src="/js/BlogMonthlySummary.class.js"></script>
<script type="text/javascript">

new BlogMonthlySummary('month-preview', 'preview-months');
</script>

{/if}

Notifying the User About the Content Update
Although the code we have just implemented works well and updates the page as it should,
the only problem with it is that it doesn’t give any feedback to the user. To fix this, we will use
the messages container we created in Chapter 7 to notify the user that new content is being
loaded.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 287

9063Ch08CMP2 11/11/07 12:35 PM Page 287

In this section, we will create two new functions: message_write(), which we use to write
a new message to the message container (and then make the container appear if hidden), and
message_clear(), which hides the message container.

We will then update the BlogMonthlySummary JavaScript class to use these functions so the
user knows when page content has been updated.

Managing Message Containers
The first thing we need to do is to create a new setting for the settings hash in the scripts.js
file. When we implement the message_clear() function next, we’ll add a delay so the message
is cleared only after the specified interval. This ensures the user has time to read the message
before it disappears.

Listing 8-20 shows the messages_hide_delay setting we add to scripts.js in ./htdocs/js.
This value is the number of seconds before the message container is hidden.

Listing 8-20. Adding the Delay Setting to the Application JavaScript Settings (scripts.js)

var settings = {
messages : 'messages',
messages_hide_delay : 0.5

};

Next we define the message_write() and message_clear() functions, which can go after
the Event.observe() call in the scripts.js file. Listing 8-21 shows these functions.

Listing 8-21. Setting and Clearing Site Status Messages (scripts.js)

function message_write(message)
{

var messages = $(settings.messages);
if (!messages)

return;

if (message.length == 0) {
messages.hide();
return;

}

messages.update(message);
messages.show();
new Effect.Highlight(messages);

}

function message_clear()
{

setTimeout("message_write('')", settings.messages_hide_delay * 1000);
}

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER288

9063Ch08CMP2 11/11/07 12:35 PM Page 288

The message_write() function works by first checking the length of the message to show.
If it is an empty string, the messages container is hidden. If the string isn’t empty, then the
content of the container is updated to show the message. Finally, the container is shown, and
the Scriptaculous highlight effect is once again applied.

The message_clear() function simply calls the message_write() function with an empty
string after the specified delay time. Note that to be consistent with Scriptaculous, I specified
the delay time in seconds, while setTimeout() accepts milliseconds (1/1000th of a second).
This is why we multiply the value by 1,000.

Updating the Messages Container with BlogMonthlySummary
Finally, we must modify the BlogMonthlySummary JavaScript class to use the message_write()
and message_clear() functions.

We’ll call message_write() in the link click event handler (onLinkClick()), and we
will then call message_clear() once the Ajax request has completed. We do this by calling
message_clear() in the onSuccess callback option for Ajax.Updater.

Listing 8-22 shows the new version of the onLinkClick() event handler in
BlogMonthlySummary.class.js (in the./htdocs/js directory).

Listing 8-22. Updating the Message Container When Loading Blog Posts
(BlogMonthlySummary.class.js)

BlogMonthlySummary = Class.create();

BlogMonthlySummary.prototype = {

// ... other code

onLinkClick : function(e)
{

var link = Event.element(e);

var options = {
onComplete : message_clear

};

message_write('Loading blog posts...');

new Ajax.Updater(this.container,
link.href,
options);

Event.stop(e);
}

};

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 289

9063Ch08CMP2 11/11/07 12:35 PM Page 289

In Figure 8-2 you can see how the blog manager index page now looks after an archive
link in the left column has been clicked. Note the status message at the top of the right of the
picture, while at the bottom Firebug shows that a background request is running.

Figure 8-2. The blog manager index when an archive link is clicked

We have now completed the Ajax functionality on the blog manager monthly summary
page. The way we have implemented it works very well, because of the following reasons:

• It is easy to maintain. We are using the same Smarty template for both the non-Ajax
and Ajax versions, meaning to change the layout we need to modify only this one file.

• The code is clean. There is almost no clutter in our HTML code for the extensive
JavaScript code that is used. The only code is a single call to instantiate the
BlogMonthlySummary class.

• The page is accessible. If the user doesn’t have a JavaScript-enabled browser (or dis-
ables JavaScript), they are not restricted from using this section in any way. It is simply
enhanced for users who do use JavaScript.

• The page is scalable. An alternative method to loading the posts by Ajax would be to
preload them and place them in hidden containers on the page. This works fine for a
small number of posts, but once you hit a larger number, the page takes much longer to
load and uses more memory on your computer.

• It tells the users what is happening. By adding the message container, the user knows
that something is happening when they click an archive link, even though the browser
doesn’t start to load another page.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER290

9063Ch08CMP2 11/11/07 12:35 PM Page 290

• The code is cross-browser compatible. Because we used the Prototype library, we were
easily able to make code that works across all major browsers. Using Prototype cuts
down on development time, because only a single solution needs to be implemented—
not one for each browser.

Integrating a WYSIWYG Editor
The final step in implementing the blog management tools we created in Chapter 7 and this
chapter is to add “what you see is what you get” functionality. This allows users to easily for-
mat their blog posts without requiring any real knowledge of HTML.

The WYSIWYG editor we will be using is called FCKeditor, named so after its creator,
Frederico Caldeira Knabben. It is a very powerful and lightweight editor, and it doesn’t require
installation of any programs on the client’s computer (aside from their web browser, that is).

More important, it is highly customizable. These are some of the customization features it
contains:

• It is easy to change the toolbar buttons available to users.

• Custom plug-ins can be written, allowing the developer to create their own toolbar
buttons.

• It contains a built-in file browser that allows users to upload files to the server in real-
time. Additionally, it allows custom-made connectors, which are scripts written in a
server-side language (such as PHP) that handle uploads through the file browser. The
connector can save the file wherever or however it needs to, and it can send back the
list of files to the FCKeditor file browser as required.

• The editor can be reskinned. In other words, the color scheme and look and feel of the
buttons can be changed.

• It provides the ability to define custom templates that can be easily inserted into the
editor (not to be confused with the Smarty templates in our application).

Figure 8-3 shows the default layout of FCKeditor, with all the toolbar buttons.
Other features that make FCKeditor a popular choice for content management systems

include the following:

• It generates valid XHTML code (subject to how the user chooses to manipulate the
HTML).

• Users can paste in content from Microsoft Word, which will automatically be cleaned
up by the editor.

• It is cross-browser compatible. Currently it is not compatible with Safari because of
some restrictions in that browser, but it works on other major browsers. Mac OS users
can use Firefox as an alternative. Users of Safari are shown a plain textarea instead of
the editor.

In the following sections, we will download, install, and integrate FCKeditor into our web
application. We will make some basic customizations to the editor, including restricting the
toolbar buttons so only the HTML tags listed earlier this chapter will be generated.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 291

9063Ch08CMP2 11/11/07 12:35 PM Page 291

Figure 8-3. An example of editing content in FCKeditor

Additionally, we will develop a Smarty plug-in that allows us to easily load the WYSIWYG
in our templates when required.

Downloading and Installing FCKeditor
At time of writing, the current version of FCKeditor is version 2.4.3. This can be downloaded
from http://www.fckeditor.net/download. We will be storing the code in the ./htdocs/js
directory, just as we did with Prototype and Scriptaculous.

Once you have the FCKeditor_2.4.3.tar.gz file, extract it to that directory. I have
assumed you downloaded the file to /var/www/phpweb20/htdocs/js.

cd /var/www/phpweb20/htdocs/js
tar -zxf FCKeditor_2.4.3.tar.gz
rm FCKeditor_2.4.3.tar.gz
cd fckeditor/
ls
_documentation.html fckeditor.afp fckeditor.php fckstyles.xml
_samples/ fckeditor.asp fckeditor.pl fcktemplates.xml
_upgrade.html fckeditor.cfc fckeditor.py htaccess.txt
_whatsnew.html fckeditor.cfm fckeditor_php4.php license.txt
editor/ fckeditor.js fckeditor_php5.php
fckconfig.js fckeditor.lasso fckpackager.xml

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER292

9063Ch08CMP2 11/11/07 12:35 PM Page 292

The first thing I usually like to do is go through and clean out the unnecessary files in the
distribution. I will leave all these items for now, but you may consider deleting the following:

• Loader classes for other languages (the fckeditor.* files in the main directory, aside
from the fckeditor_php5.php file, which we will use shortly).

• The file browser and upload connectors that aren’t being used. These can be found
within the ./htdocs/js/fckeditor/editor/filemanager directory.

Configuring FCKeditor
Next we must configure the way FCKeditor works. We do this by modifying fckconfig.js in the
main directory. Most of the settings we won’t need to touch, but we will need to customize
the toolbars and then disable the connectors that are enabled by default.

First we’ll define a new toolbar that contains only buttons for the list of tags we defined in
Chapter 7. These tags are <a>, , , , , <i>, , , , <p>, and
.

On line 94 in fckconfig.js a toolbar called Default is defined, which contains a wide
range of buttons, which is directly followed by a simpler toolbar called Basic. We will leave
these two toolbars in this file and define a new toolbar called phpweb20 that is a combination
of these toolbars. The primary reason for leaving them in is to use them as a reference for the
other buttons that can be added.

Listing 8-23 shows the JavaScript array we use to create a new toolbar. This can be placed
in fckconfig.js directly after the other toolbars. Note that the '-' element renders a separator
in the toolbar.

Listing 8-23. The Custom FCKeditor Toolbar (fckconfig.js)

FCKConfig.ToolbarSets["phpweb20"] = [
['Bold','Italic','-','OrderedList','UnorderedList','-',
'Link','Unlink','-','Image']

];

■Note Technically speaking, Listing 8-23 actually defines a toolbar set, not a toolbar. In other words, one
or more toolbars makes up a toolbar set. This code creates an array of arrays, where the internal arrays are
the actual toolbars.

The only other change we need to make in this configuration file is to disable the file
manager and upload connectors, since we aren’t allowing users to upload files. Disabling them
removes the respective options from the user interface.

Listing 8-24 shows the new lines for fckconfig.js, all of which set the listed values to
false. You can find at the bottom of the fckconfig.js file where each of these variables is
defined as true and update them accordingly.

Listing 8-24. Disabling the File Browser and Upload Connectors (fckconfig.js)

FCKConfig.LinkBrowser = false;

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 293

9063Ch08CMP2 11/11/07 12:35 PM Page 293

FCKConfig.ImageBrowser = false;
FCKConfig.FlashBrowser = false;
FCKConfig.LinkUpload = false;
FCKConfig.ImageUpload = false;
FCKConfig.FlashUpload = false;

Loading FCKeditor in the Blog Editing Page
Finally, we need to load the editor in the blog post’s editing form. First we will write a Smarty
plug-in that outputs HTML code to load. There is a PHP class bundled with FCKeditor to facil-
itate the generation of the HTML.

The FCKeditor class is located in the fckeditor_php5.php file in the main FCKeditor direc-
tory (./htdocs/js/fckeditor). To keep our own code organized, we will copy this class to the
application include directory. Additionally, we will rename the file to FCKeditor.php to be consis-
tent with our application file naming. This also means it can be autoloaded with Zend_Loader.

cd /var/www/phpweb20/htdocs/js/fckeditor
cp fckeditor_php5.php /var/www/phpweb20/include/FCKeditor.php

Now we create a new Smarty plug-in called wysiwyg, which we can call in our template
using {wysiwyg}. Listing 8-25 shows the contents of function.wysiwyg.php, which we store in
./include/Templater/plugins.

Listing 8-25. A Smarty Plug-in to Create the FCKeditor in a Template (function.wysiwyg.php)

<?php
function smarty_function_wysiwyg($params, $smarty)
{

$name = '';
$value = '';

if (isset($params['name']))
$name = $params['name'];

if (isset($params['value']))
$value = $params['value'];

$fckeditor = new FCKeditor($name);
$fckeditor->BasePath = '/js/fckeditor/';
$fckeditor->ToolbarSet = 'phpweb20';
$fckeditor->Value = $value;

return $fckeditor->CreateHtml();
}

?>

When we call this Smarty function in the template, we provide two arguments: the name
parameter and the value parameter. The name parameter defines the name of the form ele-

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER294

9063Ch08CMP2 11/11/07 12:35 PM Page 294

ment the user’s HTML is submitted in. The value parameter sets the default value to be shown
in the WYSIWYG editor.

After initializing these parameters, we instantiate the FCKeditor class. Next we must tell
the $fckeditor object where the editor code is stored relative to the web root (we stored it in
http://phpweb20/js/fckeditor). Next we must tell it to use the new toolbar we just created
(phpweb20) rather than the default toolbar (Default). We then pass in the default value to the
class. Finally, we call the CreateHtml() method to generate the FCKeditor HTML code, and we
return it to the template.

■Note You can also set the width and height of the editor. By default, a width of 100 percent and a height
of 200 pixels are used. To change the height to 300 pixels, you would use $fckeditor->Height = 300;.

The only thing left to do now is to call {wysiwyg} in the edit.tpl template in the
./templates/blogmanager directory. Listing 8-26 shows the changes we make to this template.
I’ve moved the WYSIWYG editor out of the fieldset to make the form look a little nicer. Addi-
tionally, I’ve wrapped it in a div with a class name of .wysiwyg, allowing us to add a new CSS
class that adds some extra spacing around the editor.

This new code replaces the textarea that was in the template previously.

Listing 8-26. Loading the WYSIWYG in the Template

<!-- // ... other code -->

<fieldset>
<legend>Blog Post Details</legend>

<!-- // ... other code -->
</fieldset>

<div class="wysiwyg">
{wysiwyg name='content' value=$fp->content}
{include file='lib/error.tpl' error=$fp->getError('content')}

</div>

<!-- // ... other code -->

Finally, we add an extra style to styles.css (in ./htdocs/css) to add some extra spacing
around the editor, as shown in Listing 8-27.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER 295

9063Ch08CMP2 11/11/07 12:35 PM Page 295

Listing 8-27. Adding Spacing Around the WYSIWYG Editor (styles.css)

.wysiwyg { margin : 10px 0; }

By creating a Smarty plug-in to help with loading the WYSIWYG editor, it is extremely sim-
ple to load the editor, and we manage to keep the template code very clean. Additionally, you
can easily define new parameters for the plug-in that you can then use with the FCKeditor
class as required.

Summary
In this chapter, we extended the blog post management tools that we began in Chapter 7. We
first looked at how to select large amounts of data from the database in an efficient manner
before using this data to help users manage their blogs.

Next we extended the capabilities of the blog post listing so it is Ajax-powered, thereby
making it easier to use (since each page will load more quickly). One of the biggest advantages
of our implementation is that it will automatically fall back to a non-Ajax solution if the user
wasn’t using JavaScript.

The final step in this chapter was to implement FCKeditor, an open source WYSIWYG edi-
tor that allows users to easily format their blog posts using HTML.

In the next chapter, we will focus on creating a public home page for each user that lists
all of their live blog posts. When we do this, we will also update the application home page so
it displays blog posts from all users that choose to have their posts included.

CHAPTER 8 ■ EXTENDING THE BLOG MANAGER296

9063Ch08CMP2 11/11/07 12:35 PM Page 296

Personalized User Areas

In Chapters 7 and 8 we created the necessary forms and tools for users to manage their blogs,
allowing them to create, edit, and delete posts. In this chapter we will be extending the web
application further by creating a public home page for each user, which will be used to display
their blog posts.

In addition to creating a home page for each user, we will populate the main home page
of the web application. The home page will consist of blog posts from all users who choose to
have their posts included. They will be able to make this choice by using the options we will
add to the “Your Account Details” page in this chapter.

One key technique we will be looking at in this chapter is defining a custom URL scheme,
instead of using the /controller/action method used previously. The address of a user’s home
page will be defined by their username, and we will manipulate the request handling of
Zend_Controller_Front so that http://phpweb20/user/username will be used as the unique
address to a user’s page. Combining this with the URL field we defined for blog posts, we will
also create a unique permanent URL for every blog post that exists in the database.

Controlling User Settings
The first thing we’re going to do in this chapter is implement a settings-management system
for users. This will allow them to control the way their blog behaves. These are the settings we
want users to be able to control:

• Whether or not posts are shown on the application home page. In the last section of
this chapter we will change the application so it displays blog posts from all registered
users on the home page if they choose to. By default, we will not include a user’s posts
on the home page, but if they want to allow it, they will be able to change this setting.

• The number of posts displayed on their own home page. When we set up the user
home page, we will list the most recent posts on the this page. This setting will let the
user control how many posts are shown on their home page. To see further posts, visi-
tors will be able to click on a month to view all posts from that month.

When we created the database tables for managing user data in Chapter 3, we created two
tables: users and users_profile. The users_profile table was designed to allow us to easily
expand the amount of data stored for each user account. We will use this table to store the
settings we add in this section.

Because of how this system is designed, you will be able to expand on it in the future if
you want to give users more control over how their accounts or public home pages work. 297

C H A P T E R 9

9063Ch09CMP2 11/13/07 8:08 PM Page 297

■Note Since we have also created a profile table for blog posts (blog_posts_profile), we could even
add per-post settings. You could use this in a number of different scenarios. For example, if you had allowed
visitors to post comments on your blog posts, you could use per-post settings to disable commenting on a
single post. An appropriate place to add these settings to the interface would be in the “Edit Blog Post” form
that we added in Chapter 7.

Presenting Customizable Settings to Users
To give users control over these settings, we will add them to the “Your Account Details” page.
This involves adding the necessary HTML elements to the template for this page, as well as
updating the class that processes this form (FormProcessor_UserDetails).

■Note The code used to update user details was introduced at the end of Chapter 4. We didn’t actually
implement this code in the book, so you will need to first download the source code to implement the
functionality in this section. This includes the UserDetails.php file in ./include/FormProcessor,
the detailsAction() and detailscompleteAction() methods in ./include/Controllers/
AccountController.php, and the details.tpl and detailscomplete.tpl templates in ./templates/
account.

To implement settings management, the first thing we will do is add the settings
described previously to the “Your Account Details” template. Listing 9-1 shows the HTML
code we will add to the ./templates/account/details.tpl template. This code also includes
several variables from the form processor. We will add these to the form processor shortly.

Listing 9-1. Allowing Users to Configure Settings When Updating Their Account Details
(details.tpl)

{include file='header.tpl' section='account'}

<form method="post" action="{geturl action='details'}">

<fieldset>
<legend>Update Your Details</legend>

<!-- // ... other code -->

</fieldset>

<fieldset>
<legend>Account Settings</legend>

<dl>

CHAPTER 9 ■ PERSONALIZED USER AREAS298

9063Ch09CMP2 11/13/07 8:08 PM Page 298

<dt>
How many blog posts would you like to show on your home page?

</dt>
<dd>

<input type="text" name="num_posts" value="{$fp->num_posts}" />
</dd>

<dt>
Would you like to display your blog posts on the web site home page?

</dt>
<dd>

<select name="blog_public">
<option value="0"
{if !$fp->blog_public} selected="selected"{/if}>No</option>

<option value="1"
{if $fp->blog_public} selected="selected"{/if}>Yes</option>

</select>
</dd>

</dl>
</fieldset>

<div class="submit">
<input type="submit" value="Save New Details" />

</div>

</form>

{include file='footer.tpl'}

■Tip To create standards-compliant XHTML, we must use selected="selected" to choose the prese-
lected value in a <select> element. This is a change from the HTML 4.01 specification, which says Boolean
values such as this should be specified using selected without an attribute value. Similarly, when prese-
lecting the state of a check box (<input type="checkbox" … />), checked="checked" should be used.
For more information about this, refer to the “Attribute Minimization” section at http://www.w3.org/TR/
xhtml1/#h-4.5.

This form can be viewed by logged-in users at http://phpweb20/account/details.

Processing Changes to User Settings
The next change we will make is to the form processor that processes the details.tpl tem-
plate. First, we will retrieve the existing settings from the user profile so that they can be used
in the form. Then we will process the submitted values and save them to the user profile.

CHAPTER 9 ■ PERSONALIZED USER AREAS 299

9063Ch09CMP2 11/13/07 8:08 PM Page 299

Listing 9-2 shows the changes we will make to the UserDetails.php file in ./include/
FormProcessor.

Listing 9-2. Changes to the User Details Form Processor (UserDetails.php)

<?php
class FormProcessor_UserDetails extends FormProcessor
{

// ... other code

public function __construct($db, $user_id)
{

// ... other code

$this->blog_public = $this->user->profile->blog_public;
$this->num_posts = $this->user->profile->num_posts;

}

public function process(Zend_Controller_Request_Abstract $request)
{

// ... other code

// process the user settings
$this->blog_public = (bool) $request->getPost('blog_public');
$this->num_posts = max(1, (int) $request->getPost('num_posts'));

$this->user->profile->blog_public = $this->blog_public;
$this->user->profile->num_posts = $this->num_posts;

// if no errors have occurred, save the user
if (!$this->hasError()) {

$this->user->save();
}

// return true if no errors have occurred
return !$this->hasError();

}
}

?>

It is now possible for users to update their settings by submitting the form shown in
Figure 9-1.

CHAPTER 9 ■ PERSONALIZED USER AREAS300

9063Ch09CMP2 11/13/07 8:08 PM Page 300

Figure 9-1. Allowing users to update account settings

Creating Default User Settings
If you were paying close attention to Figure 9-1, you might have noticed that the num_posts
setting is empty. In other words, this setting won’t be set until the form has been submitted. It
would be better to include some default value so the user has some reference point for chang-
ing the setting when they use this form.

In order to assign default settings to a new user account, we will modify the preInsert()
method on the DatabaseObject_User class. This method is automatically called prior to a new
user record being saved to the database—we used this method previously to create the pass-
word for a new account.

Listing 9-3 shows the changes we will make to the User.php file in ./include/DatabaseObject.
I have set the default value for num_posts to be 10, and I chose false as the default setting for
blog_public. You may prefer different values.

Listing 9-3. Assigning Default Settings for Users (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

// ... other code

CHAPTER 9 ■ PERSONALIZED USER AREAS 301

9063Ch09CMP2 11/13/07 8:08 PM Page 301

protected function preInsert()
{

$this->_newPassword = Text_Password::create(8);
$this->password = $this->_newPassword;

// default account settings
$this->profile->blog_public = false;
$this->profile->num_posts = 10;

return true;
}

// ... other code
}

?>

■Note You could present these settings to users when they register, thereby not requiring any defaults to
be set here. However, you typically want to encourage people to register, so you want to make the process
as simple as possible and allow them to further customize their account once they log in.

To test that this functionality works correctly, try registering as a new user in the applica-
tion. Once you have done so, you can either check the users_profile table in the database to
see which values have been saved, or you can log in with the new account and visit the “Your
Account Details” form we just modified to see if the setting values are prepopulated correctly.

The UserController Class
The next thing we will do is create a new controller for Zend_Controller_Front to display the
public page. We will call it UserController. In this class, we will implement three main actions:

• indexAction(): This method will be used to generate the home page for each user,
accessible from http://phpweb20/user/username. On this page, we will list the most
recent posts on the given user’s blog. The number of posts to be shown is controlled by
the num_posts setting we added in the previous section.

• archiveAction(): This method will be used to generate a list of all posts for a single
month (which I refer to as a monthly archive). The output will be basically the same as
that of indexAction(). By default, the current month will be selected.

• viewAction(): This method will be used to display a single blog post. The posts listed on
the indexAction() and monthAction() methods will link to this method.

In the left column of each of these pages, a list of months that have blog posts will be
shown, much like in the blog manager. The key difference is that this list is for visitors to view
the blog archive, while the one in the blog manager allows the blog owner to access their posts
to update them.

CHAPTER 9 ■ PERSONALIZED USER AREAS302

9063Ch09CMP2 11/13/07 8:08 PM Page 302

In addition to these three main actions, we will also implement two methods called
userNotFoundAction() and postNotFoundAction(), the first being used when a nonexistent user-
name is present in the URL, while the second when trying to display a nonexistent blog post.

Routing Requests to UserController
For all the other controllers we have created so far, the access URL has been in the format
http://phpweb20/controller/action; for example, the edit action of the blogmanager con-
troller has a URL of http://phpweb20/blogmanager/edit. If no action is specified, index is the
default action used for a controller. So in the case of blogmanager, the index action can be
accessed using either http://phpweb20/blogmanager or http://phpweb20/blogmanager/index.

In UserController, we will be altering the way URLs work, since all actions in this con-
troller will relate to a particular user. In order to specify the user, we will change the URL
scheme to be http://phpweb20/user/username/action. As you can see, we have inserted the
username between the controller name (user) and the action.

To achieve this, we must modify the router for our front controller. The router—an
instance of Zend_Controller_Router—is responsible for determining the controller and action
that should handle a user’s request based on the request URL. When Zend_Controller_Front is
instantiated in our bootstrap index.php file, a set of default routes is automatically created to
route requests using the http://phpweb20/controller/action scheme. We want to keep these
routes intact for all other requests, but for the UserController we want an extra route. To do
this, we must define the route, and then inject it into the front controller’s router.

Creating a New Route
To create a new route, there are three Zend_Controller classes that can be used (or you can
develop your own). These are the existing classes:

• Zend_Controller_Router_Route: This is the standard route used by Zend_Controller,
allowing a combination of static and dynamic variables in a URL. A dynamic variable is
indicated by preceding the variable name with a colon, such as :controller. The route
we have used in this application so far has been /:controller/:action. For example, in
http://phpweb20/blogmanager/edit, blogmanager is assigned to the controller request
variable, while edit is assigned to the action request variable.

• Zend_Controller_Router_Route_Static: In some cases, the URL you want to use doesn’t
require any dynamic variables, and you can use this static route type. For example, if
you wanted a URL such as http://phpweb20/sitemap, which internally was handled by a
controller action called sitemapAction() in one of your controllers, you could route this
URL accordingly, using /sitemap as the static route.

• Zend_Controller_Router_Route_Regex: This type of route allows you to route URLs
based on regular expression matches. For example, if you wanted to route all requests
such as http://phpweb20/1234 (where 1234 could be any number), you could match
the route using /([0-9]+). When used in combination with the default routes, any
request that didn’t match this regular expression would be routed using the normal
/:controller/:action route.

CHAPTER 9 ■ PERSONALIZED USER AREAS 303

9063Ch09CMP2 11/13/07 8:08 PM Page 303

We will now create a new route to match a URL scheme of http://phpweb20/user/
username/action. Since this route will only be used for the UserController class we will be
implementing shortly, we will hard-code the controller name (user), while the username and
action values will be determined dynamically. If the action isn’t specified in the URL (as in the
URL http://phpweb20/user/username), the action will default to index, just as it has previously.

The route we will use is user/:username/:action/*. Since we are only using this route
for UserController, we don’t include :controller in the string. When instantiating Zend_
Controller_Router_Route, the first argument is this string, while the second argument is an
array that specifies the default parameters for the request. Since we know the controller for
this request is user, we can specify this. We can also specify index as the default action. There-
fore, the code we use to create this new route is as follows:

$route = new Zend_Controller_Router_Route(
'user/:username/:action/*',
array('controller' => 'user',

'action' => 'index')
);

Injecting the Route into the Router
Once the route has been created, it must be injected into the router so subsequent user
requests will be matched against the route (in addition to any existing routes).

The route is added by calling the addRoute() method on the Zend_Controller router,
which can be accessed from the front controller by calling getRouter(). The first argument to
addRoute() is a unique name to identify the route—it does not actually affect the behavior of
the route.

Listing 9-4 shows the code we will add to ./htdocs/index.php in order to create this route.
The route should be added just prior to dispatching the request with $controller->dispatch().

Listing 9-4. Defining a New Route for User Home Pages (index.php)

<?php
// ... other code

// setup the route for user home pages
$route = new Zend_Controller_Router_Route('user/:username/:action/*',

array('controller' => 'user',
'action' => 'index'));

$controller->getRouter()->addRoute('user', $route);

$controller->dispatch();
?>

CHAPTER 9 ■ PERSONALIZED USER AREAS304

9063Ch09CMP2 11/13/07 8:08 PM Page 304

■Note An alternative solution to the route we have created in this section could be to create URLs like
http://phpweb20/username without including the user controller name in the URL. While this is relatively
easy to achieve, it requires some other changes in coding. For example, when users enter a username on
the registration form, you would need to ensure that the entered username doesn’t conflict with an existing
controller name (or file or directory name). You would also need to be wary of any future controllers you may
want to create, as they will not be able to conflict with an existing username.

Once this route has been added, you will be able to access the username parameter of the
URL inside any of the actions in UserController by calling $request->getUserParam('username').

Dynamically Generating URLs for Custom Routes
When we implemented the {geturl} Smarty plug-in—as well as the getUrl() method in the
CustomControllerAction class—in Chapter 6, we used the Url helper. We used the simple()
method from this class to generate a URL based on the controller and action name. This
helper also provides a method called url(), which can be used to generate more complex
URLs based on custom routes, such as the one we added in Listing 9-4. We will now use this
method to generate the URL to the home page of each user.

To generate a link using the url() method of the Url helper, you pass the route parame-
ters (in our case, the name of the action and the username) as the first parameter, and the
name of the route it is being built for as the second argument. The URL helper will then recon-
struct a URL based on these parameters.

Let’s now look at a specific example. In Listing 9-4, the name of the route we created was
called user. Thus, if we wanted to generate a link to the home page of the user with a user-
name of qz, the following code would be used:

$helper = Zend_Controller_Action_HelperBroker::getStaticHelper('url');

$url = $helper->url(
array('username' => 'qz'),
'user'

);

This code would generate the following string:

/user/qz/

We want to make use of this functionality in our own code, not only for the actions we will
add in this chapter, but also for other actions we will add to this controller later in this book.
To do this, we will add a new function to the CustomControllerAction.php file in ./include.

Listing 9-5 shows the code for the getCustomUrl() method, which accepts the URL
parameters as the first argument and the name of the route as the second argument. As
described in Chapter 6, we can access the helper using $this->_helper->url from within a
controller.

CHAPTER 9 ■ PERSONALIZED USER AREAS 305

9063Ch09CMP2 11/13/07 8:08 PM Page 305

Listing 9-5. Building Complex URLs for Custom Routes (CustomControllerAction.php)

<?php
class CustomControllerAction extends Zend_Controller_Action
{

// ... other code

public function getUrl($action = null, $controller = null)
{

$url = rtrim($this->getRequest()->getBaseUrl(), '/') . '/';
$url .= $this->_helper->url->simple($action, $controller);

return $url;
}

public function getCustomUrl($options, $route = null)
{

return $this->_helper->url->url($options, $route);
}

// ... other code
}

?>

In order to generate URLs with this helper from within our templates, we will also make
some changes to the {geturl} Smarty plug-in. We will modify this plug-in so that if a parame-
ter called route is specified, we will use the url() method of the Url helper; otherwise we will
revert back to the previous method of generating URLs (using simple()).

For instance, to generate a URL back to the home page of the qz user from within a tem-
plate, we will be able to use the following code in the template:

{geturl route='user' username='qz'}

Listing 9-6 shows the changes we will make to the function.geturl.php file in
./include/Templater/plugins.

Listing 9-6. Extending the geturl Smarty Plug-In to Support Custom Routes (function.geturl.php)

<?php
function smarty_function_geturl($params, $smarty)
{

$action = isset($params['action']) ? $params['action'] : null;
$controller = isset($params['controller']) ? $params['controller'] : null;
$route = isset($params['route']) ? $params['route'] : null;

$helper = Zend_Controller_Action_HelperBroker::getStaticHelper('url');

if (strlen($route) > 0) {
unset($params['route']);

CHAPTER 9 ■ PERSONALIZED USER AREAS306

9063Ch09CMP2 11/13/07 8:08 PM Page 306

$url = $helper->url($params, $route);
}
else {

$request = Zend_Controller_Front::getInstance()->getRequest();
$url = rtrim($request->getBaseUrl(), '/') . '/';
$url .= $helper->simple($action, $controller);

}

return $url;
}

?>

■Note The url() method of the Url helper will automatically prepend the Zend_Controller base URL,
but the simple() method does not. This is why we manually do this only for the simple() call in this code.

Generating Other Required Routes
In addition to the route added in Listing 9-4, we will add two more routes: one for displaying
individual blog posts, and one for displaying the monthly archives of a user’s blog.

When we implemented the blog-management tools in Chapters 7 and 8, we included a
url field with each blog post. The value for this field is unique for every post in a single user’s
blog. We will now use this value to create URLs for individual blog posts. Each blog post will
have a URL in the form of /user/username/view/blog-post-url. The controller action that will
handle requests to this route will be called viewAction()—we will implement this method
later in this chapter.

In this particular case, the controller and action name are hard-coded in the URL; it’s the
username and blog post URL that are unique. Thus, we can use the following code to generate
this new route:

$route = new Zend_Controller_Router_Route(
'user/:username/view/:url/*',
array('controller' => 'user',

'action' => 'view')
);

For example, if I created a blog post with the title “My Holiday”, this would generate a
unique URL of my-holiday. The full URL to this blog post (remembering that my username is
qz) would be /user/qz/view/my-holiday.

If I wanted to generate a link to this post from within a Smarty template, I could use the
{geturl} plug-in we modified in Listing 9-6 as follows:

{geturl user='qz' url='my-holiday' route='post'}

CHAPTER 9 ■ PERSONALIZED USER AREAS 307

9063Ch09CMP2 11/13/07 8:08 PM Page 307

■Note This assumes that when we inject the preceding route into the router, we use a name of post. We
will do this shortly.

Similarly, we can now create another route to handle blog post archives. The URL format
for blog archives will be /user/username/archive/year/month. So to view my blog’s archive for,
say, November 2007, the URL would be /user/qz/archive/2007/11.

Once this route has been added (with a name of archive), we will be able to generate a
link to this particular page in Smarty like this:

{geturl user='qz' year=2007 month=11 route='archive'}

The code we use to create this route is as follows:

$route = new Zend_Controller_Router_Route(
'user/:username/archive/:year/:month/*',
array('controller' => 'user',

'action' => 'archive')
);

Listing 9-7 shows the changes we need to make to the bootstrap file (./htdocs/index.php)
in order to create these new routes and add them to the router.

Listing 9-7. Adding the Post and Archive Routes to the Router (index.php)

<?php
// ... other code

// set up the route for user home pages
$route = new Zend_Controller_Router_Route(

'user/:username/:action/*',
array('controller' => 'user',

'action' => 'index')
);

$controller->getRouter()->addRoute('user', $route);

// set up the route for viewing blog posts
$route = new Zend_Controller_Router_Route(

'user/:username/view/:url/*',
array('controller' => 'user',

'action' => 'view')
);

$controller->getRouter()->addRoute('post', $route);

// set up the route for viewing monthly archives
$route = new Zend_Controller_Router_Route(

CHAPTER 9 ■ PERSONALIZED USER AREAS308

9063Ch09CMP2 11/13/07 8:08 PM Page 308

'user/:username/archive/:year/:month/*',
array('controller' => 'user',

'action' => 'archive')
);

$controller->getRouter()->addRoute('archive', $route);

$controller->dispatch();
?>

Handling Requests to UserController
Despite the fact that we have changed the routing rules for this particular controller, we still
create actions in the same way as the other controllers. The only difference is that for all
actions in this controller, there will be a request parameter called username available.

Since each method in the controller is used to present data for a particular user, we
want to load that user’s database record in every action. To aid with this, we will add code to
UserController’s preDispatch() method, which is called automatically prior to the controller
action method being called. Loading the user details in preDispatch() means the user data
will be available to all actions in UserController. If the user record cannot be loaded (such as
if we have an invalid username), we will forward control to a method we will implement
shortly called userNotFoundAction().

Listing 9-8 shows the initial code for the UserController.php file, which is stored in the
./include/Controllers directory.

Listing 9-8. Loading the Requested User Automatically for All Actions (UserController.php)

<?php
class UserController extends CustomControllerAction
{

protected $user = null;

public function preDispatch()
{

// call parent method to perform standard predispatch tasks
parent::preDispatch();

// retrieve request object so we can access requested user and action
$request = $this->getRequest();

// check if already dispatching the user not found action. if we are
// then we don't want to execute the remainder of this method
if (strtolower($request->getActionName()) == 'usernotfound')

return;

// retrieve username from request and clean the string
$username = trim($request->getUserParam('username'));

CHAPTER 9 ■ PERSONALIZED USER AREAS 309

9063Ch09CMP2 11/13/07 8:08 PM Page 309

// if no username is present, redirect to site home page
if (strlen($username) == 0)

$this->_redirect($this->getUrl('index', 'index'));

// load the user, based on username in request. if the user record
// is not loaded then forward to notFoundAction so a 'user not found'
// message can be shown to the user.

$this->user = new DatabaseObject_User($this->db);

if (!$this->user->loadByUsername($username)) {
$this->_forward('userNotFound');
return;

}

// Add a link to the breadcrumbs so all actions in this controller
// link back to the user home page
$this->breadcrumbs->addStep(

$this->user->username . "'s Blog",
$this->getCustomUrl(

array('username' => $this->user->username,
'action' => 'index'),

'user'
)

);

// Make the user data available to all templates in this controller
$this->view->user = $this->user;

}

public function userNotFoundAction()
{

$username = trim($this->getRequest()->getUserParam('username'));

$this->breadcrumbs->addStep('User Not Found');
$this->view->requestedUsername = $username;

}

public function indexAction()
{

}

public function viewAction()
{

}

CHAPTER 9 ■ PERSONALIZED USER AREAS310

9063Ch09CMP2 11/13/07 8:08 PM Page 310

public function postNotFoundAction()
{

}

public function archiveAction()
{

}
}

?>

The first thing we do in this class is define the $user property, which holds an instance of
DatabaseObject_User (created in Chapter 3). This variable will be automatically assigned to all
templates in this controller (this is done on the final line of preDispatch()).

We begin the preDispatch() method by first calling the parent preDispatch() method, as
this contains code that we need executed for all actions (such as initializing the breadcrumbs
trail and flash messenger created in Chapter 6). After this we must check whether the current
action is the user-not-found action. If we don’t do this, the code will enter a recursive loop
that cannot be broken (since it will continually redirect back to the userNotFoundAction()
method).

The preDispatch() method continues by initializing the username parameter from the
request. If the string is empty (as will be the case if a URL of http://phpweb20/user is used),
we ignore the request by just redirecting back to the home page.

■Note We could have used getParam() instead of getUserParam() on the request, but this would fall
back to check “get” and “post” variables if an internal parameter was not found. This means that if you used
http://phpweb20/user?username=validUser, the user record would be loaded. Typically, you don’t
want people to be able to manipulate your applications in a way that wasn’t intended.

If the string isn’t empty, we try to load a DatabaseObject_User record based on the user-
name value. To do this, we implement a loader function called loadByUsername() in the
DatabaseObject_User class, which is shown shortly in Listing 9-9.

If the user record doesn’t load, we instantly forward the request to the userNotFound
action and return from the current function.

■Tip Normally when you call _forward() in the Zend_Controller_Front controller, the current action is
completed before calling the action to which you’re forwarding. If you call _forward() in preDispatch(),
however, the original action is completely skipped and only the new action is executed. In Listing 9-8, we
must still return after calling _forward() because the remainder of the code in preDispatch() will still be
executed otherwise.

CHAPTER 9 ■ PERSONALIZED USER AREAS 311

9063Ch09CMP2 11/13/07 8:08 PM Page 311

Next, we add a new step to the breadcrumb trail—one that will be automatically added
to the trail for all actions in this controller. We use the getCustomUrl() method we added in
Listing 9-5.

Finally, we write the $this->user object to the view so it is available for all actions within
this controller.

As mentioned previously, we also need to implement a new record in the DatabaseObject_
User class to allow us to load a user record based on their username (previously we have used
the record’s unique ID to load a record when using DatabaseObject). Listing 9-9 shows the
code for the loadByUsername() method we will add to User.php in ./include/DatabaseObject.
For a further description of how custom loader methods for DatabaseObject work, refer to the
example in Chapter 7 (Listing 7-14).

Listing 9-9. The loadByUsername() and getUrl() Functions for DatabaseObject_User (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

// ... other code

public function loadByUsername($username)
{

$username = trim($username);
if (strlen($username) == 0)

return false;

$query = sprintf('select %s from %s where username = ?',
join(', ', $this->getSelectFields()),
$this->_table);

$query = $this->_db->quoteInto($query, $username);

return $this->_load($query);
}

// ... other code
}

?>

We will finish off UserController.php for now by creating the userNotFoundAction()
method. In order to tell the user specifically which username could not be found in the
template, we will initialize it once again from the request and assign it to the template.

Listing 9-10 shows a template you can use for userNotFoundAction(). This code belongs
in the usernotfound.tpl template in ./templates/user.

CHAPTER 9 ■ PERSONALIZED USER AREAS312

9063Ch09CMP2 11/13/07 8:08 PM Page 312

Listing 9-10. A Sample Template That Can Be Used When an Invalid User Is Specified in the URL
(usernotfound.tpl).

{include file='header.tpl'}

<p>
The user "{$requestedUsername|escape}" could not be found.

</p>

{include file='footer.tpl'}

Displaying the User’s Blog
Now that we know which user’s blog is being requested when the UserController class is
invoked, we can load the relevant blog posts and display them. This works much like the blog
index in the blog manager controller we created in Chapter 6. The key difference is in the pres-
entation:

• Only approved blog posts will ever be included in this controller. This applies to all
actions, not just the index action.

• The index page will only show recent blog posts (determined by the num_posts setting
we implemented earlier in this chapter). All posts from previous months will be accessi-
ble using the archive links. Each month in the archive will have a unique URL.

• Rather than seeing edit and delete buttons, users will see a link to view the full blog post.

Displaying the Blog Index Page
On the blog index page, we want to show recent posts, although this differs from the blog
manager in that we must be wary of the following:

• If we only show posts from the current month, there may be no content to display. This
is especially true when a new month begins.

• If we show all content from the current month, there may be too much content to dis-
play. If the user has been extremely active in the month, there could be 30 or 40 posts,
which could result in a long loading time for the page.

• If we don’t show all of the posts from the current month, the viewer may not be able to
access posts from earlier in the month.

We are going to solve each of these problems by displaying only a limited number of posts
on the user’s home page (based on the num_posts setting) and providing a link to the monthly
archives.

CHAPTER 9 ■ PERSONALIZED USER AREAS 313

9063Ch09CMP2 11/13/07 8:08 PM Page 313

Implementing the indexAction() Method
The first change we will make is to the indexAction() method in the UserController class. We
created a placeholder for this method earlier in this chapter, but we will now implement it by
retrieving the relevant posts using the GetPosts() method from DatabaseObject_BlogPost.

This method begins by determining the number of posts to retrieve. We first check for the
num_posts setting (making sure the value is at least 1 by using max()). If this setting isn’t found
in the user profile, a default value of 10 is used.

Next, we will build an array of options to pass to DatabaseObject_BlogPost::GetPosts().
In this array, we will include the $limit variable just created, and we’ll specify that only live
blog posts should be loaded (by using the DatabaseObject_BlogPost::STATUS_LIVE constant).

Listing 9-11 shows the code we will add to the indexAction() of the UserController.php
file (in ./include/Controllers).

Listing 9-11. Loading the Most Recent Posts in the Index Action (UserController.php)

<?php
class UserController extends CustomControllerAction
{

// ... other code

public function indexAction()
{

if (isset($this->user->profile->num_posts))
$limit = max(1, (int) $this->user->profile->num_posts);

else
$limit = 10;

$options = array(
'user_id' => $this->user->getId(),
'status' => DatabaseObject_BlogPost::STATUS_LIVE,
'limit' => $limit,
'order' => 'p.ts_created desc'

);

$posts = DatabaseObject_BlogPost::GetPosts($this->db,
$options);

$this->view->posts = $posts;
}

// ... other code
}

?>

CHAPTER 9 ■ PERSONALIZED USER AREAS314

9063Ch09CMP2 11/13/07 8:08 PM Page 314

The preceding code includes a parameter called status that we use to ensure that only
live posts are returned; however, the _GetBaseQuery() method in DatabaseObject_BlogPost
doesn’t yet allow for this option. Listing 9-12 shows how we can make changes to the available
options in _GetBaseQuery(), so that the changes are also available in other functions such as
GetPosts() and GetPostsCount(). These changes are made in the BlogPost.php file in
./include/DatabaseObject.

Listing 9-12. Filtering Posts Based on the Status Field (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

private static function _GetBaseQuery($db, $options)
{

// initialize the options
$defaults = array(

'user_id' => array(),
'status' => '',
'from' => '',
'to' => ''

);

// ... other code

// filter results based on post status
if (strlen($options['status']) > 0)

$select->where('status = ?', $options['status']);

return $select;
}

}
?>

Displaying Blog Posts on the User Home Page
To output the posts retrieved in indexAction() of UserController, we will make a template
called index.tpl, which we will store in the ./templates/user directory.

Just as in the blog manager, this template will loop over each post and then call another
template in the loop to control the actual output. This is done so we can reuse this template
when outputting the monthly archives. Listing 9-13 shows the code for index.tpl.

CHAPTER 9 ■ PERSONALIZED USER AREAS 315

9063Ch09CMP2 11/13/07 8:08 PM Page 315

Listing 9-13. Outputting the Most Recent Posts on the User’s Blog (index.tpl)

{include file='header.tpl'}

{if $posts|@count == 0}
<p>

No blog posts were found for this user.
</p>

{else}
{foreach from=$posts item=post name=posts}

{include file='user/lib/blog-post-summary.tpl' post=$post}
{/foreach}

{/if}

{include file='footer.tpl'
leftcolumn='user/lib/left-column.tpl'}

This code first checks whether any posts are in the $posts array. If there are none, it is safe
to assume there are no approved posts in the user’s blog. We then loop over the $posts array,
including the blog-post-summary.tpl template for each iteration. Using a separate template to
output the blog post allows us to reuse the same code on other pages.

■Note By naming the {foreach} loop (that is, specifying the name parameter), we can access the
{$smarty.foreach.name.last} parameter, which is a Boolean value that is true only for the last itera-
tion of the loop. Similarly, Smarty makes the $smarty.foreach.name.first value available (among
others). For more details, refer to the Smarty manual page at http://smarty.php.net/manual/en/
language.function.foreach.php.

Next, we need to create the blog-post-summary.tpl template, which is stored in
./templates/default/user/lib. This template is shown in Listing 9-14.

Listing 9-14. Displaying a Single Blog Post Teaser (blog-post-summary.tpl)

{capture assign='url'}{geturl username=$user->username
url=$post->url
route='post'}{/capture}

<div class="teaser">
<h3>

{$post->profile->title}

</h3>

<div class="teaser-date">

CHAPTER 9 ■ PERSONALIZED USER AREAS316

9063Ch09CMP2 11/13/07 8:08 PM Page 316

{$post->ts_created|date_format:'%b %e, %Y %l:%M %p'}
</div>

<div class="teaser-content summary">
{$post->getTeaser(500)}

</div>

<div class="teaser-links">
Read More...

</div>
</div>

At the beginning of this template, we generate a URL to the full page for the blog post. By
doing this once at the start of the template, we can reuse the $url variable in this template,
rather than having to call {geturl} for every spot we want to include the URL.

Because {geturl} returns the generated URL to the template directly, we can use the
{capture} Smarty plug-in (built into Smarty) to trap the output and assign it to the $url vari-
able. This plug-in works similarly to output buffering in PHP.

The remainder of the template simply outputs a summary of the blog post. In order to
style this output, we can add several styles to the ./htdocs/css/styles.css file, as shown in
Listing 9-15.

Listing 9-15. Styling the Blog Post Preview (styles.css)

.teaser {
border-top : 1px dashed #eee;
padding : 5px 0;
margin : 10px 0;

}

.teaser h3 {
margin : 0;

}

.teaser-date {
font-size : 0.8em;
color : #666;
margin : 0 0 10px 0;

}

.teaser-links {
font-size : 0.9em;
background : #f7f7f7;
padding : 5px;
line-height : 1em;
margin-top : 5px;
clear : both;

}

CHAPTER 9 ■ PERSONALIZED USER AREAS 317

9063Ch09CMP2 11/13/07 8:08 PM Page 317

After creating these templates and making the changes to the style sheet, you should be
able to view a user’s home page, as shown in Figure 9-2.

Figure 9-2. Displaying posts on a user’s public home page

■Caution The template created in Listing 9-13 uses the left-column.tpl template, which we have not
yet created. In order to emulate Figure 9-2, you can either remove this from the code temporarily or create
the ./templates/user/lib/left-column.tpl file. We will implement this template later in this chapter.

Displaying Individual Blog Posts
In the previous section, we created the indexAction() method, which displayed a list of the
most recent blog posts, each with a link to view the full details. We will now implement
viewAction(), which will display the full details of the post.

For now, all the page will show is the title, timestamp, and body content of the post, but
we will expand this page in later chapters when we add more functionality to the blogging
system (such as tags, images, and maps).

Because of the custom route we added earlier in this chapter, the viewAction() method
will be accessed using a URL of http://phpweb20/user/username/view/blogposturl. This

CHAPTER 9 ■ PERSONALIZED USER AREAS318

9063Ch09CMP2 11/13/07 8:08 PM Page 318

means that in order to access the requested blog post URL, we must fetch the url user param-
eter using $request->getUserParam('url'). We can then load the blog post that corresponds
to this URL value for the current user.

Loading Live Blog Posts Using the URL
To load a blog post based on the loaded user record and the blog post URL, we must implement
another loader method in the DatabaseObject_BlogPost class, similar to the loadForUser()
method, but this time using the post URL instead of the post ID. Additionally, we must ensure
that only live records are loaded and not blog posts that are still in draft.

Listing 9-16 shows the code for the loadLivePost() method, which we will add to the
BlogPost.php file in ./include/DatabaseObject.

Listing 9-16. Loading Live Blog Posts Based on the URL (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public function loadLivePost($user_id, $url)
{

$user_id = (int) $user_id;
$url = trim($url);

if ($user_id <= 0 || strlen($url) == 0)
return false;

$select = $this->_db->select();

$select->from($this->_table, $this->getSelectFields())
->where('user_id = ?', $user_id)
->where('url = ?', $url)
->where('status = ?', self::STATUS_LIVE);

return $this->_load($select);
}

// ... other code
}

?>

Implementing the viewAction() Method
Now that we have the ability to load a live blog post based on its URL, we will implement
viewAction()—the method responsible for calling loadLivePost() and then displaying a blog
post’s details.

CHAPTER 9 ■ PERSONALIZED USER AREAS 319

9063Ch09CMP2 11/13/07 8:08 PM Page 319

Listing 9-17 shows the code we will add to the UserController.php file in ./include/
Controllers. I have also included the code for postNotFoundAction(), which is used if a blog
post that isn’t found (or that isn’t live) is requested.

Listing 9-17. Implementing the viewAction() and postNotFoundAction() Methods
(UserController.php)

<?php
class UserController extends CustomControllerAction
{

// ... other code

public function viewAction()
{

$request = $this->getRequest();
$url = trim($request->getUserParam('url'));

// if no URL was specified, return to the user home page
if (strlen($url) == 0) {

$this->_redirect($this->getCustomUrl(
array('username' => $this->user->username,

'action' => 'index'),
'user'

));
}

// try and load the post
$post = new DatabaseObject_BlogPost($this->db);
$post->loadLivePost($this->user->getId(), $url);

// if the post wasn't loaded redirect to postNotFound
if (!$post->isSaved()) {

$this->_forward('postNotFound');
return;

}

// build options for the archive breadcrumbs link
$archiveOptions = array(

'username' => $this->user->username,
'year' => date('Y', $post->ts_created),
'month' => date('m', $post->ts_created)

);

$this->breadcrumbs->addStep(
date('F Y', $post->ts_created),
$this->getCustomUrl($archiveOptions, 'archive')

);
$this->breadcrumbs->addStep($post->profile->title);

CHAPTER 9 ■ PERSONALIZED USER AREAS320

9063Ch09CMP2 11/13/07 8:08 PM Page 320

// make the post available to the template
$this->view->post = $post;

}

public function postNotFoundAction()
{

$this->breadcrumbs->addStep('Post Not Found');
}

// ... other code
}

?>

This method begins by retrieving the url parameter from the request. If this value is
empty (if, for example, the URL http://phpweb20/user/username/view was requested), the
visitor is redirected to the user’s home page.

Next, the code attempts to load a live record based on the url parameter. If the record
was not loaded, the request is forwarded to the postNotFoundAction() method, used to show
a simple error message to the user. This would typically occur if a visitor bookmarked a blog
post that was either deleted or changed from live to draft.

We then add steps to the breadcrumb trail so the user can navigate to a list of other posts in
the month of the current post. We use the getCustomUrl() method of CustomControllerAction to
generate these URLs. Although we haven’t yet implemented the archiveAction() method, we
added the archive route to the router earlier in this chapter.

Finally, the post is assigned to the template so we can output it to the viewer.

Displaying the Blog Post Details
The next step is to make the template that will output the blog post details. In this template,
we will output the timestamp of the blog and the blog post content. The title is displayed auto-
matically, since we added it to the breadcrumb trail. When we add other features to the blog
(such as images, tags, and maps) we will expand on this template to display those new ele-
ments.

Listing 9-18 shows the code for view.tpl, which we write to the ./templates/user directory.

Listing 9-18. Outputting a Single Blog Post in Full (view.tpl)

{include file='header.tpl'}

<div class="post-date">
{$post->ts_created|date_format:'%b %e, %Y %l:%M %p'}

</div>

<div class="post-content">
{$post->profile->content}

</div>

{include file='footer.tpl'
leftcolumn='user/lib/left-column.tpl'}

CHAPTER 9 ■ PERSONALIZED USER AREAS 321

9063Ch09CMP2 11/13/07 8:08 PM Page 321

To style the date, we will add the styles shown in Listing 9-19 to the
./htdocs/css/styles.css file.

Listing 9-19. Formatting the Display of the Blog Post Date (styles.css)

.post-date {
font-size : 0.8em;
color : #666;
margin : 0 0 10px 0;

}

Creating the Template for postNotFoundAction()
Finally, we need to create a template to notify the visitor that the requested blog post couldn’t
be found. This template will be shown if a visitor bookmarks a blog post that has subsequently
been deleted or sent back to draft.

Listing 9-20 shows the postnotfound.tpl template, which is stored in the ./templates/user
directory.

Listing 9-20. Displaying a “Post not Found” Template (postnotfound.tpl)

{include file='header.tpl'}

<p>
The selected post could not be found.

</p>

<p>
username route='user'}">

Return to {$user->username|escape}'s blog

</p>

{include file='footer.tpl'
leftcolumn='user/lib/left-column.tpl'}

Generating Blog Archive Links
Next, we must provide links to each of the months in a user’s blog so all previous posts can
easily be accessed. Thankfully, we already implemented this in Chapter 8 when creating the
blog manager.

We will be adding these links in the side column, once again using the {get_monthly_
blog_summary} Smarty plug-in we created in Chapter 8. In order to use this plug-in, we must
make one modification to it, which is to add an extra parameter to indicate that only live blog
posts should be included. Listing 9-21 shows the changes we will make to the function.get_
monthly_blog_summary.php file in ./include/Templater/plugins.

CHAPTER 9 ■ PERSONALIZED USER AREAS322

9063Ch09CMP2 11/13/07 8:08 PM Page 322

Listing 9-21. Modifying the Plug-In to Only Include Live Posts
(function.get_monthly_blog_summary.php)

<?php
function smarty_function_get_monthly_blog_summary($params, $smarty)
{

$options = array();

if (isset($params['liveOnly']) && $params['liveOnly'])
$options['status'] = DatabaseObject_BlogPost::STATUS_LIVE;

// ... other code
}

?>

We can now create a new template to display content in the left column, just like in the
blog manager. We will call this template left-column.tpl and save it in the ./templates/user/
lib directory. This file is shown in Listing 9-22. The templates we created earlier in this chapter
use this template (view.tpl, usernotfound.tpl, and postnotfound.tpl). Note that this tem-
plate is similar to the corresponding blog manager file (./templates/blogmanager/lib/
left-column.tpl), except that the user ID is specified using $user->getId() instead of
$identity->user_id (since we want the user ID of the blog, not of the logged-in user).

Listing 9-22. Displaying the Monthly Summary for the Current Blog (left-column.tpl)

{get_monthly_blog_summary user_id=$user->getId() assign=summary liveOnly=true}

{if $summary|@count > 0}
<div id="preview-months" class="box">

<h3>{$user->username|escape}'s Blog Archive</h3>

{foreach from=$summary key=month item=numPosts}

username
route='archive'
year=$month|date_format:'%Y'
month=$month|date_format:'%m'}">

{$month|date_format:'%B %Y'}

({$numPosts} post{if $numPosts != 1}s{/if})

{/foreach}

</div>

{/if}

CHAPTER 9 ■ PERSONALIZED USER AREAS 323

9063Ch09CMP2 11/13/07 8:08 PM Page 323

■Note An interesting aspect of this template is in the year and month arguments of the call to {geturl}.
Here we use modifiers on a function argument, whereas previously we’ve only used modifiers when out-
putting a variable directly.

Once you have implemented this template, you will now be able to view a blog post as
well as have links to all the months in your blog. This is shown in Figure 9-3.

Figure 9-3. Viewing the details for a single blog post

Displaying the Monthly Archive
The next step is to create a page that displays all posts for a single month. This is the page that
the links generated in Listing 9-22 link to. To do this, we will implement the archiveAction()
method of UserController. This is the method used by the archive route we created earlier in
this chapter.

Implementing the archiveAction() Method
The archiveAction() method that we use to display all the posts for a single month is
somewhat trivial to implement. All of the pieces are already in place to retrieve this data
(DatabaseObject_BlogPost::GetPosts()) and to display it (the blog-post-summary.tpl
template)—we just now need to glue the pieces together.

CHAPTER 9 ■ PERSONALIZED USER AREAS324

9063Ch09CMP2 11/13/07 8:08 PM Page 324

Listing 9-23 shows the code for archiveAction() as it appears in the UserController.php
file in ./include/Controllers. Note that unlike the blog manager, where we manually parsed
the month and year, we can now simply fetch them out of the request because of the new
route that was created in Listing 9-7.

Listing 9-23. Retrieving All Posts for a Single Month (UserController.php)

<?php
class UserController extends CustomControllerAction
{

// ... other code

public function archiveAction()
{

$request = $this->getRequest();

// initialize requested date or month
$m = (int) trim($request->getUserParam('month'));
$y = (int) trim($request->getUserParam('year'));

// ensure month is in range 1-12
$m = max(1, min(12, $m));

// generate start and finish timestamp for the given month/year
$from = mktime(0, 0, 0, $m, 1, $y);
$to = mktime(0, 0, 0, $m + 1, 1, $y) - 1;

// get live posts based on timestamp with newest posts listed first
$options = array(

'user_id' => $this->user->getId(),
'from' => date('Y-m-d H:i:s', $from),
'to' => date('Y-m-d H:i:s', $to),
'status' => DatabaseObject_BlogPost::STATUS_LIVE,
'order' => 'p.ts_created desc'

);
$posts = DatabaseObject_BlogPost::GetPosts($this->db,

$options);

$this->breadcrumbs->addStep(date('F Y', $from));

// assign the requested month and the posts found to the template
$this->view->month = $from;
$this->view->posts = $posts;

}

// ... other code
}

?>

CHAPTER 9 ■ PERSONALIZED USER AREAS 325

9063Ch09CMP2 11/13/07 8:08 PM Page 325

Finally, we will implement the archive.tpl template, which we will store in the
./templates/user directory. This is shown in Listing 9-24. It is very similar to the ./templates/
user/index.tpl template we implemented earlier in this chapter.

Listing 9-24. Outputting the Monthly Archive (archive.tpl)

{include file='header.tpl'}

{if $posts|@count == 0}
<p>

No blog posts were found for this month.
</p>

{else}
{foreach from=$posts item=post name=posts}

{include file='user/lib/blog-post-summary.tpl' post=$post}
{/foreach}

{/if}

{include file='footer.tpl'
leftcolumn='user/lib/left-column.tpl'}

Populating the Application Home Page
Now that we have created a home page for each user on the site, we will implement the main
application home page. This will work similarly to the user home page, except that it will com-
bine blog posts from all users on the site instead of just displaying posts for one user at a time.

When we implemented settings management earlier in this chapter, one of the settings
users could customize was the blog_public setting. If this value is set to true, the user’s posts
will be included on the home page.

In this section, we will first make some changes to the GetPosts() method in
DatabaseObject_BlogPost so we can select posts only for users who have public posts. Then
we will implement the indexAction() method of the IndexController class. This is the method
that handles the application home page. Finally, we will change the template for this method
so the blog posts are displayed.

Loading Recent Public Posts
The first thing we will do is extend the _GetBaseQuery() method in the DatabaseObject_
BlogPost class. We do this so that when we call GetPosts() we are able to return posts only
for users who have set the blog_public setting to true.

Listing 9-25 shows the changes we must make to the BlogPost.php file in ./include/
DatabaseObject.

Listing 9-25. Selecting Posts Only for Users Who Have Public Blogs (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

CHAPTER 9 ■ PERSONALIZED USER AREAS326

9063Ch09CMP2 11/13/07 8:08 PM Page 326

// ... other code

private static function _GetBaseQuery($db, $options)
{

// initialize the options
$defaults = array(

'user_id' => array(),
'public_only' => false,
'status' => '',
'from' => '',
'to' => ''

);

// ... other code

if ($options['public_only']) {
$select->joinInner(array('up' => 'users_profile'),

'p.user_id = up.user_id',
array())

->where("profile_key = 'blog_public'")
->where('profile_value = 1');

}

return $select;
}

// ... other code
}

?>

These changes work by joining against the users_profile table if the public_only option
is set to true. It joins using the user_id column that exists in both the blog_posts and users_
profile table, using the profile_key value of blog_public. Note that the Profile class (intro-
duced in Chapter 3) stores Boolean values as integers. Thus, true is stored as 1 and false as 0.

Implementing the Application Home Page
The next step is to implement the application home page. The action handler for this page is
the indexAction() method of the IndexController class. This is the very first controller we
created in this book (see Chapter 2).

Our goal in this method is to retrieve the latest blog posts (we will use the 20 most recent)
and assign them to the template. We will use the GetPosts() method from DatabaseObject_
BlogPost to achieve this, specifying the public_only option we created in Listing 9-25.

The other thing we need to do in this method is load the corresponding
DatabaseObject_User record for each post that is returned. We do this so that when we list
each post on the home page we can link back to each users’ home page.

CHAPTER 9 ■ PERSONALIZED USER AREAS 327

9063Ch09CMP2 11/13/07 8:08 PM Page 327

Loading Multiple User Records
In order to fetch the multiple user records, as just described, we need to implement a method
that allows us to do so. We will do this in a similar manner to the GetPosts() method we
implemented in Chapter 8. The main difference is that we are now selecting data from the
users table instead of the blog_posts table.

Listing 9-26 shows the code for the GetUsers(), GetUsersCount(), and _GetBaseQuery()
methods we will add to the User.php file in ./include/DatabaseObject. For a detailed descrip-
tion on how these methods work, you can refer to the “Fetching Blog Posts from the Database”
section in Chapter 8.

Listing 9-26. Adding the Ability to Retrieve Multiple User Records at Once (User.php)

<?php
class DatabaseObject_User extends DatabaseObject
{

// ... other code

public static function GetUsers($db, $options = array())
{

// initialize the options
$defaults = array(

'offset' => 0,
'limit' => 0,
'order' => 'u.username'

);

foreach ($defaults as $k => $v) {
$options[$k] = array_key_exists($k, $options) ? $options[$k] : $v;

}

$select = self::_GetBaseQuery($db, $options);

// set the fields to select
$select->from(null, 'u.*');

// set the offset, limit, and ordering of results
if ($options['limit'] > 0)

$select->limit($options['limit'], $options['offset']);

$select->order($options['order']);

// fetch user data from database
$data = $db->fetchAll($select);

// turn data into array of DatabaseObject_User objects
$users = parent::BuildMultiple($db, __CLASS__, $data);

if (count($users) == 0)
return $users;

CHAPTER 9 ■ PERSONALIZED USER AREAS328

9063Ch09CMP2 11/13/07 8:08 PM Page 328

$user_ids = array_keys($users);

// load the profile data for loaded posts
$profiles = Profile::BuildMultiple($db,

'Profile_User',
array('user_id' => $user_ids));

foreach ($users as $user_id => $user) {
if (array_key_exists($user_id, $profiles)

&& $profiles[$user_id] instanceof Profile_User) {

$users[$user_id]->profile = $profiles[$user_id];
}
else {

$users[$user_id]->profile->setUserId($user_id);
}

}

return $users;
}

public static function GetUsersCount($db, $options)
{

$select = self::_GetBaseQuery($db, $options);
$select->from(null, 'count(*)');

return $db->fetchOne($select);
}

private static function _GetBaseQuery($db, $options)
{

// initialize the options
$defaults = array('user_id' => array());

foreach ($defaults as $k => $v) {
$options[$k] = array_key_exists($k, $options) ? $options[$k] : $v;

}

// create a query that selects from the users table
$select = $db->select();
$select->from(array('u' => 'users'), array());

// filter results on specified user ids (if any)
if (count($options['user_id']) > 0)

$select->where('u.user_id in (?)', $options['user_id']);

return $select;
}

}
?>

CHAPTER 9 ■ PERSONALIZED USER AREAS 329

9063Ch09CMP2 11/13/07 8:08 PM Page 329

Retrieving the Latest Posts for the Home Page
We can now retrieve the latest posts for users who have public blogs, as well as retrieving their
user records so we can correctly link back to their blogs when we output their posts. Listing 9-27
shows the code we will add to the IndexController.php file in ./include/Controllers to do this.

Listing 9-27. Retrieving the Latest Public Posts for the Home Page (IndexController.php)

<?php
class IndexController extends CustomControllerAction
{

public function indexAction()
{

// define the options for retrieving blog posts
$options = array(

'status' => DatabaseObject_BlogPost::STATUS_LIVE,
'limit' => 2,
'order' => 'p.ts_created desc',
'public_only' => true

);

// retrieve the blog posts
$posts = DatabaseObject_BlogPost::GetPosts($this->db, $options);

// determine which users' posts were retrieved
$user_ids = array();
foreach ($posts as $post)

$user_ids[$post->user_id] = $post->user_id;

// load the user records
if (count($user_ids) > 0) {

$options = array(
'user_id' => $user_ids

);

$users = DatabaseObject_User::GetUsers($this->db, $options);
}
else

$users = array();

// assign posts and users to the template
$this->view->posts = $posts;
$this->view->users = $users;

}
}

?>

This method begins by defining the options to be passed to the GetPosts() method.
Unlike when we used GetPosts() to retrieve posts for the user home page (see Listing 9-11),

CHAPTER 9 ■ PERSONALIZED USER AREAS330

9063Ch09CMP2 11/13/07 8:08 PM Page 330

we don’t specify which user_id value to filter the results on. Instead, we use the new
public_only parameter, which will then make use of all public user blogs. We can then call
GetPosts() to retrieve an array of blog posts to display on the home page.

The next step is to determine which users’ blog posts were used. We do this by looping
over the posts and adding the user_id field to the $user_ids array. Using the ID as the key is a
little trick used to prevent duplication in the array (in case one user has multiple posts on the
home page).

We can then retrieve an array of user records, which we write to the $users template vari-
able (along with the blog posts in $posts).

Creating the Application Home Page Template
Finally, we can create the template used to output the blog posts that were retrieved in
Listing 9-27. Once again, we will make use of the blog-post-summary.tpl template to output
the template teaser. We will make a slight change to this template now, so that in addition to
linking to the blog post it represents, it will also link back to the post owner’s home page.

Listing 9-28 shows the changes we will make to the blog-post-summary.tpl template in
./templates/user/lib. In this template, we now check for the $linkToBlog variable. If this
variable is set to true, we will provide a link back to the user’s home page.

Listing 9-28. Linking Back to a User’s Home Page (blog-post-summary.tpl)

<!-- // ... other code -->

<div class="teaser-links">
Read More...
{if $linkToBlog}

|
username route='user'}">

Published by {$user->username|escape}

{/if}
</div>

</div>

Next, we implement the home page template. Since blog-post-summary.tpl expects a
variable called $user (which has been automatically assigned in previous methods where
we’ve used this template), we must retrieve the correct user object from the $users array
assigned in Listing 9-27. Additionally, we specify the $linkToBlog variable. Listing 9-29 shows
the code for the index.tpl template, which is stored in the ./templates/index directory.

Listing 9-29. Displaying Posts on the Application Home Page (index.tpl)

{include file='header.tpl' section='home'}

{if $posts|@count == 0}
<p>

No blog posts were found!
</p>

CHAPTER 9 ■ PERSONALIZED USER AREAS 331

9063Ch09CMP2 11/13/07 8:08 PM Page 331

{else}
{foreach from=$posts item=post name=posts}

{assign var='user_id' value=$post->user_id}
{include file='user/lib/blog-post-summary.tpl'

post=$post
user=$users.$user_id
linkToBlog=true}

{/foreach}
{/if}

{include file='footer.tpl'}

In the preceding code, we assign the user_id value to a temporary variable in the tem-
plate called $user_id. This is done so that we can retrieve the correct value from the $users
array. Smarty syntax doesn’t allow us to use $users[$post->user_id].

Once you have added the code in this section, your application home should now list recent
posts from all users who have chosen to have a public home page, as shown in Figure 9-4.

Figure 9-4. The application home page, showing posts from all users with public blogs

CHAPTER 9 ■ PERSONALIZED USER AREAS332

9063Ch09CMP2 11/13/07 8:08 PM Page 332

Summary
In this chapter, we primarily focused on creating a public page for each user that has regis-
tered in our web application. In order to create friendly URLs for user pages, we looked at how
to create new request routes for Zend_Controller_Front. This meant that not only does each
user have a short and simple URL for their home page, but each post within their blog has a
short and simple URL also.

Prior to doing this, we gave registered users the ability to customize various account set-
tings. This was done in a manner that easily scales, since new settings can be added with only
minor changes to code and no changes to the database. We also looked at how to set default
account settings.

After creating user home pages, we then implemented the application home page func-
tionality. On this page we included posts that were recently submitted by all users who chose
to have a public blog (using the settings-management system we implemented).

In the next chapter, we will continue to expand the blog by implementing a number of
Web 2.0 features, including adding tags to blog posts, formatting HTML using microformats,
and creating web feeds for user blogs.

CHAPTER 9 ■ PERSONALIZED USER AREAS 333

9063Ch09CMP2 11/13/07 8:08 PM Page 333

9063Ch09CMP2 11/13/07 8:08 PM Page 334

Implementing Web 2.0 Features

Up until now in this book, we have looked at various techniques of using Ajax (that is, the
XMLHttpRequest object with the help of Prototype) to manipulate data in the web application
we are developing.

Some examples of this include updating the HTML content on a web page dynamically,
validating forms, and using JSON as a means to exchange data between the client and the
server.

Although these techniques are very useful and somewhat straightforward to implement,
they are not the only features that define a web site as being “Web 2.0.” In this chapter, we will
look at some of the other features of Web 2.0, which include the following:

• Tags. A tag is typically one or two words used to describe some arbitrary item. Because
a tag is usually very concise, it is used as a way to categorize said items. One item can
have multiple tags, and if used properly, one tag will belong to multiple items.

• Web feeds. A web feed is a stream of a web site’s content provided by the site’s owner in
order to allow other publishers to display that data. This is often done using the Atom
or RSS standard, although other formats are available.

• Microformats. A microformat is a simple data format used to formally structure certain
kinds of HTML data. For instance, whenever you want to list a person’s contact details
on a web page, you would mark it up in HTML according to the hCard microformat
(which we will look at later in this chapter). You can still style and lay out the contact
details however you’d like in your CSS, but by marking it up in this way a microformat
reader can recognize this data easily as a person’s contact details. For more information
about microformats, visit http://microformats.org.

In this chapter, we will extend the capabilities of the blogging system we have created to
allow users to assign tags to posts. We will then change the output of their home page to cate-
gorize their blog posts based on the assigned tags.

Next we will take a look at web feeds by creating an Atom feed of a user’s blog using the
Zend_Feed component of the Zend Framework.

Finally, we will look at microformats and how to consume them using the Operator plug-
in for Firefox. We will use the rel-tag microformat on the tagging system we create, as well as
extend user accounts to allow a public profile. We will then display the created profile using
the hCard microformat, allowing contact details to be easily exported to other programs.

335

C H A P T E R 1 0

9063Ch10CMP2 11/11/07 5:18 PM Page 335

Tags
Tags are used as a way to categorize items on a web site. The type of item being tagged can be
anything really, such as a news article, an image, a product, or a link. By assigning a series of
keywords to that item (that is, tags), it is easy to find related items based on the keyword of
choice.

Let’s look at a practical example of how tagging could be used. If you were to categorize
this book, you could say it is about PHP, Web 2.0, Ajax, and MySQL, among other things. Each
of the italicized terms would be perfectly acceptable as tags. Now consider if you had a web
site that listed a catalog of books. Each book would have its own relevant set of tags, just like
the tags we just mentioned. To find every book that had something to do with PHP (assuming
it had been tagged correctly), you could simply search for all books with a tag of PHP.

We will be implementing a system like this, but instead of tagging books in a library or
catalog, we will be tagging blog posts. Technically speaking, we won’t be tagging posts—we
will provide the blog owner with the tools to tag their own posts.

Additionally, we will then provide the means to filter posts by one or more tags. We will
implement this on a per-user basis by listing each of a user’s unique tags in a list on their pub-
lic home page.

In Chapter 12, we will extend the tagging functionality we create here to allow users to
search for tags.

Implementing Tagging
To implement a tagging system, we must first create a database table in which to store tags.
Since each blog post can have multiple tags, we create a table with two columns: one to indi-
cate the post ID and another to store the actual tag, as shown in Listing 10-1. This means if
two posts share the same tag, each post will have its own record in this table for that tag.

Listing 10-1. Database Table to Store Blog Post Tags In (schema-mysql.sql)

create table blog_posts_tags (
post_id bigint unsigned not null,
tag varchar(255) not null,

primary key (post_id, tag)
) type = InnoDB;

Next we must create some tag management functions in the DatabaseObject_BlogPost
class. The functions we will create are as follows:

• getTags(): Retrieves all tags for a blog post

• hasTag(): Checks whether a blog post has the specified tag

• addTags(): Adds one or more tags to a blog post

• deleteTags(): Deletes one or more tags from a blog post

• deleteAllTags(): Deletes all tags from a blog post

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES336

9063Ch10CMP2 11/11/07 5:18 PM Page 336

Listing 10-2 shows the getTags() method, which returns an array of all tags that belong to
the loaded post. This code (along with the other four methods) belongs in the BlogPost.php
file in the ./include/DatabaseObject directory.

Listing 10-2. Retrieving All Tags Belonging to a Post with getTags() (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public function getTags()
{

if (!$this->isSaved())
return array();

$query = 'select tag from blog_posts_tags where post_id = ?';

// sort tags alphabetically
$query .= ' order by lower(tag)';

return $this->_db->fetchCol($query, $this->getId());
}

This method starts by ensuring the post has been loaded before trying to retrieve the
tags. In the SQL query we sort the retrieved tags alphabetically. In MySQL, this sort is not case-
sensitive, but by using the lower() function, tags will be returned correctly in other database
servers such as PostgreSQL that are case-sensitive.

Next we look at hasTag(), which we use to check whether a blog post has a specific tag.
Listing 10-3 shows this method.

Listing 10-3. Checking Whether a Post Has a Specific Tag (BlogPost.php)

public function hasTag($tag)
{

if (!$this->isSaved())
return false;

$select = $this->_db->select();
$select->from('blog_posts_tags', 'count(*)')

->where('post_id = ?', $this->getId())
->where('lower(tag) = lower(?)', trim($tag));

return $this->_db->fetchOne($select) > 0;
}

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 337

9063Ch10CMP2 11/11/07 5:18 PM Page 337

Here we use the Zend_Db_Select class that we first used in Chapter 8. For short queries
such as in Listing 10-2, I tend not to bother using this class, but when the query gets longer as
in this listing, it is definitely worth using. This query retrieves the number of rows for the cur-
rent blog that have the given tag (this value should be only 1 or 0 since the same tag can’t be
used more than once for a post). This method returns true if the count is greater than zero.

The next function we’ll look at is addTags(), which is shown in Listing 10-4. This function
begins once again by making sure the record is loaded and then continues by cleaning the tags
that have been passed in using the $tags argument. This function will accept either a string or
an array of strings to use as the tags.

Listing 10-4. Adding One or More Tags to a Post Using addTags() (BlogPost.php)

public function addTags($tags)
{

if (!$this->isSaved())
return;

if (!is_array($tags))
$tags = array($tags);

// first create a clean list of tags
$_tags = array();
foreach ($tags as $tag) {

$tag = trim($tag);
if (strlen($tag) == 0)

continue;

$_tags[strtolower($tag)] = $tag;
}

// now insert each into the database, first ensuring
// it doesn't already exist for the current post
$existingTags = array_map('strtolower', $this->getTags());

foreach ($_tags as $lower => $tag) {
if (in_array($lower, $existingTags))

continue;

$data = array('post_id' => $this->getId(),
'tag' => $tag);

$this->_db->insert('blog_posts_tags', $data);
}

}

As part of this function, we must first ensure that no duplicates have been passed to the
function. We are ignoring case in the tags (so AJAX and Ajax would be treated as the same tag).

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES338

9063Ch10CMP2 11/11/07 5:18 PM Page 338

Additionally, to ensure that no duplicate tags are inserted, we retrieve all tags using
getTags() and then make them all lowercase using array_map(). Finally, each tag is inserted
into the database. We could instead use hasTag() to check whether the new tag already exists,
but this would result in one lookup query for each tag, whereas doing it this way requires only
one lookup query.

The next function we implement is deleteTags(), which we use to remove one or more
tags from a blog post, as shown in Listing 10-5.

Listing 10-5. Deleting One or More Blog Post Tags with deleteTags() (BlogPost.php)

public function deleteTags($tags)
{

if (!$this->isSaved())
return;

if (!is_array($tags))
$tags = array($tags);

$_tags = array();
foreach ($tags as $tag) {

$tag = trim($tag);
if (strlen($tag) > 0)

$_tags[] = strtolower($tag);
}

if (count($_tags) == 0)
return;

$where = array('post_id = ' . $this->getId(),
$this->_db->quoteInto('lower(tag) in (?)', $tags));

$this->_db->delete('blog_posts_tags', $where);
}

Just as when inserting tags, we must clean up the tags that are passed in (which can be
either a single tag or an array of tags). Once this has been done, we can use the Zend_Db’s
delete() method to remove the matching rows.

Finally, we include the deleteAllTags() method, which takes no arguments and removes
every tag associated with a single post, as shown in Listing 10-6. This is primarily used in the
preDelete() method, which will we update shortly.

Listing 10-6. Deleting All of a Post’s Tags (BlogPost.php)

public function deleteAllTags()
{

if (!$this->isSaved())
return;

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 339

9063Ch10CMP2 11/11/07 5:18 PM Page 339

$this->_db->delete('blog_posts_tags', 'post_id = ' . $this->getId());
}

// ... other code
}

?>

As mentioned, we must call this function in the preDelete() method of DatabaseObject_
BlogPost, which is called automatically prior to a blog post being deleted. This is shown in
Listing 10-7. We do this so prior to a blog post being deleted, the associated tags are deleted,
ensuring that the foreign key constraints don’t prevent the post from being deleted.

Listing 10-7. Deleting All Tags for a Post When a Post Is Deleted (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

protected function preDelete()
{

$this->profile->delete();
$this->deleteAllTags();
return true;

}

// ... other code
}

?>

Managing Blog Post Tags
The next step in implementing tagging is to add it to the blog manager interface. We will add a
simple form to the blog post preview page that lists all existing tags and includes a form to add
a tag to the given post.

First, we add a new action handler to the BlogmanagerController class to add or remove
tags. We call this method tagsAction(), as shown in Listing 10-8. This method expects three
items in the HTTP post data: the ID of the of the blog post, the presence of an add or delete
variable (defined by the form submit buttons), and the tag being either added or deleted.

Listing 10-8. Adding and Removing Tags from Blog Posts (BlogmanagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

// ... other code

public function tagsAction()

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES340

9063Ch10CMP2 11/11/07 5:18 PM Page 340

{
$request = $this->getRequest();

$post_id = (int) $request->getPost('id');

$post = new DatabaseObject_BlogPost($this->db);
if (!$post->loadForUser($this->identity->user_id, $post_id))

$this->_redirect($this->getUrl());

$tag = $request->getPost('tag');

if ($request->getPost('add')) {
$post->addTags($tag);
$this->messenger->addMessage('Tag added to post');

}
else if ($request->getPost('delete')) {

$post->deleteTags($tag);
$this->messenger->addMessage('Tag removed from post');

}

$this->_redirect($this->getUrl('preview') . '?id=' . $post->getId());
}

}
?>

After a tag is added or removed, an appropriate message is written to the flash messenger,
and then the user is redirected back to the preview page.

Next we must list the existing tags in the preview.tpl template (found in ./templates/
blogmanager), as well as the form used to add a new tag. This is shown in Listing 10-9, fitting in
between the post status and its date and time.

Listing 10-9. Showing the Tags on the Blog Post Preview Page (preview.tpl)

<!-- // other code -->

<fieldset id="preview-tags">
<legend>Tags</legend>

{foreach from=$post->getTags() item=tag}

<form method="post" action="{geturl action='tags'}">
<div>

{$tag|escape}
<input type="hidden" name="id" value="{$post->getId()}" />
<input type="hidden" name="tag" value="{$tag|escape}" />
<input type="submit" value="Delete" name="delete" />

</div>
</form>

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 341

9063Ch10CMP2 11/11/07 5:18 PM Page 341

{foreachelse}

No tags found
{/foreach}

<form method="post" action="{geturl action='tags'}">
<div>

<input type="hidden" name="id" value="{$post->getId()}" />
<input type="text" name="tag" />
<input type="submit" value="Add Tag" name="add" />

</div>
</form>

</fieldset>

<!-- // other code -->

Finally, in order to display these tags in a user-friendly manner, we add some extra styles
to the site CSS file. By using display : inline, the list items are shown horizontally instead of
vertically. Listing 10-10 shows the new styles added to styles.css.

Listing 10-10. Displaying the Tag Management Area in a User-Friendly Manner (styles.css)

#preview-tags {
background : #f7f7f7;
padding : 5px;

}

#preview-tags input {
font-size : 0.95em;

}

#preview-tags a {
font-size : 0.95em;

}

#preview-tags ul {
margin : 0;
padding : 0;

}

#preview-tags li {
margin : 0;
padding : 0 5px;
display : inline;

}

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES342

9063Ch10CMP2 11/11/07 5:18 PM Page 342

#preview-tags form, #preview-tags div {
display : inline;

}

To generate valid XHTML, form elements cannot exist directly inside a <form> tag, which
is why we wrapped them in <div> tags in Listing 10-9. Because we want all existing tags to
appear next to each other, we must change the form and div elements to display inline
instead of block.

Figure 10-1 shows what the preview page looks like now with the tags displayed. It is very
straightforward for a user to add or remove tags.

Figure 10-1. Managing tags for a blog post

Note that you could use Ajax to control this form, but in all honesty, it won’t make much
difference to the user’s experience at all; you shouldn’t necessarily use Ajax just for the sake of
it if it isn’t really needed.

If instead you wanted more advanced functionality (such as allowing the user to order
tags themselves rather than alphabetically), then you may instead choose to use Ajax for
adding, removing, and reordering tags.

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 343

9063Ch10CMP2 11/11/07 5:18 PM Page 343

Displaying a User’s Tags on Their Blog
The next step in implementing a tagging system is to display the tags to the people who use
the site. We will do this simply by listing all tags in the side column with a count of the number
of posts that use that tag in the blog.

When one of these tags is clicked, the user will be taken to a page listing all posts with that
tag. The URL of this page will be in the format http://phpweb20/user/username/tag/tagname.

■Note Such a page is called a tag space. The microformats rel-tag specification (http://microformats.
org/wiki/rel-tag#Tag_Spaces) defines a tag space as a well-defined URI from which an embedded tag
can be mechanically extracted. Specifically, the last segment of a path (after the final slash) denotes that
tag (not taking into account any URL parameters or anchors). So, in the case of the URL mentioned earlier,
tagname is the last segment and therefore denotes the tag of that tag space. We will look at the rel-tag
microformat later in this chapter.

To generate the list of tags and the number of posts that have that tag, we must write
another new function for DatabaseObject_BlogPost, which we call GetTagSummary(). To
retrieve the number of posts for each tag, we must use the following SQL statement:

SELECT count(*) as count, t.tag
FROM blog_posts_tags t
INNER JOIN blog_posts p ON p.post_id = t.post_id
WHERE p.user_id = [user id]
AND p.status = 'L'
GROUP BY t.tag

The only problem with this query is that it differentiates between uppercase and lower-
case versions of the same tag, whereas we don’t want it to do so. To deal with this, we add
some extra processing to GetTagSummary(). Listing 10-11 shows the full function to go in
./include/DatabaseObject/BlogPost.php.

Listing 10-11. Retrieving a Summary of All Tags for a Single User (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public static function GetTagSummary($db, $user_id)
{

$select = $db->select();
$select->from(array('t' => 'blog_posts_tags'),

array('count(*) as count', 't.tag'))
->joinInner(array('p' => 'blog_posts'),

'p.post_id = t.post_id',

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES344

9063Ch10CMP2 11/11/07 5:18 PM Page 344

array())
->where('p.user_id = ?', $user_id)
->where('p.status = ?', self::STATUS_LIVE)
->group('t.tag');

$result = $db->query($select);
$tags = $result->fetchAll();

$summary = array();

foreach ($tags as $tag) {
$_tag = strtolower($tag['tag']);

if (array_key_exists($_tag, $summary))
$summary[$_tag]['count'] += $tag['count'];

else
$summary[$_tag] = $tag;

}

return $summary;
}

}
?>

Next we write a Smarty plug-in that calls this function, just as we have done previously
when listing the monthly blog archive. This works almost identically, except it returns a sum-
mary of tags rather than months. Listing 10-12 shows the code for this plug-in, which we can
then access in templates using {get_tag_summary}.

Listing 10-12. A Smarty Plug-in Used to Retrieve a User’s Tag Summary (function.get_tag_
summary.php)

<?php
function smarty_function_get_tag_summary($params, $smarty)
{

$db = Zend_Registry::get('db');
$user_id = (int) $params['user_id'];

$summary = DatabaseObject_BlogPost::GetTagSummary($db, $user_id);

if (isset($params['assign']) && strlen($params['assign']) > 0)
$smarty->assign($params['assign'], $summary);

}
?>

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 345

9063Ch10CMP2 11/11/07 5:18 PM Page 345

The next step is to create a template that calls this plug-in. Since we already created a
left-column.tpl template in which to display the monthly archive, we will now create a tem-
plate called right-column.tpl to hold the tags. Obviously you can swap these around if you
prefer. Listing 10-13 shows the contents of right-column.tpl, which we store in
./templates/user/lib.

Listing 10-13. Displaying the Summary of Tags (right-column.tpl)

{get_tag_summary user_id=$user->getId() assign=summary}

{if $summary|@count > 0}
<div class="box">

<h3>{$user->username|escape}'s Tags</h3>

{foreach from=$summary item=tag}

<a href="{geturl route='tagspace'
username=$user->username
tag=$tag.tag}">

{$tag.tag|escape}

({$tag.count} post{if $tag.count != 1}s{/if})

{/foreach}

</div>

{/if}

Finally, we must include this template in the appropriate places by specifying the right-
column attribute when including footer.tpl. In the index.tpl, archive.tpl and view.tpl
templates in ./templates/user, we change the last line, as shown in Listing 10-14.

Listing 10-14. Including the right-column.tpl Template As Required (index.tpl, archive.tpl, and
view.tpl)

<!-- // other template code -->
{include file='footer.tpl'

leftcolumn='user/lib/left-column.tpl'
rightcolumn='user/lib/right-column.tpl'}

Figure 10-2 shows how the user’s blog now looks with tags being displayed on the right side.

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES346

9063Ch10CMP2 11/11/07 5:18 PM Page 346

Figure 10-2. Displaying a user’s tags, each linked to their relevant tag space

Displaying a Tag Space
As mentioned, the URLs we created for tags are known as a tag space. We must now write a
new action handler to output the tag space. This is simply a matter of extending the routing
capabilities of Zend_Controller_Front once again and then displaying a list of posts based on
the specified tags.

Retrieving Posts Based on a Tag
First, we must extend the capabilities of DatabaseObject_BlogPost::GetPosts() to allow us to
filter posts by the specified tag. To do this, we modify the _GetBaseQuery() function to gener-
ate the appropriate SQL.

Listing 10-15 shows the changes we make to _GetBaseQuery() in BlogPost.php. After these
changes have been applied, we can simply pass the tag parameter in the options array for
GetOptions() (as well as the other functions that also use _GetBaseQuery()).

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 347

9063Ch10CMP2 11/11/07 5:18 PM Page 347

Listing 10-15. Modifying _GetBaseQuery() to Join Against the Tags Table (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

private static function _GetBaseQuery($db, $options)
{

// initialize the options
$defaults = array(

'user_id' => array(),
'public_only' => false,
'status' => '',
'tag' => '',
'from' => '',
'to' => ''

);

// ... other code

$options['tag'] = trim($options['tag']);
if (strlen($options['tag']) > 0) {

$select->joinInner(array('t' => 'blog_posts_tags'),
't.post_id = p.post_id',
array())

->where('lower(t.tag) = lower(?)', $options['tag']);
}

return $select;
}

// ... other code
}

?>

Routing Requests to the Tag Space
Just as we did in Chapter 9 when setting up the user’s home page, we must now add a new
route to Zend_Controller_Front so requests to http://phpweb20/user/username/tag/tagname
reach the new action handler we will write shortly.

Listing 10-16 shows the new route we add to the index.php bootstrap file.

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES348

9063Ch10CMP2 11/11/07 5:18 PM Page 348

Listing 10-16. Adding a New Route for Tag Spaces (index.php)

<?php
// ... other code

// setup the route for user tag spaces
$route = new Zend_Controller_Router_Route('user/:username/tag/:tag/*',

array('controller' => 'user',
'action' => 'tag'));

$controller->getRouter()->addRoute('tagspace', $route);

$controller->dispatch();
?>

Handling Requests to the Tag Space
The next step is to write a new action handler called tagAction() for the UserController
class, which is where requests matching the previous route are directed. Just like when we
implemented the archiveAction() in the same file, we use $request->getUserParam() to
retrieve the value from the URL. In this case, the value is called tag, meaning we use
$request->getUserParam('tag') to retrieve the requested tag.

We can use archiveAction() as a basis for the tagAction() function, exchanging the
requested dates for the request tag. Additionally, we add a check for an empty tag that results
in redirecting to the user’s home page.

Listing 10-17 shows this method, which belongs in the UserController.php file in the
./include/Controllers directory.

Listing 10-17. Retrieving All Posts for the Specified Tag (UserController.php)

<?php
class UserController extends CustomControllerAction
{

// ... other code

public function tagAction()
{

$request = $this->getRequest();

$tag = trim($request->getUserParam('tag'));
if (strlen($tag) == 0) {

$this->_redirect($this->getCustomUrl(
array('username' => $this->user->username,

'action' => 'index'),
'user'

));
}

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 349

9063Ch10CMP2 11/11/07 5:18 PM Page 349

$options = array(
'user_id' => $this->user->getId(),
'tag' => $tag,
'status' => DatabaseObject_BlogPost::STATUS_LIVE,
'order' => 'p.ts_created desc'

);
$posts = DatabaseObject_BlogPost::GetPosts($this->db,

$options);

$this->breadcrumbs->addStep('Tag: ' . $tag);
$this->view->tag = $tag;
$this->view->posts = $posts;

}

// ... other code
}

?>

Outputting the Tag Space
The final step in creating the tag space is to output the matching posts. To do this, we create a
new template called tag.tpl for which we use the archive.tpl template as a basis. In fact, this
template is identical except for the message displayed if no matching posts are found.

Listing 10-18 shows tag.tpl, which is stored in the ./templates/user directory.

Listing 10-18. Displaying All Posts for a Single Tag (tag.tpl)

{include file='header.tpl'}

{if $posts|@count == 0}
<p>

No blog posts were found for this tag.
</p>

{else}
{foreach from=$posts item=post name=posts key=post_id}

{include file='user/lib/blog-post-summary.tpl'
post=$post}

{if $smarty.foreach.posts.last}
{assign var=date value=$post->ts_created}

{/if}
{/foreach}

{/if}

{include file='footer.tpl'
leftcolumn='user/lib/left-column.tpl'
rightcolumn='user/lib/right-column.tpl'}

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES350

9063Ch10CMP2 11/11/07 5:18 PM Page 350

Displaying Tags on Each Post
The final step in implementing the tagging system on user blogs is to display the tags on each
post. There are no significant code changes required because we already implemented the
getTags() method in DatabaseObject_BlogPost earlier this chapter.

All we need to do is to call this function in the view.tpl template and loop over each tag
just as we did in the blog manager. For each of the tags associated with the post, we link to the
relevant tag space.

Listing 10-19 shows the additions we make to view.tpl in the ./templates/user directory,
including a simple little Smarty trick to place a comma at the end of each tag except for the
last. This is achieved by the checking whether the current iteration is the last of the {foreach}
loop. This can be checked using $smarty.foreach.loopname.last, where loopname is the value
of the name argument in the {foreach} tag.

Listing 10-19. Outputting Each of a Post’s Tags and Linking Back to the Tag Space (view.tpl)

{include file='header.tpl'}

<div id="post-tags">
Tags:
{foreach from=$post->getTags() item=tag name=tags}

username tag=$tag}"
>{$tag}{if !$smarty.foreach.tags.last},{/if}

{foreachelse}
(none)

{/foreach}
</div>

<!-- // other code -->

Web Feeds
A web feed is a stream of a web site’s content in a format (typically XML) that can be easily
interpreted by other programs. The feed will usually contain a summary of recent items (such
as news articles or, in our case, blog posts) with a link to a more detailed version of the item.

By providing one or more feeds, a web site owner can syndicate their content so others
can easily access without needing to “scrape” the content from the web site HTML (which can
be slow, difficult, susceptible to breaking, and possibly illegal).

Modern browsers have the ability to save and update feeds, meaning users can easily sub-
scribe to their favorite feeds and be notified by their browser when the content is updated.

Feeds can also be used in other applications, such as podcasts in Apple’s iTunes. If you
subscribe to a podcast, iTunes will automatically download any new episodes that are pub-
lished (according to the data contained in the podcast web feed).

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 351

9063Ch10CMP2 11/11/07 5:18 PM Page 351

Data Formats for Web Feeds
There are several data formats that can be used for web feeds. The most popular of these are
RSS and Atom, which both use XML. Really Simple Syndication (RSS) is arguably the most
widely used format for web feeds. Atom, on the other hand, was born out of the shortcomings
of RSS and aims to address some of the problems with RSS.

For example, Atom allows the developer to indicate exactly what kind of data is being
included in the payload, whether it is plain text, HTML, or binary data (included using Base64
encoding). This is a significant improvement since people who consume RSS feeds may not
know exactly how to treat the data. Some feeds will include HTML tags in the feed data, while
others won’t.

An RSS feed may contain either (or both) of the following two lines:

<description>Some plain text</description>
<description>Some HTML text</description>

Using Atom, the type can be explicitly set, allowing the consumer of the feed to decide
how to present the data:

<content type="text">Some plain text</content>
<content type="html">Some HTML text</content>

We will use the Zend_Feed component of the Zend Framework to create an Atom feed for
each user in our system who has a blog. Note that we will not be concerning ourselves with
the specific formats for Atom; we will allow Zend_Feed to take care of this for us.

■Note Zend_Feed supports both RSS and Atom, so if you prefer to use RSS, the changes required to your
PHP code will be minimal, as you will shortly see.

Creating an Atom Feed with Zend_Feed
It is relatively straightforward to create a web feed using Zend_Feed. Although we will imple-
ment this shortly, the general process is as follows.

The first step is to build an array of the data that will form the web feed. There is a specifi-
cation of how this array should be structured in the Zend Framework manual at http://
framework.zend.com/manual/en/zend.feed.importing.html.

The next step is to call Zend_Feed::importArray() to create the actual feed. Other meth-
ods are available for creating feeds (such as using another feed). The first argument to this
method is the array to use to build the feed, while the second argument indicates the type of
feed to build. In our case, we will pass atom as the second argument. To create an RSS feed, this
value would be rss.

Finally, we call the send() method on the object returned from importArray(), which will
send the appropriate headers (such as Content-type: application/atom+xml) and then output
the feed. You could instead call saveXml() to write the XML to a variable rather than calling
send() (such as if you wanted to write it to a file or output it with different headers).

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES352

9063Ch10CMP2 11/11/07 5:18 PM Page 352

Adding the Feed to UserController
To create an Atom feed of a user’s article, the process is to create a function very similar to the
indexAction() function of UserController.php. We will call this new function feedAction(),
also stored in the same file.

The difference between feedAction() and indexAction() is that feedAction() loops over
the returned data to build an array (which we call $feedData) to pass to Zend_Feed, while
indexAction() simply passes the returned feeds to the template.

Listing 10-20 shows the first part of the code for feedAction(), which retrieves the ten
most recent posts from the database for the user. Just like with the user’s normal blog index,
you may want to adjust this number.

Listing 10-20. Retrieving the Most Recent Posts from the Database (UserController.php)

<?php
class UserController extends CustomControllerAction
{

// ... other code

public function feedAction()
{

// first retrieve all recent posts
$options = array(

'user_id' => $this->user->getId(),
'status' => DatabaseObject_BlogPost::STATUS_LIVE,
'limit' => 10,
'order' => 'p.ts_created desc'

);

$recentPosts = DatabaseObject_BlogPost::GetPosts($this->db,
$options);

Next we create the $feedData array, as shown in Listing 10-21. This is the data that
describes the feed. That is, it sets the feed title, its base URL, and its character set. Additionally,
we initialize the entries array item, which we will populate shortly.

Note that we also generate the base URL based on the currently requested domain, since
the getUrl() methods we have implemented for users and blog posts generate only local URLs.

Listing 10-21. Describing the Atom Feed (UserController.php)

// base URL for generated links
$domain = 'http://' . $this->getRequest()->getServer('HTTP_HOST');

// url for web feed
$url = $this->getCustomUrl(

array('username' => $this->user->username,
'action' => 'index'),

'user'
);

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 353

9063Ch10CMP2 11/11/07 5:18 PM Page 353

$feedData = array(
'title' => sprintf("%s's Blog", $this->user->username),
'link' => $domain . $url,
'charset' => 'UTF-8',
'entries' => array()

);

■Note I have hard-coded the HTTP scheme to the generated URL given previously in an effort not to get
bogged down in the little details. If this feed is accessed using HTTPS, then the generated URL would be
incorrect (you can check whether $this->getRequest()->getServer('HTTPS') == 'on'). You may
want to use a different method to generate the domain, such as specifying it in the application configuration.

Next we must populate the $feedData['entries'] array, which is what holds the informa-
tion about each individual blog post. We populate this array with the posts we retrieved in
Listing 10-20. Listing 10-22 shows the code we use to loop over the blogs and build the entries
array. Additionally, we retrieve the tags for each post and add them to the feed also.

Note that this code calls the getTeaser() method on the blog post that we defined in
Chapter 8.

Listing 10-22. Creating the Feed Entries by Looping Over the Posts (UserController.php)

// build feed entries based on returned posts
foreach ($recentPosts as $post) {

$url = $this->getCustomUrl(
array('username' => $this->user->username,

'url' => $post->url),
'post'

);

$entry = array(
'title' => $post->profile->title,
'link' => $domain . $url,
'description' => $post->getTeaser(200),
'lastUpdate' => $post->ts_created,
'category' => array()

);

// attach tags to each entry
foreach ($post->getTags() as $tag) {

$entry['category'][] = array('term' => $tag);
}

$feedData['entries'][] = $entry;
}

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES354

9063Ch10CMP2 11/11/07 5:18 PM Page 354

Finally, we can create the feed by passing the $feedData array to Zend_Feed::importArray().
After the feed has been created, we can output it using the feed’s send() method, as shown in
Listing 10-23. Note that we must also disable Zend_Controller autorendering since we are not
outputting using a template in this action handler.

Listing 10-23. Creating the Feed and Sending It to the Browser (UserController.php)

// create feed based on created data
$feed = Zend_Feed::importArray($feedData, 'atom');

// disable auto-rendering since we're outputting an image
$this->_helper->viewRenderer->setNoRender();

// output the feed to the browser
$feed->send();

}

// ... other code
}

?>

■Tip As an exercise, try extending feedAction() to be able to provide a separate feed for each tag. That
is, so if you went to http://phpweb20/user/username/feed/php, the resulting feed would include only
those items tagged with php. You may need to add a new route to achieve this, as well as passing the tag
parameter to GetPosts() accordingly. Remember also to change the title of the feed to reflect that it is
showing posts only for a specific tag.

Linking to Your Feed
The next step is to provide links to the feeds just created. Where you add these links is entirely
up to you; however, we are going to link to the feed from a user’s home page. There are two
ways we do this:

• By providing a normal HTML hyperlink (<a>) to the feed so the user can see it

• By using the HTML <link> tag to tell the browser a web feed is present

Since the <link> tag belongs in the <head> portion of an HTML page, we must add this
link to header.tpl. We don’t want this included on every page in the site, so we make it
dependent on the URL and title of the feed being present.

First we must change index.tpl (in ./templates/user) so it specifies the $feedUrl and
$feedTitle variables, as shown in Listing 10-24. These are variables we will check for in the
site header template.

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 355

9063Ch10CMP2 11/11/07 5:18 PM Page 355

Listing 10-24. Linking to a User’s Atom Feed from Their Home Page (index.tpl)

{capture assign='url'}{geturl route='user'
username=$user->username
action='feed'}{/capture}

{include file='header.tpl'
feedTitle="%s's Blog"|sprintf:$user->username
feedUrl=$url}

<!-- // other code -->

Next we check for the presence of $feedUrl and $feedTitle in header.tpl (in ./templates)
and output the <link> tag accordingly, as shown in Listing 10-25.

Listing 10-25. Adding the Ability to Include Feed Details to the Page Template (header.tpl)

<!-- // other code -->
<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">

<head>
<!-- // other code -->

{if $feedUrl|strlen > 0 && $feedTitle|strlen > 0}
<link rel="alternate" type="application/atom+xml"

title="{$feedTitle|escape}" href="{$feedUrl|escape}" />
{/if}

</head>
<body>

<!-- // other code -->

We can now use the $feedTitle and $feedUrl variables to include a feed icon next to
the page title, also in header.tpl. Icons for identifying web feeds can be downloaded from
http://www.feedicons.com. From the downloadable archive of sample images, I have copied
the feed-icon-14x14.png file to the ./htdocs/images directory.

Listing 10-26 shows the changes we make to the page title to include a link to the web
feed.

Listing 10-26. Linking to the Web Feed Using a Hyperlink (header.tpl)

<!-- // other code -->

<h1>
{$title|escape}
{if $feedUrl|strlen > 0 && $feedTitle|strlen > 0}

<img src="/images/feed-icon-14x14.png"

alt="{$feedTitle|escape}" />

{/if}
</h1>

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES356

9063Ch10CMP2 11/11/07 5:18 PM Page 356

If you were to now visit the user’s home page (http://phpweb20/user/username) in Inter-
net Explorer 7, you would see the Web Feeds icon highlighted, allowing you to easily subscribe
to the feed, as well as the feed icon next to the page title, as shown in Figure 10-3.

Figure 10-3. Internet Explorer 7 automatically detects web feeds found on a page.

Similarly, Firefox displays the Web Feeds icon in the address bar when a feed is found.

Other Feed Options
It is possible to include a lot of different data in your feeds, depending on what you want to
make available to subscribers. For instance, we specified only the description parameter; if
you wanted, you could also include the full article. However, doing so may cause users to stop
visiting your site directly.

As mentioned, the Zend Framework manual lists all the options you can include in the
array for Zend_Feed::importArray(); you can find it at http://framework.zend.com/manual/en/
zend.feed.importing.html.

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 357

9063Ch10CMP2 11/11/07 5:18 PM Page 357

Microformats
Microformats are a series of specifications for adding a consistent structure to certain kinds of
data that appear on web pages. For example, whenever you needed to list the contact details
for a person on a page in your web site (such as their name, e-mail address, and phone num-
ber), you would structure the HTML code used to output these contact details according to
the appropriate microformat.

In this particular case (of displaying contact details), you would use the hCard microfor-
mat (the microformats adaptation of the vCard standard). There are several published
microformats (see http://microformats.org/wiki/ for a more comprehensive list) that can be
used:

• hCard. Used for representing people or organizations (based on the vCard standard)

• hCalendar. Used for representing events and calendars (based on the iCalendar
standard)

• hAtom. Used to represent data just as an Atom feed would

Although this may give the impression of being restrictive in how you structure your code,
it is in fact not restrictive at all. Microformats are used by applying certain class names or
HTML attributes to the HTML code you are already creating.

An Example of Using Microformats
To demonstrate this, I’ll use hCard as an example. If I wanted to list my contact details without
using microformats on a web page, I might use the HTML snippet in Listing 10-27. Figure 10-4
after the listing shows how this HTML would be rendered in Firefox.

Listing 10-27. Showing Contact Details on a Web Page Without Using Microformats
(listing-10-27.html)

Quentin Zervaas

Email: foo@example.com

Phone: (123) 1234-5678

Technically speaking, although we want the name to stand out from the e-mail address
and phone number, we shouldn’t necessarily be using to do so. Good markup prac-
tice would have you label each element in the address details and apply formatting in CSS
accordingly.

This is where microformats step in. To make the contact details use the hCard microfor-
mat, it is simply a matter of adding structure and applying the correct class names. You can
find the hCard specification at http://microformats.org/wiki/hcard (although you may find
the guide at http://microformatique.com/?page_id=134 easier to understand).

According to this document, it would have us change the HTML in Listing 10-27 to that
of Listing 10-28. I have included the full HTML document in this listing, including the CSS
required to make this HTML render the same as Listing 10-27.

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES358

9063Ch10CMP2 11/11/07 5:18 PM Page 358

Figure 10-4. Rendering the HTML code from Listing 10-27

Listing 10-28. Using the hCard Microformat to Mark Up a Person’s Contact Details
(listing-10-28.html)

<html>
<head>

<title>My Contact Details</title>
<style type="text/css">

.vcard .fn { font-weight : bold; }
</style>

</head>
<body>

<div class="vcard">
<div class="fn">

Quentin Zervaas
</div>
<div>

Email:
foo@example.com

</div>
<div>

Phone:
(123) 1234-5678

</div>
</div>

</body>
</html>

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 359

9063Ch10CMP2 11/11/07 5:18 PM Page 359

■Note The actual HTML tags we used in this example are not important—it’s the names of the classes
and where the classes are applied that is important.

Although many more options are available in the hCard microformat, this is still a com-
plete and working example. The code begins by using the vcard class on the root element of
the contact details (that is, the element that wraps the contact information). This is to indicate
the remainder of the details are contained within this element.

Next we use the fn property, which is the only required property of hCard. This stands for
formatted name and usually contains the person’s first and last name. Following this, we spec-
ify the email and phone properties accordingly. Note that we applied the email property to a
hyperlink. There is no required order for these parameters; you could list the value for fn last if
you wanted.

■Caution If you choose to include your e-mail address in a published hCard, you are making it easy for
the e-mail address to be spammed, since the e-mail value must comply with §3.3.2 of RFC 2426 (available
from http://www.ietf.org/rfc/rfc2426.txt). Unless your hCard is available only to trusted users, a
better option may be not to include the e-mail address at all.

Why Use Microformats?
It may seem as though from the previous example that we’re not actually doing anything dif-
ferently than what we would normally. Indeed, this is true, except by using microformats we
are forced to name particular elements in a certain way. This provides a uniformity between
all sites that use microformats.

It is fair to say that an extremely large majority of web users will have no idea you are
using microformats, because currently it doesn’t actually change their experience in any way.
However, if you make a conscious effort to use microformats wherever you can, already you
are forcing yourself to write clean and consistent code.

Although I am only speculating, I believe as the uptake of microformats continues and its
popularity amongst web developers increases, it will become a crucial and widely used tool by
end users, just as the popularity of RSS and Atom feeds has grown in the past few years.

All major browsers now have built-in web feed readers (Microsoft has put an emphasis on
web feeds with the release of Internet Explorer 7 and Windows Vista in the past year). It is
highly possible that in upcoming releases of web browsers that microformat readers will be
integrated.

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES360

9063Ch10CMP2 11/11/07 5:18 PM Page 360

The Firefox Operator Plug-In
A plug-in for Firefox has been developed that is specifically designed to read microformats on
web pages and use the data accordingly. Operator—developed by Michael Kaply (http://www.
kaply.com/weblog)—will automatically detect all microformatted data on a page and make
various actions available within your browser. You can download Operator from the Firefox
Add-Ons site at http://addons.mozilla.org/en-US/firefox/addon/4106.

Some of the functions it provides are as follows:

• Contact details. It finds all contacts on a page (by finding data using the hCard specifi-
cation we just looked at).

• Events. Any events on a page marked up using hCalendar will be found, allowing you to
easily add them to your Google Calendar. We will use the hCalendar microformat in
Chapter 13.

• Tag spaces. Earlier this chapter we looked at tag spaces. Shortly we will look at how to
link to tag spaces with the rel-tag microformat. Operator will find all tag spaces speci-
fied on a page.

• Locations. Any geographical information using the GEO microformat will be found, pro-
viding links to mapping services such as Google Maps. We will use GEO in Chapter 13.

Figure 10-5 shows the Operator plug-in in action on the hCard example we created in
Listing 10-29. The contact details can easily be exported to your computer’s address book.

Figure 10-5. Using Operator to capture contact details in Firefox

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 361

9063Ch10CMP2 11/11/07 5:18 PM Page 361

Although still in its early days, Operator allows you to customize to a certain extent which
actions will be performed when microformatted data is selected.

Microformatting Your Tags
The rel-tag microformat is used to apply a tag to the current page, simply by including the
rel="tag" attribute within a hyperlink. Specifically, we apply this attribute to hyperlinks that
link to the relevant tag space for the page.

The HTML 4.01 specification (http://www.w3.org/TR/html401/struct/links.html#adef-rel)
defines the rel attribute as “describing the relationship from the current document to the anchor
specified by the href attribute.”

To apply this to the tagging system we created earlier this chapter, we make this slight
modification to the links in the view.tpl template in ./templates/user. If you refer to the code
we developed in Listing 10-19, we now add the rel attribute to these links as in Listing 10-29.

Listing 10-29. Defining the Tag Space by Using the rel-tag Microformat (view.tpl)

{include file='header.tpl'}

<div id="post-tags">
Tags:
{foreach from=$post->getTags() item=tag name=tags}

username tag=$tag}"
rel="tag">{$tag}{if !$smarty.foreach.tags.last},{/if}

{foreachelse}
(none)

{/foreach}
</div>

<div class="post-date">
{$post->ts_created|date_format:'%b %e, %Y %l:%M %p'}

</div>

<!-- // ... other code -->

Importantly, though, we do not use rel-tag for the navigation on the right where we out-
put all of a user’s tags. This is because these links do not necessarily reflect the content of the
current page, whereas rel-tag is used to define the tag space of the current page.

Figure 10-6 shows how the Operator plug-in for Firefox detects the tag spaces and makes
various options available for these tags.

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES362

9063Ch10CMP2 11/11/07 5:18 PM Page 362

Figure 10-6. Using Operator to capture contact details in Firefox

Allowing Users to Create a Public Profile
Let’s now look at a more concrete example of using microformats. Once again we will use the
hCard microformat (we will look at more microformats in later chapters), but we will now
cater to a wider range of field types, as well as showing a variable number of fields depending
on the data provided by the user.

Integrating hCard into our web application essentially involves two steps: modifying the
user account section to allow users to create their public profile and outputting their public
profile on their home page.

Allowing Users to Create a Public Profile
Since the user system we created is somewhat flexible, we can easily add new properties to
user accounts. We are going add several fields to the “Your Account Details” page available to
users, allowing them to enter data that is publicly available for all users to see.

We will allow users to enter the following fields:

• First name and last name. If they don’t provide these, we will simply use their user-
name instead.

• Phone numbers. We will allow users to enter their home phone number and their work
phone number.

• E-mail address. Even though user accounts already have an e-mail address, we’ll give
users the option to display a different address.

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 363

9063Ch10CMP2 11/11/07 5:19 PM Page 363

Typically people will be somewhat apprehensive about providing this sort of data, but we
are using this example only to demonstrate various concepts. Figure 10-7 shows how this page
will look once we have added the public profile options.

Figure 10-7. Allowing users to specify a public profile for their public home page

Processing the User Details Form
To simplify the implementation of processing the user profile data, I will specify all the avail-
able fields in a PHP array. This allows us to loop over the fields in the template, as well as
looping over them in the form processor.

Additionally, we are simply going to allow free-form fields that the user can enter any con-
tent into that they like. That is, we’re not going to check for a valid e-mail address, although
you may prefer to do so.

Listing 10-30 shows the additions we make to the FormProcessor_UserDetails class
(found in ./include/FormProcessor/UserDetails.php).

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES364

9063Ch10CMP2 11/11/07 5:19 PM Page 364

Listing 10-30. Processing Changes Made to a User’s Public Profile (UserDetails.php)

<?php
class FormProcessor_UserDetails extends FormProcessor
{

// ... other code

public $publicProfile = array(
'public_first_name' => 'First Name',
'public_last_name' => 'Last Name',
'public_home_phone' => 'Home Phone',
'public_work_phone' => 'Work Phone',
'public_email' => 'Email'

);

public function __construct($db, $user_id)
{

// ... other code

foreach ($this->publicProfile as $key => $label)
$this->$key = $this->user->profile->$key;

}

public function process(Zend_Controller_Request_Abstract $request)
{

// ... other code

// process the public profile
foreach ($this->publicProfile as $key => $label) {

$this->$key = $this->sanitize($request->getPost($key));
$this->user->profile->$key = $this->$key;

}

// ... other code
}

}
?>

Displaying the User Profile Options
Next we must add a new section to the details.tpl template found in ./templates/account.
Listing 10-31 shows the additions we make to this file. Luckily all of the fields are similar in
nature, allowing us to loop over the fields and display text input for each field. If you wanted to
accept other types of data (such as a user’s date of birth), you would have to modify this
accordingly.

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 365

9063Ch10CMP2 11/11/07 5:19 PM Page 365

Listing 10-31. Displaying the Public Profile Options in Account Management (details.tpl)

<!-- // ... other code -->

<fieldset>
<legend>Update Your Details</legend>

<!-- // ... other code -->
</fieldset>

<fieldset>
<legend>Account Settings</legend>

<!-- // ... other code -->
</fieldset>

<fieldset>
<legend>Public Profile</legend>

{foreach from=$fp->publicProfile key='key' item='label'}
<div class="row" id="form_{$key}_container">

<label for="form_{$key}">{$label|escape}:</label>
<input type="text" id="form_{$key}" maxlength="255"

name="{$key}" value="{$fp->$key|escape}" />
{include file='lib/error.tpl' error=$fp->getError($key)}

</div>
{/foreach}

</fieldset>

<!-- // ... other code -->

Displaying a User’s Profile
Now that a user has the ability to create a public profile through their account management
tools, we can change the output of their public home page to display their profile. We will cre-
ate a new box in the left column of their public page to include their profile.

Listing 10-32 shows the changes we begin with in the left-column.tpl template from
./templates/user/lib. Since we are displaying it in the side column of our site, we must use
the .box class; however, since it is also using hCard, we must apply the .vcard class.

All of the code we are now adding goes at the start of this file (that is, before the blog
monthly summary).

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES366

9063Ch10CMP2 11/11/07 5:19 PM Page 366

Listing 10-32. Beginning a New hCard (left-column.tpl)

<div class="box vcard">
<h3>{$user->username|escape}'s Profile</h3>

Next we output the user’s name. We output their first and last name if available; other-
wise, we fall back to simply showing their username (which we know no matter what). As you
can see in Listing 10-33, we use the user’s name or username as the mandatory fn property.

To specify the first or last name, we must also use the n property and then use the
given-name and family-name subproperties, respectively. Alternatively, if we fall back to using
the username, then we apply the username property.

Listing 10-33. Displaying the User’s First Name and Last Name or Their Username
(left-column.tpl)

{if $user->profile->public_first_name|strlen > 0 ||
$user->profile->public_last_name|strlen > 0}

<div class="fn n">
{if $user->profile->public_first_name|strlen > 0}

{$user->profile->public_first_name|escape}

{/if}
{if $user->profile->public_last_name|strlen > 0}

{$user->profile->public_last_name|escape}

{/if}

</div>
{else}

<div class="fn nickname">
{$user->username}

</div>
{/if}

Next we output the user’s e-mail address, as shown in Listing 10-34.

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 367

9063Ch10CMP2 11/11/07 5:19 PM Page 367

Listing 10-34. Displaying the User’s E-mail Address (left-column.tpl)

{if $user->profile->public_email|strlen > 0}
<div>

Email:
profile->public_email|escape}" class="email">

{$user->profile->public_email|escape}

</div>
{/if}

Next we output the user’s home and work phone if they are available, as shown in Listing
10-35. Note that in the earlier example we looked at we simply specified a single value directly
in the tel property. Now that we have two different types of phone numbers available, we can
specify the type of phone number accordingly by using the type and value subproperties. The
other text within tel but not in these subproperties is ignored.

Listing 10-35. Displaying the User’s Home and Work Phone Numbers (left-column.tpl)

{if $user->profile->public_home_phone|strlen > 0}
<div class="tel">

Phone
(Home):

{$user->profile->public_home_phone|escape}

</div>
{/if}

{if $user->profile->public_work_phone|strlen > 0}
<div class="tel">

Phone
(Work):

{$user->profile->public_work_phone|escape}

</div>
{/if}

</div>

<!-- // Blog monthly links here -->

If you look at Figure 10-8, you can see how the public profile is displayed, as well as how
the Windows Address Book sees the data after it has been exported using Operator. This
screenshot was taken using my account’s public home page (http://phpweb20/user/qz).

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES368

9063Ch10CMP2 11/11/07 5:19 PM Page 368

CHAPTER 10 ■ IMPLEMENTING WEB 2.0 FEATURES 369

Figure 10-8. The public profile as displayed in Windows Address Book

Summary
In this chapter, we looked at some of the other web development techniques that are used to
develop Web 2.0 applications. Specifically, we implemented a tagging system, we provided
web feeds of our data using Atom, and we used microformats to mark up data on our web site
in a standardized manner.

We implemented the rel-tag and hCard microformats on our web site, first by using rel-
tag with the tags system we created at the start of the chapter and then by allowing users to
create a public profile. In the coming chapters, we will look at other available microformats,
including geo and hCalendar.

In the next chapter, we will implement a dynamic image gallery on our blog.

9063Ch10CMP2 11/11/07 5:19 PM Page 369

9063Ch10CMP2 11/11/07 5:19 PM Page 370

A Dynamic Image Gallery

So far, the web application we have developed restricts users to only publishing text-based
information in their blogs. While we have allowed users a degree of control by permitting a
limited subset of HTML to be used (including the use of the tag), users are still unable
to upload their own images. In this chapter, we will extend the functionality of our blogging
system to allow users to upload one or more photos to each of their blog posts.

While this may sound like a fairly trivial process, there are a number of different issues to
consider, such as these:

• Storage of images. We must store the images on the server and link them to blog posts.

• Sending images to browsers. When a user views posts with images in them, we must
send the images. This includes dealing with correct MIME headers as well as caching
images in the user’s browser.

• Dynamic image sizing. Since users will upload different sizes and types of images, we
must manipulate the images for a consistent layout.

We will simplify the process of image publishing by predetermining the layout of images
within a blog post, although users will also have the ability to link to their images via the
WYSIWYG editor we implemented in Chapter 7.

One extra feature we will add will allow users to change the order in which their photos
appear on a page. We will use Scriptaculous to provide a simple interface for reordering
images, and we will use Ajax to save the order of the images. This will be similar to the exam-
ple in Chapter 5.

The steps we will cover in this chapter are as follows:

1. Adding an image-upload form to the blog post preview page.

2. Adding a new controller action to output uploaded images.

3. Displaying images on blog posts.

4. Displaying a thumbnail on the blog index for each post with images.

5. Allowing users to reorder and delete images from each blog post.

371

C H A P T E R 1 1

9063Ch11CMP2 11/15/07 8:13 AM Page 371

■Note While this chapter deals specifically with images, many of the principles we will look at also apply
to general file uploads (after all, an image is a file). The only things that don’t apply to non-image files are
resizing the images and displaying them in HTML using the tag.

Storing Uploaded Files
The first thing we must decide is how we will store files uploaded by users: in the database or
on the filesystem. Each method has its own advantages and disadvantages.

Here are some of the reasons you might prefer to store files in the database:

• Doing so provides easy access to all the image information. When using the filesystem,
some of the data will still be stored in the database, meaning there is a slight redun-
dancy. Additionally, deleting the image from the database is simply a matter of
removing the database record, while on the filesystem you must also delete the image
file. It is easier to roll back a failed transaction if you are only using a database.

• Keeping backups of your web application is simpler, since you only need to back up the
database and no separate uploaded files.

Now let’s take a look at why you may prefer to store images using the filesystem:

• Cross-platform compatibility is easier to achieve. Since most database servers will use
different methods for storing binary data, a separate implementation may be required
for each type of database server your application is used on.

• It is much simpler to perform filesystem operations on files that are already on the
filesystem. For example, if you were to use ImageMagick (a suite of image manipulation
tools) to create thumbnails of images, you would find it much simpler to work with files
already stored on the filesystem.

■Note We will be using the GD image functions that are built with PHP instead of ImageMagick—I simply
used this as an example of filesystem operations that may take place on uploaded files.

There are some other considerations we must take into account. For example, we need to
store metadata for each of the images. As mentioned earlier, we want to allow users to change
the order of images belonging to each blog post (since a blog post may have several images).
As such, not only do we need to track which images belong to which blog posts, but we must
also track the order of the images.

My preferred method is to store all uploaded images on the filesystem, and to also use a
database table to store information about the images and to link each image to its blog post.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY372

9063Ch11CMP2 11/15/07 8:13 AM Page 372

■Note If you prefer to store your images in the database, you shouldn’t have too much trouble extending
the SQL we will create here to do so. However, to produce and save the thumbnail images as the way I
describe in this chapter, it is likely that you will still need to store some files on the filesystem.

Creating the Database Table for Image Data
We will first create a table in the database to store information about each uploaded image.
This table will hold the filename of the original image as well as a foreign key that links this
table to the blog_posts table. The final ranking column will be used to record the order of the
images in a blog post.

■Note The name of the ranking column isn’t too important; however, order is a reserved word in SQL,
so we cannot use it.

The schema for this table, which we call blog_posts_images, is shown in Listing 11-1. This
SQL code can be found in the schema-mysql.sql file, and the corresponding PostgreSQL code
can be found in schema-pgsql.sql.

Listing 11-1. Creating the Database Table Used to Store Image Information (schema-mysql.sql)

create table blog_posts_images (
image_id serial not null,

filename varchar(255) not null,

post_id bigint unsigned not null,
ranking int unsigned not null,

primary key (image_id),
foreign key (post_id) references blog_posts (post_id)

) type = InnoDB;

Controlling Uploaded Images with DatabaseObject
Next, we will create a child class of DatabaseObject that we will use to manage both database
records for uploaded files and the stored files on the filesystem. As noted previously, we will
use a database record to store image data and store the file on the filesystem, as this allows us
to easily link the image to the correct blog post. It also allows us to store other data with each
image if required (such as an original filename or a caption).

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 373

9063Ch11CMP2 11/15/07 8:13 AM Page 373

This child class, called DatabaseObject_BlogPostImage, will write the file to the filesystem
upon successful upload, and it will delete the file from the filesystem and the database record
from the table if the user chooses to delete the image.

For now, we will just create the basic skeleton of the DatabaseObject_BlogPostImage class,
as shown in Listing 11-2; we will add more advanced functionality to this class as we continue
on in this chapter. This code should be stored in BlogPostImage.php, which resides in the
./include/DatabaseObject class.

Listing 11-2. Beginning the Blog Post Image-Management Class (BlogPostImage.php)

<?php
class DatabaseObject_BlogPostImage extends DatabaseObject
{

public function __construct($db)
{

parent::__construct($db, 'blog_posts_images', 'image_id');

$this->add('filename');
$this->add('post_id');
$this->add('ranking');

}
}

?>

At this stage, the key functionality we need to add to this class involves writing the image
file to the filesystem and deleting the file when the record is removed. Before we add this func-
tionality, however, we will look at how to upload files via HTTP in PHP.

Uploading Files
Traditionally speaking, HTTP hasn’t been a very good method for uploading files over the
Internet. There are several reasons for this:

• Unreliable. If a file upload doesn’t complete, it is not possible to resume the upload,
meaning large files may never be uploaded. Additionally, some browsers may decide
after a prolonged period of time that an error has occurred, typically resulting in an
error message being displayed to the user.

• Restrictive. While a file is being uploaded, the user cannot navigate away from the page
they are uploading to without interrupting the upload.

• Cumbersome. Due to security concerns, the capabilities of file-upload forms are some-
what restricted. For instance, very few styles can usually be applied to file inputs.
Additionally, file inputs allow only single selections, meaning a user cannot choose
multiple files at once—if the form allows multiple file inputs, the files must be chosen
one at a time.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY374

9063Ch11CMP2 11/15/07 8:13 AM Page 374

• Uninformative. There is no built-in way in HTTP to notify the user of the status of their
upload. This means there is no easy way to know how much of the upload is complete,
or how much longer it will take.

Thankfully the increased speeds of Internet connections over recent years have alleviated
some of these problems; however, since HTTP hasn’t changed, these issues still exist.

In our web application, we will only be uploading images (not other file types, such as
PDF files). Compared to other types of files, images are small. For instance, using the Photo-
shop “Save for Web” tool to save a 1024 ✕ 768 pixel JPEG photo will typically result in a file
under 100KB.

In this section, we will create an image-upload form in our web application, as well as a
new form processor to deal with this upload.

Setting the Form Encoding
To upload files over HTTP, a traditional HTML form is used (that is, using <form> tags), but you
must add one extra attribute to this tag: the enctype attribute. This notifies the web server
what kind of data the web browser is trying to send.

Normally you don’t need to specify this attribute. If it is not specified, the default value of
enctype is application/x-www-form-urlencoded. In other words, the following two lines of
HTML are equivalent:

<form method="post" action="...">
<form method="post" action="..." enctype="application/x-www-form-urlencoded">

This indicates to the web server that the browser is sending URL-encoded form data using the
HTTP POST method.

In order to have the web server recognize uploaded image files, we must specify the
enctype as multipart/form-data. In other words, the form will probably be sending multiple
types of data: normal URL-encoded form data as well as binary data (such as an image).

Adding the Form
Let’s now add a new form to the web application that will allow users to upload images to
their blog posts once they have been created. We will add the form shown in Listing 11-3 to
the preview.tpl file in ./templates/blogmanager.

■Note We could include the image-upload form on the blog post editing page, but uploading files with
normal form data can pose new challenges, since if a form error occurs, the user may need to upload the
file again.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 375

9063Ch11CMP2 11/15/07 8:13 AM Page 375

Listing 11-3. Creating a File-Upload Form Specifying the Form Encoding Type (preview.tpl)

<!-- // ... other code -->

<fieldset id="preview-tags">
<!-- // ... other code -->

</fieldset>

<fieldset id="preview-images">
<legend>Images</legend>

<form method="post"
action="{geturl action='images'}"
enctype="multipart/form-data">

<div>
<input type="hidden" name="id" value="{$post->getId()}" />
<input type="file" name="image" />
<input type="submit" value="Upload Image" name="upload" />

</div>
</form>

</fieldset>

<div class="preview-date">
<!-- // ... other code -->

</div>

<!-- // ... other code -->

The target script for this form is a new action handler called images in the blogmanager
controller. We will create this handler later. We also include the ID of the blog post the image is
being uploaded for, so it can be linked to the post.

In addition to handling uploads, we will use the images action handler to save changes to
the ordering of the images and to delete images. The submit button is named upload so we
know that we are handling a file upload when processing this form.

By adding some new styles to the site style sheet (in ./htdocs/css/styles.css), we can
make this block look like the tag management area that is also on this page. Listing 11-4 shows
the CSS we need to add to styles.css, while Figure 11-1 shows how the form looks on the blog
post preview page.

Listing 11-4. Styling the Image-Management Area of the Blog Post Preview (styles.css)

#preview-images {
margin : 5px 0;
padding : 5px;

}

#preview-images input {
font-size : 0.95em;

}

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY376

9063Ch11CMP2 11/15/07 8:13 AM Page 376

Figure 11-1. The image management area for blog posts

Specifying the File Input Type
The other element in Listing 11-3 that we have not yet discussed is the file input. This is a spe-
cial type of form element that allows the user to select a file from their computer for upload. It
is typically made up of a text input on the left and a button on the right (used to open the file-
selection dialog box).

Browsers typically give developers less control over the look and feel of file inputs than for
other inputs, as there would be security implications if they did not do this. Here are some of
the things you can and can’t do with file inputs (although different browsers will behave
slightly differently):

• You can observe the onchange event, so you can detect when the user has chosen a file
(or removed their selection).

• You can retrieve the value of the form element. This does not mean you can read the
contents of the selected file—you can simply read the path and/or filename of the file
as it is stored on the user’s computer.

• You can change the font size and color of the file input element, but you cannot change
the text (most browsers will use “Browse…”).

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 377

9063Ch11CMP2 11/15/07 8:13 AM Page 377

• You cannot use a custom image as the browse button, nor can you hide the text input
that shows the file path. However, you can manipulate the input by changing its posi-
tion in CSS or making it fully transparent (allowing you to add styled buttons behind it).

Some web developers have been quite creative in how they style this input in an effort to
customize their own site layout fully. We will be using the plain-vanilla version of the file input
control, as shown in Listing 11-3.

Setting the Maximum File Size
The next step is to look at how maximum file upload sizes are specified. You will want to
impose some kind of restriction on the maximum size of uploaded files to prevent abuse from
users. There are several ways to achieve this, both within the HTML form as well as on the
server:

• MAX_FILE_SIZE: By including a hidden form element called MAX_FILE_SIZE, you can set
the maximum number of bytes in an uploaded file by specifying that value as the form
element value. Using this feature is somewhat pointless, since it can easily be fooled by
somebody manually manipulating the form data.

• post_max_size: This is a php.ini setting that specifies the maximum size POST request
data can be. Note that if there are several files being uploaded within a single form, this
value applies to the total amount of data being included. In a default PHP installation,
this value is set to 8MB (using the value 8M).

• upload_max_filesize: This php.ini setting specifies the maximum size for a single
file that is uploaded. By default, this value is set to 2MB. In combination with the
post_max_size value (of 8M), you could upload three 1.5MB files (since each is below
2MB and the total is approximately 4.5MB), but uploading 10 1MB files would fail since
the total would be about 10MB.

You should use the post_max_size and upload_max_filesize settings to specify upload
limits and ignore the MAX_FILE_SIZE form directive. In addition to these limits, you may also
want to impose other artificial limits on users, such as the maximum number of photos per
blog post or a total quota for their account.

Realistically, you won’t need to make any changes to your configuration to deal with max-
imum file sizes. However, if you wanted to allow users to upload other types of files (such as
PDF or MP3 files), you would want to increase these configuration settings.

■Note We won’t be implementing any such restrictions in this chapter; however, as an exercise, you may
want to add this functionality. Note that if you choose to restrict the number of photos per blog post, the user
can get around this limit by simply creating more posts. As such, using an absolute number as a restriction
may be a better solution (such as 20MB per user).

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY378

9063Ch11CMP2 11/15/07 8:13 AM Page 378

Handling Uploaded Files
As mentioned previously, we must create a new action handler in the BlogmanagerController
class to deal with image-handling operations. The different operations that can take place
include uploading, reordering, and deleting. At this stage, we will only look at the upload
operation.

In addition to creating the new action handler, we must also create a new form processor
to save the uploaded files as well as to report on any errors that may have occurred.

Creating the Blog Manager Action Handler
We can use the tagsAction() function we created in Chapter 10 as a basis for the new
imagesAction() function. The functionality of these two functions is almost identical: in
both we must first load a blog post; next, we must determine the action to take (in this case,
it’s whether to upload, reorder, or delete an image; in tagsAction() it was whether to add or
delete a tag); finally, we will redirect the browser back to the blog post preview.

Listing 11-5 shows the code we will add to the BlogmanagerController.php class (in
./include/Controllers) in order to manage images. For now we will simply include place-
holders for the other image operations.

Listing 11-5. The Action Handler for Image Management (BlogmanagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

// ... other code

public function imagesAction()
{

$request = $this->getRequest();

$post_id = (int) $request->getPost('id');

$post = new DatabaseObject_BlogPost($this->db);
if (!$post->loadForUser($this->identity->user_id, $post_id))

$this->_redirect($this->getUrl());

if ($request->getPost('upload')) {
$fp = new FormProcessor_BlogPostImage($post);
if ($fp->process($request))

$this->messenger->addMessage('Image uploaded');
else {

foreach ($fp->getErrors() as $error)
$this->messenger->addMessage($error);

}
}
else if ($request->getPost('reorder')) {

// todo

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 379

9063Ch11CMP2 11/15/07 8:13 AM Page 379

}
else if ($request->getPost('delete')) {

// todo
}

$url = $this->getUrl('preview') . '?id=' . $post->getid();
$this->_redirect($url);

}
}

?>

One key aspect of this code is that we now use the flash messenger to hold any error mes-
sages that occur in the upload form. This means that if any errors occur (such as a file being
too large or a file type being invalid), the error messages will be shown in a message area at the
top of the right column of our web application.

Showing errors in this manner is slightly different from what we have done so far in this
book (previously errors have been shown below the form input related to the error). I have
simply done this to show you an alternative way of displaying error messages.

Creating the Image-Upload Form Processor
In Listing 11-5, we used a class called FormProcessor_BlogPostImage. We will now create this
class, which we will use to process the uploaded image. This class has several responsibilities:

• Ensuring the upload completed correctly

• Checking the type of file that was uploaded and ensuring it is an image

• Writing the file to the filesystem and creating the database record using the
DatabaseObject_BlogPostImage class we created earlier in this chapter

Listing 11-6 shows the constructor for this class, which we will store in a file called
BlogPostImage.php in the ./include/FormProcessor directory. The constructor instantiates
DatabaseObject_BlogPost and sets the ID of the blog post the image is being uploaded for.

Listing 11-6. The Constructor of the Image-Upload Processing Form (BlogPostImage.php)

<?php
class FormProcessor_BlogPostImage extends FormProcessor
{

protected $post;
public $image;

public function __construct(DatabaseObject_BlogPost $post)
{

parent::__construct();

$this->post = $post;

// set up the initial values for the new image

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY380

9063Ch11CMP2 11/15/07 8:13 AM Page 380

$this->image = new DatabaseObject_BlogPostImage($post->getDb());
$this->image->post_id = $this->post->getId();

}

Next, we will implement the process() method of this class, which will process any
uploaded images. As we saw earlier in this chapter, we must specify the multipart/form-data
encoding type to upload files using HTML forms.

When we set this attribute, PHP will know to create the superglobal array called $_FILES,
which stores information about uploaded files (even though the form is submitted using
HTTP POST, the image-upload information is stored in $_FILES, not in $_POST). There is one
entry in $_FILES for each file that is uploaded, with the array key being the value of the name
attribute in the form input (in our case, we used image).

Each element in $_FILES is an array consisting of the following elements:

• name: The original filename of the uploaded file as it was stored on the client computer
(typically not including the path). We will store this value in the database for each
uploaded image.

• type: The mime type of the uploaded file. For example, if the uploaded file was a PNG
image, this would have a value of image/png. Since this is set by the browser, we should
not trust this value. In the process() method we will not use this value and instead will
verify the type of data manually.

• size: The size of the uploaded file in bytes. If you want to impose a restriction on the
size of uploaded files (in addition to the PHP configuration settings), you can use this
value.

• tmp_name: The full path on the server where the uploaded file is stored. This is a tempo-
rary location, so you must move or copy the file from this location in order to keep it
(we will do this shortly using the move_uploaded_file() function).

• error: The error code associated with the uploaded file. There are several different
codes that can be set (which we will look at in the following code). We must check this
value using the built-in PHP constants and generate an appropriate error message. If
the file upload is successful, the value of error will be 0 (which we can check using the
constant UPLOAD_ERR_OK).

To begin implementing the process() method, the first thing we must do is check for the
presence of the uploaded file in the $_FILES superglobal. This is shown in Listing 11-7. Once
we know it exists, we can assign it to the $file variable.

Listing 11-7. Ensuring the $_FILES Array Is Set Correctly (BlogPostImage.php)

public function process(Zend_Controller_Request_Abstract $request)
{

if (!isset($_FILES['image']) || !is_array($_FILES['image'])) {
$this->addError('image', 'Invalid upload data');
return false;

}

$file = $_FILES['image'];

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 381

9063Ch11CMP2 11/15/07 8:13 AM Page 381

Next, we will check the error code, as set in the error element of $file. If this value is not
equal to UPLOAD_ERR_OK, an error has occurred. We will check for each error code explicitly, as
this allows us to create a more informative error message for the user. (These codes are docu-
mented at http://www.php.net/manual/en/features.file-upload.errors.php.) Listing 11-8
shows the switch() statement in BlogPostImage.php that will check each of the different error
codes.

Listing 11-8. Checking the Error Code for the Uploaded Image (BlogPostImage.php)

switch ($file['error']) {
case UPLOAD_ERR_OK:

// success
break;

case UPLOAD_ERR_FORM_SIZE:
// only used if MAX_FILE_SIZE specified in form

case UPLOAD_ERR_INI_SIZE:
$this->addError('image', 'The uploaded file was too large');
break;

case UPLOAD_ERR_PARTIAL:
$this->addError('image', 'File was only partially uploaded');
break;

case UPLOAD_ERR_NO_FILE:
$this->addError('image', 'No file was uploaded');
break;

case UPLOAD_ERR_NO_TMP_DIR:
$this->addError('image', 'Temporary folder not found');
break;

case UPLOAD_ERR_CANT_WRITE:
$this->addError('image', 'Unable to write file');
break;

case UPLOAD_ERR_EXTENSION:
$this->addError('image', 'Invalid file extension');
break;

default:
$this->addError('image', 'Unknown error code');

}

if ($this->hasError())
return false;

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY382

9063Ch11CMP2 11/15/07 8:13 AM Page 382

In this code, note that if an error has occurred, we return from the process() function
immediately, since there’s nothing else to do. The remainder of the code relies on a file being
successfully uploaded.

Next, we must ensure that the uploaded file is in fact an image. Since we cannot rely on the
mime type specified by the user’s web browser, we must check the data manually. This is fairly
straightforward for images, since PHP has the getImageSize() function, which returns an array
of information about image files. This function will return false if the file is not an image.

The getImageSize() function supports a wide range of image types, but since we only
want to allow JPEG, GIF, and PNG files (since these are the three types of files commonly sup-
ported in web browsers), we must first check the type of image. The getImageSize() function
returns an array: the first and second elements are the width and height of the image, and the
third element (index of 2) specifies the image type.

Listing 11-9 shows the code we will add to fetch the image information and check its type.
We will use built-in constants to check for JPEG, GIF, and PNG images.

Listing 11-9. Ensuring the Uploaded File Is a JPEG, GIF, or PNG Image (BlogPostImage.php)

$info = getImageSize($file['tmp_name']);
if (!$info) {

$this->addError('type', 'Uploaded file was not an image');
return false;

}

switch ($info[2]) {
case IMAGETYPE_PNG:
case IMAGETYPE_GIF:
case IMAGETYPE_JPEG:

break;

default:
$this->addError('type', 'Invalid image type uploaded');
return false;

}

At this point in the code, we can assume a valid file was uploaded and that it is a JPEG,
GIF, or PNG image (it doesn’t matter to us which one). Now we must write the file to the
filesystem (it is currently stored in a temporary area) and save the database record.

To move the file from the temporary area, we will call the uploadFile() method, which we
will implement shortly. Additionally, we will set the filename of the uploaded file and save the
database record, as shown in Listing 11-10.

Listing 11-10. Saving the Image File and the Database Record (BlogPostImage.php)

// if no errors have occurred, save the image
if (!$this->hasError()) {

$this->image->uploadFile($file['tmp_name']);
$this->image->filename = basename($file['name']);
$this->image->save();

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 383

9063Ch11CMP2 11/15/07 8:13 AM Page 383

}

return !$this->hasError();
}

}
?>

■Note Be sure to use basename() on the value in $file['name'], since this value is supplied by the
browser. The basename() method is used to strip out the path from a full filesystem path (so /path/to/
foo.jpg becomes foo.jpg). As mentioned earlier, most browsers will not include the full path, but you
should still call basename() just in case.

Writing Files to the Filesystem
Now that we have completed the action handler and the form processor, we must make the
necessary changes to the DatabaseObject_BlogPostImage class to save the uploaded image.
There are a number of functions we must write, including the uploadFile() function we
briefly looked at in Listing 11-10.

The first function we will write is one that returns the path on the filesystem where we will
be storing the uploaded images. In Chapter 1 we created a directory called uploaded-files in
the ./data directory—this is where the uploaded images will be stored. Listing 11-11 shows
GetUploadPath(), a static function we will call to determine where files will be stored.

Listing 11-11. Determining the Base Location for Uploaded Files (BlogPostImage.php)

<?php
class DatabaseObject_BlogPostImage extends DatabaseObject
{

// ... other code

public static function GetUploadPath()
{

$config = Zend_Registry::get('config');

return sprintf('%s/uploaded-files', $config->paths->data);
}

}
?>

Next, we will write a function to determine the full path where an uploaded file is stored
for a particular database record. To simplify this process, rather than storing files with the
names they used on the client’s computer, we will store them in the uploaded file directory
using their database ID. If we need to refer back to their original filenames, we can get this
information from the database record.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY384

9063Ch11CMP2 11/15/07 8:13 AM Page 384

Listing 11-12 shows the getFullpath() function, which returns the full path to the
uploaded file. This basically just combines the GetUploadPath() function with the record ID.

Listing 11-12. Retrieving the Full Filesystem Path of an Uploaded File (BlogPostImage.php)

<?php
class DatabaseObject_BlogPostImage extends DatabaseObject
{

// ... other code

public function getFullPath()
{

return sprintf('%s/%d', self::GetUploadPath(), $this->getId());
}

// ... other code
}

?>

Next, we will implement the uploadFile() function. All this function does is store the
temporary path of the uploaded file in anticipation of the save() method being called. When
save() is called on a new record of DatabaseObject_BlogPostImage, the preInsert() and
postInsert() callbacks will be executed. The copying of the file from its temporary location
to its new location will occur on postInsert().

Listing 11-13 shows the code for uploadFile(), which writes the temporary path to an
object property for later use. Note that it also does some basic error checking to ensure the
temporary file exists and is readable.

Listing 11-13. Setting the Location of the Uploaded File so It Can Be Copied Across
(BlogPostImage.php)

<?php
class DatabaseObject_BlogPostImage extends DatabaseObject
{

protected $_uploadedFile;

// ... other code

public function uploadFile($path)
{

if (!file_exists($path) || !is_file($path))
throw new Exception('Unable to find uploaded file');

if (!is_readable($path))
throw new Exception('Unable to read uploaded file');

$this->_uploadedFile = $path;
}

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 385

9063Ch11CMP2 11/15/07 8:13 AM Page 385

// ... other code
}

?>

Next, we will implement the preInsert() callback, which is called before the database
record is inserted into the database. This function first ensures that the upload location exists
and is writable, which will help us solve any permissions errors if the upload area hasn’t been
created properly. Then the ranking value for the image is determined, based on the other
images that have been uploaded for the blog post. The ranking system simply uses numbers
from 1 to N, where N is the number of images for a single post.

Since the new image is considered to be the last image for the blog, we can use the SQL
max() function to determine its ranking. The only problem with this is that if no images exist
for the given blog post, a value of null is returned. To avoid this problem, we will use the
coalesce() function, which returns the first non-null value from its arguments.

The code for preInsert() is shown in Listing 11-14.

Listing 11-14. Ensuring the File Can Be Written, and Determining Its Ranking
(BlogPostImage.php)

<?php
class DatabaseObject_BlogPostImage extends DatabaseObject
{

// ... other code

public function preInsert()
{

// first check that we can write the upload directory
$path = self::GetUploadPath();
if (!file_exists($path) || !is_dir($path))

throw new Exception('Upload path ' . $path . ' not found');

if (!is_writable($path))
throw new Exception('Unable to write to upload path ' . $path);

// now determine the ranking of the new image
$query = sprintf(

'select coalesce(max(ranking), 0) + 1 from %s where post_id = %d',
$this->_table,
$this->post_id

);

$this->ranking = $this->_db->fetchOne($query);
return true;

}

// ... other code
?>

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY386

9063Ch11CMP2 11/15/07 8:13 AM Page 386

Finally, we will implement the postInsert() callback. This is the function responsible for
copying the image file from its temporary upload location to the uploaded files area of our
web application. We will do this in postInsert() because if any SQL errors occurred before
this point, the whole transaction could be easily rolled back, preventing the file from being
incorrectly moved into the web application.

To move the file, we will use the PHP move_uploaded_file() function. This function is
used for security reasons, as it will automatically ensure that the file being moved was in fact
uploaded via PHP. This function will return true if the file was successfully moved and false
if not. Thus we can use the return value as the postInsert() return value. Remember that
returning false from this callback will roll back the database transaction. In other words, if
the file could not be copied for some reason, the database record would not be saved.

Listing 11-15 shows the postInsert() method, which completes the image-upload func-
tionality for the web application.

Listing 11-15. Moving the Uploaded File to the Application File Storage Area (BlogPostImage.php)

<?php
class DatabaseObject_BlogPostImage extends DatabaseObject
{

// ... other code

public function postInsert()
{

if (strlen($this->_uploadedFile) > 0)
return move_uploaded_file($this->_uploadedFile,

$this->getFullPath());

return false;
}

// ... other code
}

?>

Once you have added this code, you will be able to upload images to blog posts via the
form we added to the post preview page. Currently, though, we haven’t implemented code to
display these uploaded images, so to verify that your code is working, you should check that
there are records present in the database table by using the following query:

mysql> select * from blog_posts_images;

You should also check that the file you uploaded is in /var/www/phpweb20/data/uploaded-files.

Sending Images
Now that users can upload photos to their blog posts, we must display their images both on
the blog post preview page and on the actual blog page. Before we do this, however, we must
write the code to send the images. We could use the built-in file serving from the web server,

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 387

9063Ch11CMP2 11/15/07 8:13 AM Page 387

but since the original images as well as generated thumbnails will be stored in the application
data directory, we will serve these files using PHP code.

To begin, we will simply output uploaded images in full, just as they were uploaded. We
will build on this functionality later by adding the ability to resize images.

■Note The image resizing we will implement will generate thumbnails on demand. In other words, the first
time a thumbnail of a particular size is requested, it will be generated and saved for later reuse. The advan-
tage of doing this over creating thumbnails when the image is uploaded is that we can easily choose what
size thumbnails we want in the template rather than deciding in the PHP code at upload time.

To send blog post images, we will create a new action handler in the UtilityController
class we created earlier in this book. Currently this controller is used only for outputting
CAPTCHA images, but we will now make it also send blog post images.

Listing 11-16 shows the start of the imageAction() method we will add to
UtilityController.php. This file can be found in ./include/Controllers.

Listing 11-16. Initial Setup of the Image-Output Function (UtilityController.php)

<?php
class UtilityController extends CustomControllerAction
{

// ... other code

public function imageAction()
{

$request = $this->getRequest();
$response = $this->getResponse();

$id = (int) $request->getQuery('id');

// disable autorendering since we're outputting an image
$this->_helper->viewRenderer->setNoRender();

As in many other action handlers in this book, we begin by retrieving the request object.
In this function, we also retrieve the response object because we are going to send some addi-
tional HTTP headers. Namely, we are going to send the content-type header (to specify the
type of data) and content-length header (to specify the amount of data in bytes).

Next, we retrieve the requested image ID from the URL. This means that to request the
image with an ID of 123, the URL http://phpweb20/utility/image?id=123 would be used.

The next step is to disable the automatic view renderer, since we are outputting an image
and not an HTML template.

At this point, we will try to load the DatabaseObject_BlogPostImage record specified by the
$id variable, as shown in Listing 11-17. If the image cannot be found, we use the $response
object to send a 404 header and return. If the image does load, we simply proceed in the func-
tion.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY388

9063Ch11CMP2 11/15/07 8:13 AM Page 388

Listing 11-17. Loading the DatabaseObject_BlogPostImage Record (UtilityController.php)

$image = new DatabaseObject_BlogPostImage($this->db);
if (!$image->load($id)) {

// image not found
$response->setHttpResponseCode(404);
return;

}

At this point in the function, we can assume that a blog post image has been successfully
loaded. As such, we must now determine what type of image it is and send the appropriate
content-type header. The getImageSize() function we looked at earlier in this chapter also
includes an appropriate header in the mime index of the returned array.

In addition to sending this header, we will also send the content-length header. This tells
the browser how much data to expect. We can use the PHP filesize() function to determine
the value for this (specified in bytes).

■Note Why is the content-length header important? Perhaps you have downloaded a large file in
your browser, and the browser was unable to give you an estimate of remaining time. This is because the
content-length header was not sent. The browser simply receives data until no more is available—
without the header, it is not able to determine how much data is still to come. This is usually more of an
issue for larger files.

Listing 11-18 shows the remainder of the imageAction() function. This code begins by
retrieving the full filesystem path using getFullPath(). It then determines which type of image
the file is and sends headers for the type and the size of the image using the setHeader()
function. Finally, the actual image data is sent.

Listing 11-18. Sending the Image Headers and Then the Image Itself (UtilityController.php)

$fullpath = $image->getFullPath();
$info = getImageSize($fullpath);

$response->setHeader('content-type', $info['mime']);
$response->setHeader('content-length', filesize($fullpath));
echo file_get_contents($fullpath);

}
}

?>

This completes the minimum code required to output uploaded blog post images. In
order to test it, you can upload an image using the form we created earlier in this chapter,
and then manually enter the image ID into the following URL: http://phpweb20/utility/
image?id=ImageID.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 389

9063Ch11CMP2 11/15/07 8:13 AM Page 389

Resizing Images
Depending on the context, you will often want to display uploaded images at different
resolutions in different areas of your site. For example, on the blog post index page in our
application, you might want small thumbnails (perhaps around about 100 pixels by 75 pixels)
while on the blog post detail page you might want to show somewhat larger images (such as
about 200 pixels by 150 pixels). In addition, you may want to allow the user to click on an
image to show the image at full size.

In this section, we will build a simple mechanism to generate resized versions (that is,
thumbnails) of uploaded images. We will build this system such that the desired dimensions
can be specified in the URL and an image the appropriate size will be returned.

In order to do this, we will use the GD functions that are included with PHP. A popular
alternative to GD is ImageMagick, but it requires that ImageMagick also be installed on the
server, while GD is typically included in most PHP installations.

■Note The techniques we use here can be achieved using ImageMagick’s convert tool. You can use this
tool either by calling convert directly within your script, or by using the imagick PECL package. After lying
dormant for several years, this package has recently gained new life and provides a simple interface to
ImageMagick. The biggest drawback to using this package is that it needs to be built into the PHP server in
addition to ImageMagick being installed on the server. More information about convert can be found at
http://www.imagemagick.org/script/convert.php.

Creating Thumbnails
The image thumbnailer we will now create is fairly straightforward when you look at the indi-
vidual pieces. We will create a new method in the DatabaseObject_BlogPostImage class called
createThumbnail(), which generates a thumbnail for the loaded record based on the width
and height arguments specified. This method will return the full filesystem path to the created
thumbnail, which allows us to easily link the thumbnailer into the existing code to load and
display images. Additionally, it allows us to simply return the path of the original file if the
requested thumbnail is bigger than the original image. This saves unnecessary duplication of
the image on the filesystem.

The other thing createThumbnail() will do is cache the thumbnails. Since creating thumb-
nails can be processor-intensive (depending on the size of the input and output images), we
want to make this process as efficient as possible. Fortunately, it is very straightforward to
cache the created thumbnails, as we will soon see.

Before we write createThumbnail(), we will add in another method, which we will call
GetThumbnailPath(). This method will return the filesystem path to where created thumbnails
should be stored. We will use the ./data/tmp directory as the base directory for this, and use a
subdirectory within it called thumbnails, as shown in Listing 11-19.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY390

9063Ch11CMP2 11/15/07 8:13 AM Page 390

Listing 11-19. Retrieving the Thumbnail Storage Path (BlogPostImage.php)

<?php
class DatabaseObject_BlogPostImage extends DatabaseObject
{

// ... other code

public static function GetThumbnailPath()
{

$config = Zend_Registry::get('config');

return sprintf('%s/tmp/thumbnails', $config->paths->data);
}

}
?>

Next, we can look at createThumbnail(), in which we begin by retrieving the path of the
original file and some basic information about this file, which we will use later in the function.
Listing 11-20 shows beginning of createThumbnail().

Listing 11-20. Determining the Image Attributes for Later Use (BlogPostImage.php)

<?php
class DatabaseObject_BlogPostImage extends DatabaseObject
{

// ... other code

public function createThumbnail($maxW, $maxH)
{

$fullpath = $this->getFullpath();

$ts = (int) filemtime($fullpath);
$info = getImageSize($fullpath);

Determining the Width and Height of the Thumbnail
The first (and probably the most complicated) step of creating a thumbnail image is to
determine the dimensions of the thumbnail. The createThumbnail() function accepts the
maximum width of a thumbnail as its first argument, and the maximum height as the second
argument. Note that the proportions remain the same as the original regardless of the speci-
fied width and height; we simply use these values to determine the maximum size.

We will allow for either of these arguments (but not both) to be set to 0. This means the
image will be constrained only by the specified value (so if a maximum width of 100 is speci-
fied with a maximum height of 0, the image can be any height as long as it is no wider than
100 pixels).

We use the width and height values returned from getImageSize() in combination with
the specified maximum width and height ($maxW and $maxH) to determine the width and height
of the thumbnail ($newW and $newH). This code is shown in Listing 11-21, and is explained in
the comments.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 391

9063Ch11CMP2 11/15/07 8:13 AM Page 391

Listing 11-21. Calculating the Width and Height of the Thumbnail (BlogPostImage.php)

$w = $info[0]; // original width
$h = $info[1]; // original height

$ratio = $w / $h; // width:height ratio

$maxW = min($w, $maxW); // new width can't be more than $maxW
if ($maxW == 0) // check if only max height has been specified

$maxW = $w;

$maxH = min($h, $maxH); // new height can't be more than $maxH
if ($maxH == 0) // check if only max width has been specified

$maxH = $h;

$newW = $maxW; // first use the max width to determine new
$newH = $newW / $ratio; // height by using original image w:h ratio

if ($newH > $maxH) { // check if new height is too big, and if
$newH = $maxH; // so determine the new width based on the
$newW = $newH * $ratio; // max height

}

if ($w == $newW && $h == $newH) {
// no thumbnail required, just return the original path
return $fullpath;

}

Determining the Input and Output Functions
In order to create thumbnails with GD, we must turn the original image into a GD image
resource (a special type of PHP variable). There is a different function to do this for each of the
image types we support (JPEG, GIF, and PNG).

Once the thumbnail has been created, we need to output the new GD image resource to
the filesystem. We must determine which function to use for this, also based on the type of
image. While we could simply use the same image type for all thumbnails, we will use the
input image type as the output image type.

Just as we did when writing the image uploader (Listing 11-9), we can check the third
index of the getImageSize() result to determine which functions to use. This is shown in
Listing 11-22.

Listing 11-22. Determining the GD Input and Output Image Functions (BlogPostImage.php)

switch ($info[2]) {
case IMAGETYPE_GIF:

$infunc = 'ImageCreateFromGif';
$outfunc = 'ImageGif';
break;

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY392

9063Ch11CMP2 11/15/07 8:13 AM Page 392

case IMAGETYPE_JPEG:
$infunc = 'ImageCreateFromJpeg';
$outfunc = 'ImageJpeg';
break;

case IMAGETYPE_PNG:
$infunc = 'ImageCreateFromPng';
$outfunc = 'ImagePng';
break;

default;
throw new Exception('Invalid image type');

}

Generating the Thumbnail Filename
Next, we will generate a filename for the newly created thumbnail. We generate this based on
the height and width of the thumbnail, as well as on the image ID and the date the original file
was created. By using the creation date, the thumbnail will be regenerated if the file is ever
modified.

■Note We haven’t actually implemented functionality to allow the user to edit an uploaded image, but if
you did, this timestamp would ensure new thumbnails would be generated automatically for the new image.

In addition to creating the filename, we must also determine the full path of the thumb-
nail and ensure that we can write to that directory, as shown in Listing 11-23. If the destination
directory doesn’t exist, we will create it. Note that this will typically only occur the first time
this function is called.

Listing 11-23. Generating the Thumbnail Filename, and Creating the Target Directory
(BlogPostImage.php)

// create a unique filename based on the specified options
$filename = sprintf('%d.%dx%d.%d',

$this->getId(),
$newW,
$newH,
$ts);

// autocreate the directory for storing thumbnails
$path = self::GetThumbnailPath();
if (!file_exists($path))

mkdir($path, 0777);

if (!is_writable($path))
throw new Exception('Unable to write to thumbnail dir');

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 393

9063Ch11CMP2 11/15/07 8:13 AM Page 393

Creating the Thumbnail
Now that we know the dimensions of the thumbnail, the input and output functions, and the
thumbnail destination path, we can create the actual thumbnail. The very first thing we will
do, however, is check whether the thumbnail already exists. This simple check (in combina-
tion with the previous filename generation) is the caching functionality. If the thumbnail
exists, we simply skip the generation part of this code.

If the thumbnail doesn’t exist, we read in the image to GD using the input determined in
Listing 11-22. So if the original image is a PNG file, ImageCreateFromPng() is used. If an error
occurs reading the image, we throw an exception and return from the function. The first por-
tion of the thumbnail-creation code is shown in Listing 11-24.

Listing 11-24. Reading the Image into GD (BlogPostImage.php)

// determine the full path for the new thumbnail
$thumbPath = sprintf('%s/%s', $path, $filename);

if (!file_exists($thumbPath)) {

// read the image in to GD
$im = @$infunc($fullpath);
if (!$im)

throw new Exception('Unable to read image file');

When resizing an image with GD, the original image resource remains unchanged while
the resized version is written to a secondary GD image resource (which in this case we will call
$thumb). We must first create this secondary GD image using ImageCreateTrueColor(), with the
$newW and $newH variables specifying the size.

We then use GD’s ImageCopyResampled() function to copy a portion of the source image
($im) to the $thumb. The target image resource is the first argument, and the source image
resource is the second argument.

The remainder of the arguments indicate the X and Y coordinates of the target and source
images respectively, followed by the width and height of both images. This function is fairly
powerful, and it also allows you to easily crop or stretch images.

The code to create the target image and resample the original image onto the new image
is shown in Listing 11-25.

Listing 11-25. Resampling the Original Image onto the New Image Resource (BlogPostImage.php)

// create the output image
$thumb = ImageCreateTrueColor($newW, $newH);

// now resample the original image to the new image
ImageCopyResampled($thumb, $im, 0, 0, 0, 0, $newW, $newH, $w, $h);

Finally, we write this new image to the filesystem using the output function we selected in
Listing 11-22 (stored in $outfunc). So if the original image was a PNG image, we would use
ImagePng() to write the image to disk.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY394

9063Ch11CMP2 11/15/07 8:13 AM Page 394

■Note The second argument to the output functions (ImagePng(), ImageJpeg(), and ImageGif()) spec-
ifies where on the filesystem the image file should be written. If this isn’t specified, the image data is output
directly to the browser. You could choose to take advantage of this if you didn’t want to write the generated
images to the filesystem.

Finally, we ensure that the image was written to the system, and if so we return the path
to the newly created thumbnail. Listing 11-26 shows the code that writes the image to the
filesystem and returns from createThumbnail().

Listing 11-26. Writing the Thumbnail and Returning from createThumbnail()
(BlogPostImage.php)

$outfunc($thumb, $thumbPath);
}

if (!file_exists($thumbPath))
throw new Exception('Unknown error occurred creating thumbnail');

if (!is_readable($thumbPath))
throw new Exception('Unable to read thumbnail');

return $thumbPath;
}

// ... other code
}

?>

Linking the Thumbnailer to the Image Action Handler
Now that we have the capability to easily create image thumbnails, we must hook this into our
web application. We will do this by making some simple modifications to the imageAction()
function we created in Listing 11-16.

We are going to provide the ability to specify the desired width and height in the URL, so
it will be extremely simple to generate thumbnails as required. This means you can decide on
the dimensions of the thumbnail in the templates that output the image, rather than having to
hard-code these dimensions in your PHP code.

Because users could potentially abuse a system that allows them to generate thumbnails
of any size, we will add a mechanism to make it more difficult for this to occur. This mecha-
nism works as follows:

1. When an image is requested, the URL must include a parameter called a hash in addi-
tion to the image ID, width, and height. This parameter will be generated based on the
ID, width, and height.

2. The imageAction() method will check the supplied hash against what the hash should
be for the combination of ID, width, and height.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 395

9063Ch11CMP2 11/15/07 8:13 AM Page 395

3. If the two hash values are different, we will assume the image was requested incor-
rectly, and a 404 error is sent back.

4. If the hash value is correct, we generate the thumbnail and send it back.

If the user manually changes the width or height in the URL, the hash will not match the
request, so the thumbnail won’t be generated.

Generating an Image Hash
To implement this system, we first need the ability to generate an image hash based on the
given parameters. We will use this method both in the generation of URLs in the template, as
well as to generate a hash based on the ID, width, and height supplied in the request URL.

Listing 11-27 shows the GetImageHash() method, which generates a string based on the
supplied arguments using md5(). This code should be added to the BlogPostImage.php file in
./include/DatabaseObject.

Listing 11-27. Generating a Hash for the Given Image ID, Width, and Height (BlogPostImage.php)

<?php
class DatabaseObject_BlogPostImage extends DatabaseObject
{

// ... other code

public static function GetImageHash($id, $w, $h)
{

$id = (int) $id;
$w = (int) $w;
$h = (int) $h;

return md5(sprintf('%s,%s,%s', $id, $w, $h));
}

// ... other code
}

?>

Generating Image Filenames
Next, we will implement a new Smarty plug-in called imagefilename, which is used to generate
image filenames using the desired image ID, width, and height. This plug-in will allow us to
include image thumbnails in our templates very easily.

For example, to include a thumbnail that is 100 pixels by 75 pixels of an image with an ID
of 12, the following code would be used in the template:

Based on the arguments in this example, we would want to generate a URL as follows:

/utility/image?id=12&w=100&h=75&hash=[hash]

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY396

9063Ch11CMP2 11/15/07 8:13 AM Page 396

Similarly, if you wanted to generate the image path for the full-sized image, you would use
the following:

In order to generate this URL, we would use the {geturl} plug-in created earlier, in conjunc-
tion with the arguments and the GetImageHash() method.

Listing 11-28 shows the code for the function.imagefilename.php file, which we will store
in ./include/Templater/plugins.

Listing 11-28. The imagefilename Plug-In, Used to Generate a Thumbnail Image Path
(function.imagefilename.php)

<?php
function smarty_function_imagefilename($params, $smarty)
{

if (!isset($params['id']))
$params['id'] = 0;

if (!isset($params['w']))
$params['w'] = 0;

if (!isset($params['w']))
$params['h'] = 0;

require_once $smarty->_get_plugin_filepath('function', 'geturl');

$hash = DatabaseObject_BlogPostImage::GetImageHash(
$params['id'],
$params['w'],
$params['h']

);

$options = array(
'controller' => 'utility',
'action' => 'image'

);

return sprintf(
'%s?id=%d&w=%d&h=%d&hash=%s',
smarty_function_geturl($options, $smarty),
$params['id'],
$params['w'],
$params['h'],
$hash

);
}

?>

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 397

9063Ch11CMP2 11/15/07 8:13 AM Page 397

This function begins by initializing the parameters (the image ID, as well as the desired
width and height). Next, it loads the geturl plug-in so we can generate the /utility/image
part of the URL (the controller and action values are specified in the $options array that we
create in this function). Next, we generate the hash for the given ID, width, and height, and
then finally combine all of the parameters together into a single string and return this value
from the plug-in.

Updating imageAction() to Serve the Thumbnail
We can now update the imageAction() method to look for the w, h, and hash parameters so a
thumbnail can be served if required. We simply need to generate a new hash based on the id,
w, and h parameters, and then compare it to the hash value in the URL. Once we have deter-
mined that the supplied hash is valid and that the image could be loaded, we continue on by
generating the thumbnail and sending it.

Instead of calling getFullPath(), we will call createThumbnail(), which returns the full
path to the generated thumbnail. Since createThumbnail() throws various exceptions, we will
call getFullPath() as a fallback. In other words, if the thumbnail creation fails for some rea-
son, the original image is displayed instead. You may prefer instead to output an error.

The other code in imageAction() operated on the returned path from getFullPath(), so
we don’t need to change any of it—createThumbnail() also returns a full filesystem path.

Listing 11-29 shows the new version of imageAction(), which belongs in the
UtilityController.php file in ./include/Controllers.

Listing 11-29. Modifying imageAction() to Output Thumbnails on Demand
(UtilityController.php)

<?php
class UtilityController extends CustomControllerAction
{

// ... other code

public function imageAction()
{

$request = $this->getRequest();
$response = $this->getResponse();

$id = (int) $request->getQuery('id');
$w = (int) $request->getQuery('w');
$h = (int) $request->getQuery('h');
$hash = $request->getQuery('hash');

$realHash = DatabaseObject_BlogPostImage::GetImageHash($id, $w, $h);

// disable autorendering since we're outputting an image
$this->_helper->viewRenderer->setNoRender();

$image = new DatabaseObject_BlogPostImage($this->db);
if ($hash != $realHash || !$image->load($id)) {

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY398

9063Ch11CMP2 11/15/07 8:13 AM Page 398

// image not found
$response->setHttpResponseCode(404);
return;

}

try {
$fullpath = $image->createThumbnail($w, $h);

}
catch (Exception $ex) {

$fullpath = $image->getFullPath();
}

$info = getImageSize($fullpath);

$response->setHeader('content-type', $info['mime']);
$response->setHeader('content-length', filesize($fullpath));
echo file_get_contents($fullpath);

}
}

?>

Managing Blog Post Images
Now that we have the ability to view uploaded images (both at their original size and as
thumbnails) we can display the images on the blog post preview page.

In this section, we will modify the blog manager to display uploaded images, thereby
allowing the user to easily delete images from their blog posts. Additionally, we will implement
Ajax code using Prototype and Scriptaculous that will allow the user to change the order in
which the images in a single post are displayed.

Automatically Loading Blog Post Images
Before we can display the images on the blog post preview page, we must modify
DatabaseObject_BlogPost to automatically load all associated images when the blog post record
is loaded. To do this, we will change the postLoad() function to automatically load the images.

Currently this function only loads the profile data for the blog post, but we will add a call to
load the images, as shown in Listing 11-30. Additionally, we must initialize the $images array.

Listing 11-30. Automatically Loading a Blog Post’s Images When the Post Is Loaded
(BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

public $images = array();

// ... other code

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 399

9063Ch11CMP2 11/15/07 8:13 AM Page 399

protected function postLoad()
{

$this->profile->setPostId($this->getId());
$this->profile->load();

$options = array(
'post_id' => $this->getId()

);
$this->images = DatabaseObject_BlogPostImage::GetImages($this->getDb(),

$options);

}

// ... other code
}

?>

The code in Listing 11-30 calls a method called GetImages() in DatabaseObject_
BlogPostImage, which we must now implement. This function, which we will add to
BlogPostImage.php in ./include/DatabaseObject, is shown in Listing 11-31. Note that we use
the ranking field as the sort field. This ensures the images are returned in the order specified
by the user (we will implement the functionality to change this order shortly).

Listing 11-31. Retrieving Multiple Blog Post Images (BlogPostImage.php)

<?php
class DatabaseObject_BlogPostImage extends DatabaseObject
{

// ... other code

public static function GetImages($db, $options = array())
{

// initialize the options
$defaults = array('post_id' => array());

foreach ($defaults as $k => $v) {
$options[$k] = array_key_exists($k, $options) ? $options[$k] : $v;

}

$select = $db->select();
$select->from(array('i' => 'blog_posts_images'), array('i.*'));

// filter results on specified post ids (if any)
if (count($options['post_id']) > 0)

$select->where('i.post_id in (?)', $options['post_id']);

$select->order('i.ranking');

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY400

9063Ch11CMP2 11/15/07 8:13 AM Page 400

// fetch post data from database
$data = $db->fetchAll($select);

// turn data into array of DatabaseObject_BlogPostImage objects
$images = parent::BuildMultiple($db, __CLASS__, $data);

return $images;
}

}
?>

Displaying Images on the Post Preview
The next step in managing images for a blog post is to display them on the preview page.
To do this, we must make some changes to the preview.tpl template in the ./templates/
blogmanager directory, as well as adding some new styles to ./htdocs/css/styles.css.

Earlier in this chapter we created a new element in this template called #preview-images.
The code in Listing 11-32 shows the additions we must make to preview.tpl to display each of
the images. We will output the images in an unordered list, which will help us later when we
add the ability to reorder the images using Scriptaculous.

Listing 11-32. Outputting Images on the Blog Post Preview Page (preview.tpl)

<!-- // ... other code -->

<fieldset id="preview-images">
<legend>Images</legend>

{if $post->images|@count > 0}
<ul id="post_images">

{foreach from=$post->images item=image}
<li id="image_{$image->getId()}">

getId() w=200 h=65}"
alt="{$image->filename|escape}" />

<form method="post" action="{geturl action='images'}">
<div>

<input type="hidden"
name="id" value="{$post->getId()}" />

<input type="hidden"
name="image" value="{$image->getId()}" />

<input type="submit" value="Delete" name="delete" />
</div>

</form>

{/foreach}

{/if}

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 401

9063Ch11CMP2 11/15/07 8:13 AM Page 401

<form method="post"
action="{geturl action='images'}"
enctype="multipart/form-data">

<div>
<input type="hidden" name="id" value="{$post->getId()}" />
<input type="file" name="image" />
<input type="submit" value="Upload Image" name="upload" />

</div>
</form>

</fieldset>

<!-- // ... other code -->

As you can see in the code, we use the new imagefilename plug-in to generate the URL for
an image thumbnail 200 pixels wide and 65 pixels high. We also include a form to delete each
image in this template. We haven’t yet implemented this functionality (you may recall that we
left a placeholder for the delete command in the blog manager’s imagesAction() method), but
this will be added shortly.

Listing 11-33 shows the new styles we will add to styles.css in ./htdocs/css. These styles
format the unordered list so list items are shown horizontally. We use floats to position list
items next to each other (rather than using inline display), since this gives greater control
over the style within each item. Note that we must add clear : both to the div holding the
upload form in order to keep the display of the page intact.

Listing 11-33. Styling the Image-Management Area (styles.css)

#preview-images ul {
list-style-type : none;
margin : 0;
padding : 0;

}

#preview-images li {
float : left;
font-size : 0.85em;
text-align : center;
margin : 3px;
padding : 2px;
border : 1px solid #ddd;
background : #fff;

}

#preview-images img {
display : block;

}

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY402

9063Ch11CMP2 11/15/07 8:13 AM Page 402

#preview-images div {
clear : both;

}

Once this code has been added, the image display area should look like the page in
Figure 11-2.

Figure 11-2. Displaying the images on the blog post preview page

Deleting Blog Post Images
The next step in the management of blog post images is to implement the delete functionality.
We will first implement a non-Ajax version to delete images, and then modify it slightly to use
Scriptaculous for a fancier solution.

Before we complete the delete section of the images action in the blog manager con-
troller, we must make some small changes to the DatabaseObject_BlogPostImage class. Using
DatabaseObject means we can simply call the delete() method on the image record to remove
it from the database, but this will not delete the uploaded image from the filesystem. As we
saw in Chapter 3, if we define the postDelete() method in a DatabaseObject subclass, it is
automatically called after a record has been deleted. We will implement this method for
DatabaseObject_BlogPostImage so the uploaded file is removed from the filesystem.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 403

9063Ch11CMP2 11/15/07 8:13 AM Page 403

Additionally, since thumbnails are automatically created for each image, we will clean up
the thumbnail storage area for the image being deleted. Note that this is quite easy, since we
prefixed all generated thumbnails with their database ID.

Listing 11-34 shows the postDelete() function as it should be added to DatabaseObject_
BlogPostImage in ./include/DatabaseObject. First, we use unlink() to delete the main image
from the filesystem. Next, we use the glob() function, which is a useful PHP function for
retrieving an array of files based on the specified pattern. We loop over each of the files in
the array and unlink() them.

Listing 11-34. Deleting the Uploaded File and All Generated Thumbnails (BlogPostImage.php)

<?php
class DatabaseObject_BlogPostImage extends DatabaseObject
{

// ... other code

public function preDelete()
{

unlink($this->getFullPath());

$pattern = sprintf('%s/%d.*',
self::GetThumbnailPath(),
$this->getId());

foreach (glob($pattern) as $thumbnail) {
unlink($thumbnail);

}

return true;
}

// ... other code
}

?>

Now when you call the delete() method on a loaded blog post image, the filesystem files
will also be deleted. Remember to return true from postDelete()—otherwise the SQL transac-
tion will be rolled back.

The other method we must add to this class is one that gives us the ability to load an
image for a specified blog post. This is similar to the loadForUser() function we implemented
for blog posts. We do this so that only the logged-in user will be able to delete an image on
their blog posts. Listing 11-35 shows the code for the loadForPost() function, which is also
added to BlogPostImage.php.

Listing 11-35. Restricting the Load of Images to a Particular Blog Post (BlogPostImage.php)

<?php
class DatabaseObject_BlogPostImage extends DatabaseObject

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY404

9063Ch11CMP2 11/15/07 8:13 AM Page 404

{
// ... other code

public function loadForPost($post_id, $image_id)
{

$post_id = (int) $post_id;
$image_id = (int) $image_id;

if ($post_id <= 0 || $image_id <= 0)
return false;

$query = sprintf(
'select %s from %s where post_id = %d and image_id = %d',
join(', ', $this->getSelectFields()),
$this->_table,
$post_id,
$image_id

);

return $this->_load($query);
}

// ... other code
}

?>

Now that these changes have been made to DatabaseObject_BlogPostImage, we can
implement the non-Ajax version of deleting an image. To do this, we simply need to imple-
ment the delete part of imagesAction() in BlogmanagerController.php. Remember that we left
a placeholder for this when we originally created this method in Listing 11-5. The code used to
delete an image is shown in Listing 11-36.

Listing 11-36. Deleting an Image from a Blog Post (BlogmanagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

// ... other code

public function imagesAction()
{

// ... other code

else if ($request->getPost('delete')) {
$image_id = (int) $request->getPost('image');
$image = new DatabaseObject_BlogPostImage($this->db);
if ($image->loadForPost($post->getId(), $image_id)) {

$image->delete();

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 405

9063Ch11CMP2 11/15/07 8:13 AM Page 405

$this->messenger->addMessage('Image deleted');
}

}

// ... other code
}

}
?>

If you now click on the “Delete” button below an image, the image will be deleted from
the database and filesystem, and a message will appear in the top-right flash messenger when
the page reloads.

Using Scriptaculous and Ajax to Delete Images
Now that we have a non-Ajax solution for deleting images, we can enhance this system slightly
to use Ajax. Essentially what we will do is send an Ajax request to delete the image when the
“Delete” button is clicked, and use Scriptaculous to make the image disappear from the
screen.

There are a number of different Scriptaculous effects that can be used to hide elements,
such as Puff, SwitchOff, DropOut, Squish, Fold, and Shrink, but we are going to use the Fade
effect. Note, however, that we are not applying this effect to the image being deleted; we will
apply it to the list item () surrounding the image.

Modifying the PHP Deletion Code
In the imagesAction() function of BlogmanagerController.php, the code redirects the browser
back to the blog post preview page after completing the action (uploading, reordering, or
deleting). This is fine for non-Ajax solutions, but if this occurs when using XMLHttpRequest, the
contents of the preview page will unnecessarily be returned in the background.

To prevent this, we will make a simple change to the redirection code at the end of this
function. As we have done previously, we will use the isXmlHttpRequest() function provided
by Zend_Controller_Front to determine how to proceed.

Because we want to check whether or not the image deletion was successful in the
JavaScript code, we will also modify the code so it sends back JSON data about the deleted
image. We will send this back using the sendJson() method we added in Chapter 6.

Listing 11-37 shows the changes to this method in BlogmanagerController.php. This code
now only writes the deletion message to the messenger if the delete request did not use Ajax. If
this distinction about writing the message isn’t made, you could delete an image via Ajax and
then refresh the page, causing the “image deleted” message to show again.

Listing 11-37. Handling Ajax Requests in imageAction() (BlogmanagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

// ... other code

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY406

9063Ch11CMP2 11/15/07 8:13 AM Page 406

public function imagesAction()
{

// ... other code

$json = array();

// ... other code
if ($request->getPost('upload')) {

// ... other code
}
else if ($request->getPost('reorder')) {

// ... other code
}
else if ($request->getPost('delete')) {

$image_id = (int) $request->getPost('image');
$image = new DatabaseObject_BlogPostImage($this->db);
if ($image->loadForPost($post->getId(), $image_id)) {

$image->delete();
if ($request->isXmlHttpRequest()) {

$json = array(
'deleted' => true,
'image_id' => $image_id

);
}
else

$this->messenger->addMessage('Image deleted');
}

}

if ($request->isXmlHttpRequest()) {
$this->sendJson($json);

}
else {

$url = $this->getUrl('preview') . '?id=' . $post->getid();
$this->_redirect($url);

}
}

}
?>

Creating the BlogImageManager JavaScript Class
To create an Ajax solution for deleting blog post images, we will write a new JavaScript class
called BlogImageManager. This class will find all of the delete forms in the image-management
section of preview.tpl and bind the submit event listener to each of these forms. We will then
implement a function to handle this event.

Listing 11-38 shows the constructor for this class, which we will store in a file called
BlogImageManager.class.js in the ./htdocs/js directory.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 407

9063Ch11CMP2 11/15/07 8:13 AM Page 407

Listing 11-38. The Constructor for BlogImageManager (BlogImageManager.class.js)

BlogImageManager = Class.create();

BlogImageManager.prototype = {

initialize : function(container)
{

this.container = $(container);

if (!this.container)
return;

this.container.getElementsBySelector('form').each(function(form) {
form.observe('submit',

this.onDeleteClick.bindAsEventListener(this));
}.bind(this));

},

This class expects the unordered list element that holds the images as the only argument
to the constructor. We store it as a property of the object, since we will be using it again later
when implementing the reordering functionality.

In this class, we find all the forms within this unordered list by using the
getElementsBySelector() function. This function behaves in the same way as the $$()
function we looked at in Chapter 5, except that it only searches within the element the func-
tion is being called from.

We then loop over each form that is found and observe the submit event on it. We must
bind the onDeleteClick() event handler to the BlogImageManager instance so it can be referred
to within the correct context when the event is handled.

The next thing we need to do is implement the onDeleteClick() event handler, as shown
in Listing 11-39.

Listing 11-39. The Event Handler Called When a Delete Link Is Clicked
(BlogImageManager.class.js)

onDeleteClick : function(e)
{

Event.stop(e);
var form = Event.element(e);

var options = {
method : form.method,
parameters : form.serialize(),
onSuccess : this.onDeleteSuccess.bind(this),
onFailure : this.onDeleteFailure.bind(this)

}

message_write('Deleting image...');
new Ajax.Request(form.action, options);

},

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY408

9063Ch11CMP2 11/15/07 8:13 AM Page 408

The first thing we do in this method is stop the event so the browser doesn’t submit the
form normally—a background Ajax request will be submitting the form instead.

Next, we determine which form was submitted by calling Event.element(). This allows us
to perform an Ajax request on the form action URL, thereby executing the PHP code that is
used to delete a blog post image.

We then create a hash of options to pass to Ajax.Request(), which includes the form val-
ues and the callback handlers for the request. Before instantiating Ajax.Request(), we update
the page status message to tell the user that an image is being deleted.

The next step is to implement the handlers for a successful and unsuccessful request, as
shown in Listing 11-40.

Listing 11-40. Handling the Response from the Ajax Image Deletion (BlogImageManager.class.js)

onDeleteSuccess : function(transport)
{

var json = transport.responseText.evalJSON(true);

if (json.deleted) {
var image_id = json.image_id;

var input = this.container.down('input[value=' + image_id + ']');
if (input) {

var options = {
duration : 0.3,
afterFinish : function(effect) {

message_clear();
effect.element.remove();

}
}

new Effect.Fade(input.up('li'), options);
return;

}
}

this.onDeleteFailure(transport);
},

onDeleteFailure : function(transport)
{

message_write('Error deleting image');
}

};

In Listing 11-37 we made the delete operation in imagesAction() return JSON data. To
determine whether the image was deleted by the code in Listing 11-40, we check for the
deleted element in the decoded JSON data.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 409

9063Ch11CMP2 11/15/07 8:13 AM Page 409

Based on the image_id element also included in the JSON data, we try to find the corre-
sponding form element on the page for that image. We do this by looking for a form input with
the value of the image ID. Once we find this element, we apply the Scriptaculous fade effect to
make the image disappear from the page. We don’t apply this effect to the actual image that
was deleted; rather, we remove the surrounding list item so the image, form, and surrounding
code are completely removed from the page.

When the fade effect is called, the element being faded is only hidden when the effect is
completed; it is not actually removed from the DOM. In order to remove it, we define the
afterFinish callback on the effect, and use it to call the remove() method on the element. The
callbacks for Scriptaculous effects receive the effect object as the first argument, and the ele-
ment the effect is applied to can be accessed using the element property of the effect. We also
use the afterFinish function to clear the status message.

After we’ve defined the options, we can create the actual effect. Since we want to remove
the list item element corresponding to the image, we can simply call the Prototype up() func-
tion to find it.

Loading BlogImageManager in the Post Preview
Next, we will load the BlogImageManager JavaScript class in the preview.tpl template. In order
to instantiate this class, we will add code to the blogPreview.js file we created in Chapter 7.

Listing 11-41 shows the changes we will make to preview.tpl in the ./templates/
blogmanager directory to load BlogImageManager.class.js.

Listing 11-41. Loading the BlogImageManager Class (preview.tpl)

{include file='header.tpl' section='blogmanager'}

<script type="text/javascript" src="/js/blogPreview.js"></script>
<script type="text/javascript" src="/js/BlogImageManager.class.js"></script>

<!-- // ... other code -->

Listing 11-42 shows the changes we will make to blogPreview.js in ./htdocs/js to instan-
tiate BlogImageManager automatically.

Listing 11-42. Instantiating BlogImageManager Automatically (blogPreview.js)

Event.observe(window, 'load', function() {

// ... other code

var im = new BlogImageManager('post_images');
});

If you now try to delete an image from a blog post, the entire process should be com-
pleted in the background. Once the “Delete” button is clicked, the background request to
delete the image will be initiated, and the image will disappear from the page upon successful
completion.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY410

9063Ch11CMP2 11/15/07 8:13 AM Page 410

Deleting Images when Posts Are Deleted
One thing we have not yet dealt with is what happens to images when a blog post is deleted. As
the code currently stands, if a blog post is deleted, any associated images will not be deleted.
Because of the foreign key constraint on the blog_posts_images table, the SQL to delete a blog
post that has one or more images will fail. We must update the DatabaseObject_BlogPost class so
images are deleted when a post is deleted.

Doing this is very straightforward, since the instance of DatabaseObject_BlogPost we
are trying to delete already has all the images loaded (so we know exactly what needs to be
deleted), and it already has a delete callback (we implemented the preDelete() function
earlier). This means we can simply loop over each image and call the delete() method.

■Note DatabaseObject automatically controls transactions when saving or deleting a record. You can
pass false to save() or delete() so transactions are not used. Because a transaction has already been
started by the delete() call on the blog post, we must pass false to the delete() call for each image.

Listing 11-43 shows the two new lines we need to add to preDelete() in the BlogPost.php
file in the ./include/DatabaseObject directory.

Listing 11-43. Automatically Deleting Images When a Blog Post Is Deleted (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

protected function preDelete()
{

// ... other code

foreach ($this->images as $image)
$image->delete(false);

return true;
}

// ... other code
}

?>

Now when you try to delete a blog post, all images associated with the post will also be
deleted.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 411

9063Ch11CMP2 11/15/07 8:13 AM Page 411

Reordering Blog Post Images
We will now implement a system that will allow users to change the order of the images asso-
ciated with a blog post. While this may not seem overly important, we do this because we are
controlling the layout of images when blog posts are displayed.

Additionally, in the next section we will modify the blog index to display an image beside
each blog post that has one. If a blog post has more than one image, we will use the first image
for the post.

Drag and Drop
In the past, programmers have used two common techniques to allow users to change the
order of list items, both of which are slow and difficult to use.

The first method was to provide “up” and “down” links beside each item in the list, which
moved the items up or down when clicked. Some of these implementations might have
included a “move to top” and “move to bottom” button, but on the whole they are difficult to
use.

The other method was to provide a text input box beside each item. Each box contained
a number, which determined the order of the list. To change the order, you would update the
numbers inside the boxes.

For our implementation, we will use a drag-and-drop system. Thanks to Scriptaculous’s
Sortable class, this is not difficult to achieve. We will implement this by extending the
BlogImageManager JavaScript class we created earlier this chapter.

■Note As an exercise, try extending this reordering system so it is accessible for non-JavaScript users.
You could try implementing this by including a form on the page within <noscript> tags (meaning it won’t
be shown to users who have JavaScript enabled).

Saving the Order to Database
Before we add the required JavaScript to the blog post management page, we will write the
PHP for saving the image order to the database. First, we need to add a new function to the
DatabaseObject_BlogPost class. This function accepts an array of image IDs as its only argu-
ment. The order in which each image ID appears in the array is the order it will be saved in.

Listing 11-44 shows the setImageOrder() function that we will add to the BlogPost.php file
in ./include/DatabaseObject. Before updating the database, it loops over the values passed to
it and sanitizes the data by ensuring each of the values belongs to the $images property of the
object. After cleaning the data, it checks that the number of image IDs found in the array
matches the number of images in the post. Only then does it proceed to update the database.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY412

9063Ch11CMP2 11/15/07 8:13 AM Page 412

Listing 11-44. Saving the Updated Image Order in the Database (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public function setImageOrder($order)
{

// sanitize the image IDs
if (!is_array($order))

return;

$newOrder = array();
foreach ($order as $image_id) {

if (array_key_exists($image_id, $this->images))
$newOrder[] = $image_id;

}

// ensure the correct number of IDs were passed in
$newOrder = array_unique($newOrder);
if (count($newOrder) != count($this->images)) {

return;
}

// now update the database
$rank = 1;
foreach ($newOrder as $image_id) {

$this->_db->update('blog_posts_images',
array('ranking' => $rank),
'image_id = ' . $image_id);

$rank++;
}

}

// ... other code
}

?>

In order to use this function, we must update the imagesAction() function in
BlogmanagerController.php (in ./include/Controllers). Listing 11-45 shows the code we will
use to call the setImageOrder() method in Listing 11-44. After calling this method, the code
will fall through to the isXmlHttpRequest() call, thereby returning the empty JSON data. The
submitted variable that holds the image order is called post_images. Scriptaculous uses the ID
of the draggable DOM element as the form value, as we will see shortly.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 413

9063Ch11CMP2 11/15/07 8:13 AM Page 413

Listing 11-45. Handling the Reorder Action in the Action Handler (BlogManagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

// ... other code

public function imagesAction()
{

// ... other code

else if ($request->getPost('reorder')) {
$order = $request->getPost('post_images');
$post->setImageOrder($order);

}

// ... other code
}

}
?>

Adding Sortable to BlogImageManager
It is fairly straightforward to add Sortable to our unordered list; however, we must also add
some Ajax functionality to the code. When a user finishes dragging an image, we need to initi-
ate an Ajax request that sends the updated image order to the server so the setImageOrder()
function (in Listing 11-44) can be called.

Sortable allows us to define a parameter called onUpdate, which specifies a callback func-
tion that is called after the image order has been changed. The callback function we create will
initiate the Ajax request. Before we get to that, though, let’s look at creating the Sortable list.

By default, Sortable operates an unordered list. It is possible to allow other types of ele-
ments to be dragged (although there may be some incompatibility with dragging table cells),
but since we are using an unordered list we don’t need to specify the type of list.

Another default that Sortable sets is for the list to be vertical. This means the dragging
direction for items is up and down. Since our list is horizontal, we need to change this setting
by specifying the constraint parameter. We could set this value to horizontal, but since the
list of images for a single post may span multiple rows (such as on a low-resolution monitor) it
would not be possible to drag images on the second row to the first (and vice versa). To deal
with this, we simply set constraint to be false.

Since our list is horizontal, we must change the overlap value to be horizontal instead of
its default of vertical. Sortable uses this value to determine how to calculate when an item
has been dragged to a new location.

Listing 11-46 shows the code we must add to the constructor of the BlogImageManager
JavaScript class in ./htdocs/js/BlogImageManager.class.js. Note that this code uses the
onSortUpdate() function, which we have not yet defined.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY414

9063Ch11CMP2 11/15/07 8:13 AM Page 414

Listing 11-46. Creating the Sortable list (BlogImageManager.class.js)

BlogImageManager = Class.create();

BlogImageManager.prototype = {

initialize : function(container)
{

// ... other code

var options = {
overlap : 'horizontal',
constraint : false,
onUpdate : this.onSortUpdate.bind(this)

};

Sortable.create(this.container, options);
},

// ... other code
};

Now we must define the onSortUpdate() callback function. This is called when an item in
the sortable list is dropped into a new location. In this function we initiate a new Ajax request
that sends the order of the list to the imagesAction() function. Sortable will pass the container
element of the sortable list to this callback.

When sending this request, we must send the updated order. We can retrieve this order
using the Sortable utility function serialize(), which retrieves all values and builds them
into a URL-friendly string that we can post. As mentioned previously, the unordered list we’ve
made sortable has an ID of post_images. This means that if we have three images with IDs of 5,
6, and 7, calling Sortable.serialize() will generate a string such as this:

post_images[]=5&post_images[]=6&post_images[]=7

PHP will automatically turn this into an array. In other words, the equivalent PHP code to
create this structure would be as follows:

<?php
$post_images = array(5, 6, 7);

?>

This is exactly what we need in setImageOrder().
Listing 11-47 shows the code for onSortUpdate(), as described above. Another thing we do

in this code is to update the status message on the page to notify the user that the order is
being saved. In addition, we define the onSuccess() callback, which we will use to clear the
status message once the new order has been saved.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 415

9063Ch11CMP2 11/15/07 8:13 AM Page 415

Listing 11-47. The Callback Function That Is Called after the List Order Has Changed
(BlogImageManager.class.js)

BlogImageManager = Class.create();

BlogImageManager.prototype = {

// ... other code

onSortUpdate : function(draggable)
{

var form = this.container.down('form');
var post_id = $F(form.down('input[name=id]'));

var options = {
method : form.method,
parameters : 'reorder=1'

+ '&id=' + post_id
+ '&' + Sortable.serialize(draggable),

onSuccess : function() { message_clear(); }
};

message_write('Updating image order...');
new Ajax.Request(form.action, options);

}
};

■Note When you add this code to your existing class, remember to include a comma at the end of the pre-
vious function in the class (onDeleteFailure()). Unfortunately, this is one of the pitfalls of writing classes
using Prototype: each method is really an element in its class’s prototype hash, and therefore needs to be
comma-separated.

Based on how the HTML is structured for the image-management area on the blog pre-
view page, there is no simple way to define the URL for where image-reordering requests
should be sent. Since all of our image operations use the same controller action, we will deter-
mine the URL by finding the form action of any form in the image-management area. We will
also expect the form being used to have an element called post_id that holds the ID of the
blog post.

If you now view the blog post preview page (with multiple images assigned to the post
you are viewing), you will be able to click on an image and drag it to a new location within the
list of images. Figure 11-3 shows how this might look.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY416

9063Ch11CMP2 11/15/07 8:13 AM Page 416

Figure 11-3. Changing the order of blog post images by dragging and dropping

Displaying Images on User Blogs
The final thing we need to do to create a dynamic image gallery for users is to make use of
the images they have uploaded and sorted. To do this, we must display the images both on the
blog posts they belong to as well as in the blog index.

When displaying images on a post page, we will show all images (in their specified order)
with the ability to view a full-size version of each. On the index page we will only show a small
thumbnail of the first image.

Extending the GetPosts() Function
When we added the image-loading functionality to the DatabaseObject_BlogPost class in List-
ing 11-30, we didn’t add the same functionality to the GetPosts() function within this class. If
you recall, GetPosts() is used to retrieve multiple blog posts from the database at one time.

We must now make this change to GetPosts() so we display images on each user’s blog
index. We can use the GetImages() function in DatabaseObject_BlogPostImage to retrieve all
images for the loaded blog posts, and then simply loop over the returned images and write
them to the corresponding post.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 417

9063Ch11CMP2 11/15/07 8:13 AM Page 417

The new code to be inserted at the end of GetPosts() in BlogPost.php is shown in
Listing 11-48. Note that the $post_ids array is initialized earlier in the function.

Listing 11-48. Modifying DatabaseObject_BlogPost to Load Post Images (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public static function GetPosts($db, $options = array())
{

// ... other code

// load the images for each post
$options = array('post_id' => $post_ids);
$images = DatabaseObject_BlogPostImage::GetImages($db, $options);

foreach ($images as $image) {
$posts[$image->post_id]->images[$image->getId()] = $image;

}

return $posts;
}

// ... other code
}

?>

Because of this change, all controller actions that call this method now automatically
have access to each image, meaning we now only need to change the output templates.

Displaying Thumbnail Images on the Blog Index
The other thing we have done during the development of the code in this book is to output all
blog post teasers using the blog-post-summary.tpl template. This means that in order to add a
thumbnail to the output of the blog post index (be it the user’s home page or the monthly
archive) we just need to add an tag to this template.

Listing 11-49 shows the additions we will make to blog-post-summary.tpl in ./templates/
user/lib. After checking that the post has one or more images, we will use the PHP current()
function to retrieve the first image. Remember that we must precede this with @ in Smarty so
current() is applied to the array as a whole and not to each individual element.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY418

9063Ch11CMP2 11/15/07 8:13 AM Page 418

Listing 11-49. Displaying the First Image for Each Post on the Blog Index (blog-post-summary.tpl)

<div class="teaser">
<!-- // ... other code -->

<div class="teaser-date">
<!-- // ... other code -->

</div>

{if $post->images|@count > 0}
{assign var=image value=$post->images|@current}
<div class="teaser-image">

getId() w=100}" alt="" />

</div>

{/if}

<!-- // ... other code -->
</div>

We must also add some style to this page so the output is clean. To do this, we will float
the .teaser-image div to the left. The only problem with this is that the image may overlap the
post footer (which displays the number of submitted comments). To fix this, we will also add
clear : both to the .teaser-links class.

Listing 11-50 shows the changes to the styles.css file in ./htdocs/css.

Listing 11-50. Styling the Blog Post Image (styles.css)

/* ... other code */

.teaser-links {
/* ... other code */

}

.teaser-image {
float : left;
margin : 0 5px 5px 0;

}

/* ... other code */

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 419

9063Ch11CMP2 11/15/07 8:13 AM Page 419

Once you have added these styles, your blog index page should look similar the one in
Figure 11-4.

Figure 11-4. The blog index page displaying the first image for posts that have images

Displaying Images on the Blog Details Page
The final change we must make to our templates is to display each of the images for a blog
post when viewing the blog post details page. This will behave similarly to the blog post pre-
view page, except that we will also allow users to view a larger version of each image. To
improve the output of the larger version of each image, we will use a simple little script called
Lightbox.

First, we must alter the view.tpl template in the ./templates/user directory. This is the
template responsible for displaying blog post details. We will make each image appear verti-
cally on the right side of the blog by floating the images to the right. This means we must
include them in the HTML output before the blog content, as shown in Listing 11-51.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY420

9063Ch11CMP2 11/15/07 8:13 AM Page 420

Listing 11-51. Displaying Each of the Post’s Images (view.tpl)

<!-- // ... other code -->

<div class="post-date">
<!-- // ... other code -->

</div>

{foreach from=$post->images item=image}
<div class="post-image">

getId() w=600}">
getId() w=150}" />

</div>

{/foreach}

<div class="post-content">
<!-- // ... other code -->

</div>

<!-- // ... other code -->

As you can see from this code, we display a thumbnail 150 pixels wide on the blog post
details page and link to a version of the image that is 600 pixels wide. Obviously, you can
change any of these dimensions as you please.

Now we must style the output of the .post-image class. As mentioned previously, we need
to float the images to the right. If we float each of the images to the right, they will all group
next to each other, so we must also apply the clear : right style. This simply means that no
floated elements can appear on the right side of the element (similar to clear : both, except
that a value of both means nothing can appear on the right or the left).

The full style for .post-image that we will add to styles.css is shown in Listing 11-52.

Listing 11-52. Floating the Blog Post Images to the Right (styles.css)

.post-image {
float : right;
clear : right;
margin : 0 0 5px 5px;

}

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 421

9063Ch11CMP2 11/15/07 8:13 AM Page 421

Once this style has been applied, the blog post output page should look similar to
Figure 11-5.

Figure 11-5. Displaying All Images Belonging to a Single Post

Displaying Larger Images with Lightbox
Lightbox is a JavaScript utility written by Lokesh Dhakar used to display images fancily on a
web page. Typical usage involves clicking on a thumbnail to make the main web page fade
while a larger version of the image is displayed. If you have multiple images on the page, you
can make Lightbox display next and previous buttons to move through them. Additionally,
there is a close button to return to the normal page, as well as keyboard controls for each of
these operations.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY422

9063Ch11CMP2 11/15/07 8:13 AM Page 422

The best part of Lightbox is that it allows you to easily show enlarged versions of your
images without navigating away from the page. Additionally, it allows you to easily keep your
images accessible for non-JavaScript users, since the large version of the image is specified by
wrapping the thumbnail image in a link. This means that if the browser doesn’t support
JavaScript, the browser will simply navigate to the larger image directly.

Installing Lightbox
Lightbox requires Prototype and Scriptaculous, which we already have installed. Download
Lightbox (version 2) from http://www.huddletogether.com/projects/lightbox2 and extract
the downloaded files somewhere on your computer (not directly into your web application,
since we don’t need all of the files).

Next, you must copy the lightbox.js file from the js directory to the ./htdocs/js direc-
tory of our application. Additionally, since this code assumes that lightbox.js will be in the
root directory of your web server (which it isn’t in our case), we must make two slight changes
to this file. Open lightbox.js and scroll down to around line 65, and simply change the
"images/loading.gif" value to include a slash at the beginning, and do the same for the
next line:

var fileLoadingImage = "/images/loading.gif";
var fileBottomNavCloseImage = "/images/closelabel.gif";

Next, you must copy the lightbox.css file from the css directory to the ./htdocs/css
directory of our application. No changes are required in this file.

Finally, copy all of the images from the images directory to the ./htdocs/images directory
of our web application. You can skip the two JPG sample images that are in that directory, as
they are not required.

■Note Ideally, we would keep the Lightbox images organized into their own directory (such as ./htdocs/
images/lightbox); however, you must then make the necessary path changes to lightbox.js and
lightbox.css.

Loading Lightbox on the Blog Details Page
Next, we must make the Lightbox JavaScript and CSS files load when displaying the blog post
details page. We only want these files to load on this page (unless you want to use Lightbox
elsewhere), so we will add some simple logic to the header.tpl template in ./templates to
accomplish this.

Listing 11-53 shows the code we will add to this template to allow the Lightbox files to load.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 423

9063Ch11CMP2 11/15/07 8:13 AM Page 423

Listing 11-53. Adding a Conditional Statement for Lightbox to Load (header.tpl)

<!-- // ... other code -->
<head>

<!-- // ... other code -->

{if $lightbox}
<script type="text/javascript" src="/js/lightbox.js"></script>
<link rel="stylesheet" href="/css/lightbox.css" type="text/css" />

{/if}
</head>

<!-- // ... other code -->

Now we can modify view.tpl in ./templates/user to tell header.tpl to include the Light-
box files. To do this, we will add lightbox=true to the first line of this template, as shown in
Listing 11-54.

Listing 11-54. Loading Lightbox on the Blog Post Details Page (header.tpl)

{include file='header.tpl' lightbox=true}
<!-- // ... other code -->

Linking the Blog Post Images to Lightbox
Finally, we must tell Lightbox which images we want to display. This is done by including
rel="lightbox" in the anchor that surrounds the image. If you use this code, though, no
previous or next buttons will be shown. You can instead group images together by specifying
a common value in square brackets in this attribute, such as rel="lightbox[blog]".
Listing 11-55 shows the changes we will make to view.tpl in ./templates/user to use Lightbox.

Listing 11-55. Telling Lightbox Which Images to Use (view.tpl)

<!-- // ... other code -->

{foreach from=$post->images item=image}
<div class="post-image">

getId() w=600}" rel="lightbox[blog]">
getId()}&w=150" />

</div>

{/foreach}

<!-- // ... other code -->

That is all that’s required to use Lightbox. When the page loads, the lightbox.js script will
automatically search the document for links with that rel attribute and create JavaScript
events accordingly.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY424

9063Ch11CMP2 11/15/07 8:13 AM Page 424

Now when you click on one of the images, the screen will change as shown in Figure 11-6.

Figure 11-6. Using Lightbox to display an enlarged blog post image

Summary
In this chapter, we have given users the ability to upload photos and images to each of the
blog post images. In order to do this, there were a number of different issues we had to look at,
such as correct handling of file uploads in PHP.

We then built a system to generate thumbnails of images on the fly according to the width
and height parameters specified in the URL. This allowed us to easily include images of differ-
ent sizes depending on where they needed to be displayed in the application.

Next, we used the Scriptaculous Sortable class to add image-reordering capabilities, so
the user could easily choose the order in which their images would be displayed simply by
dragging and dropping the images.

Finally, we modified the display of the user’s blog to display all images. We also used the
Lightbox script to display larger versions of images seamlessly within the blog post page.
In the next chapter, we will be implementing search functionality in our web application using
the Zend_Search_Lucene component of the Zend Framework.

CHAPTER 11 ■ A DYNAMIC IMAGE GALLERY 425

9063Ch11CMP2 11/15/07 8:13 AM Page 425

9063Ch11CMP2 11/15/07 8:13 AM Page 426

Implementing Site Search

The next step in the development of our web application is to provide a search tool for users
to find content on the web site. Essentially what we will be doing is allowing people to search
based on content in blog posts, as well as on tags that have been assigned to those posts.

Implementing site search consists of two major steps:

• Creating and managing full-text indexes. Whenever a new post is created, we must
add it to the index. Similarly, when a post is edited, the index must be updated accord-
ingly, and if a post is deleted, then it must be removed from the index. We will be using
the Zend_Search_Lucene component of the Zend Framework to manage these indexes.

• Performing searches and displaying results. We will include a search form on the web
site. Users will be able to enter their desired search term, which we must then accept
and use to query the search index. Once we find the matching documents, we will out-
put those results to the user.

Another feature we will be implementing is an Ajax-based search suggestion tool. This
means when somebody begins to type a search query, suggestions will be provided based on
what other users have also searched for. This is loosely based on the Google Suggest tool.

Introduction to Zend_Search_Lucene
Zend_Search_Lucene is the text search tool that comes with the Zend Framework. It is a gen-
eral-purpose tool (based on the Apache Lucene project) that allows the developer to index
their documents as they please, as well as providing users with a powerful interface to query
the created indexes.

Each entry in a search index is referred to as a document. A document consists of one or
more fields, as decided by the developer. You can use five field types for each field in a docu-
ment. I describe each of these in the “Zend_Search_Lucene Field Types” section.

When you add new content to your application, you create a new document in the search
index. Likewise, you can delete documents from the index. One restriction with Zend_Search_
Lucene is that you cannot update an existing document in the index. Rather, you must delete it
and then add it again.

427

C H A P T E R 1 2

9063Ch12CMP3 11/13/07 9:26 PM Page 427

Comparison to MySQL Full-Text Indexing
Although Zend_Search_Lucene is not the only tool available for creating full-text indexes, it has
various advantages over other solutions, the biggest being that it is a native PHP solution. This
means that regardless of the platform we use or the database we use, we can use Zend_Search_
Lucene to provide our web application with searching capabilities.

Since the database server we have been primarily developing for in this web application
has been MySQL, we will briefly look at the native MySQL solution for full-text indexing.

When creating a new table in MySQL, you can specify a column as fulltext, meaning
MySQL will automatically maintain a full-text index for that column. This allows you to per-
form SQL queries against this column.

For example, to create a database table that holds searchable news articles, you could
create a table in MySQL using the following:

create table news_articles (
article_id serial not null,
title varchar(255) not null,
body text not null,

primary key (article_id),
fulltext (title, body)

);

You would then be able to search in this table using the MySQL match() … against syntax.
For example, to find all records matching the keyword MySQL, you would use the following SQL
query:

select * from news_articles where match(title, body) against ('MySQL');

The match() … against syntax returns a score based on the relevance of each row that is
matched. The results are automatically sorted by this score. You can retrieve this score by
including match() … against in the column list:

select *, match(title, body) against ('MySQL') as score
from news_articles
where match(title, body) against ('MySQL');

Because maintenance of the index is automated, no extra work is required to maintain
the index. This is a big advantage over the method we will be using, although there are some
other drawbacks, such as the following:

• Full-text configuration is global to the server. By default, search terms must be at least
four characters to be used. You can change this setting, but it will apply to all databases
running on the server. The same applies to the list of the stop words. A stop word is a
word that is ignored when performing a search. Words such as the or to are examples of
stop words.

• If you want to run your application on a different database server, then this solution
will not be available.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH428

9063Ch12CMP3 11/13/07 9:26 PM Page 428

It is primarily because of this second restriction that we will instead use a native PHP
solution. Additionally, there may be times when you write web applications that use no
database at all, in which case you would have no choice but to use a solution such as
Zend_Search_Lucene.

■Note If you are using PostgreSQL, then a good solution for a full-text indexing extension is Tsearch2. One
drawback with this extension is that it must be compiled into the server. Although this is fine if you manage
your own web servers, it can be difficult to get access to this extension in a shared hosting environment.

Zend_Search_Lucene Field Types
Five different field types are available for storing document data in a Zend_Search_Lucene doc-
ument. Each serves a distinctly different purpose, and it is likely that you will typically use
several of these field types for each stored document.

• Keyword: This field type is used to hold data that users can search on, as well as being
included in the returned search data. It is typically used for data such as a date or URL,
since the value stored in the index is exactly as you specify it.

• UnIndexed: If you want to store data with an indexed document but you don’t want that
data to be searchable, then you use this field type. This is useful for storing extra data
with the document that you use when displaying the search results.

• Binary: This field type works similarly to the UnIndexed field type, except that it is for
binary data. An example of binary data you may want to store with an indexed docu-
ment is a thumbnail image or icon representing that data.

• Text: This is the field type you use for data you want users to be able to search on, as
well as data that will be returned in the search results. This differs from the Keyword
type in that the data is tokenized, meaning the data is split up into separate words
(hence whitespace and other nonword characters are ignored), with each returned
token indexed.

• UnStored: This field type allows you to add searchable data to the document just like the
Text field; however, when a document is found from searching on data using this field
type, unlike the Text type, that data isn’t returned with the results.

You can structure the data to be indexed in many ways using these different field types.
For instance, you may want to retrieve a database ID only in search results and then manually
look up the corresponding data before presenting it to the user. In this scenario, you would
use an UnStored field type to add the searchable content as well as UnIndexed to store the cor-
responding database ID. This is the method we will be using.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 429

9063Ch12CMP3 11/13/07 9:26 PM Page 429

Field Naming
Every field you add to an indexed document must have a name. There are two reasons for this.
First, when a search has been performed and you are displaying the search results to the user,
you need a way to reference the stored data. Second, the advanced querying capabilities of
Zend_Search_Lucene allow users to search on a specific field.

For example, if you were to create an index of all news articles in your web site, you might
include a field called author (which would be of type Text since we want it to be searchable
and to be returned in results) to hold the name of the person who wrote the article.

If you wanted to find all articles by me (Quentin Zervaas), you would use the search term
author:"Quentin Zervaas".

■Note The entire author name must be quoted, since not doing so would mean in this case that the
author field was searched for Quentin while the main index was searched for Zervaas. Although
the intended results would be returned, other records may also be returned (such as articles by someone
called Quentin that also happened to have the word Zervaas in any of the indexed fields).

This leads us now to the default search field that is used. In the previous example, we
specified the author field must be searched; however, if no field is specified (that is, only the
search term is specified), then all indexed fields are searched.

We will look at some more advanced queries later in this chapter once we have integrated
the indexing capabilities.

Indexing Application Content
Now that we have briefly looked at how Zend_Search_Lucene is structured, it is time to create
indexes for the content in our web application. We will be indexing the content from all pub-
lished blog posts, including the content, title, tags, and timestamp.

We must also make a number of changes to the existing system to ensure indexes are cor-
rectly maintained. Specifically, this includes the following:

• When a new blog post is created (or existing post is sent live), it must be added to the
search index.

• When an existing post is deleted (or sent from live to draft), it must be removed from
the search index.

• When a blog post is modified, it must be removed from the search index and readded.

Additionally, since the index must be initially created at some point, we are going to write
code to rebuild the entire index from scratch.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH430

9063Ch12CMP3 11/13/07 9:26 PM Page 430

Because rebuilding an index from scratch is an expensive process (in terms of the time
taken as well as the memory and CPU cycles used), it is not something you want to do fre-
quently. Because of this, we must do our best to keep the index as up-to-date as possible. You
may want to supplement this by rebuilding the index periodically (such as weekly) using a
cron job.

To index all blog posts in the web application, we will first write code to generate an
indexable document for each blog post. This is done using the Zend_Search_Lucene_Document
class. Following this we will implement the functionality listed previously.

Indexing Multiple Types of Data
The search index we build in this application is specifically geared toward blog posts. In a
larger web application, you may have other content you want to index also. In that instance
you may want to have one index for each type of data (then when a search is performed, you
search each index), or you have one index containing all searchable data.

Each of these methods has its own advantages and disadvantages. For example, if you use
a single index for all types of data

• It is simpler to search across all indexes in one operation since all searchable data is in
one place.

• You must keep track of the kind of data each document in the index is. For example, if
you are indexing data about news articles as well as about uploaded files, you must dif-
ferentiate between these somehow when you display search results to users.

On the other hand, if you use one index for each type of data

• It is more difficult to search because you have to search every index when a search is
performed.

• It gives you more leverage to create different types of searches on your site. For exam-
ple, if you want a form to allow users to search only in uploaded files, then you simply
search the corresponding index. If you also have an index that holds information about
news articles, you can skip searching this completely.

Ultimately it comes down to your own needs, depending on the type of application you
are implementing and the search capabilities you need to provide.

Creating a New Zend_Search_Lucene_Document
As mentioned earlier this chapter, each entry in a Zend_Search_Lucene index is referred to as a
document. To create a document that can be added to a search index, we use the Zend_Search_
Lucene_Document class. After instantiating this class, we add all of the required fields and data
accordingly. Once this has been done, the document can be added to the index.

In this section, we will write a new function for the DatabaseObject_BlogPost class that
builds and returns such a document. We are not actually concerned with adding this docu-
ment to the search index yet. We will deal with this later this chapter.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 431

9063Ch12CMP3 11/13/07 9:26 PM Page 431

Listing 12-1 shows the beginning of the getIndexableDocument() method we add to the
BlogPost.php file (in the ./include/DatabaseObject directory).

Listing 12-1. Creating the Indexable Document (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public function getIndexableDocument()
{

$doc = new Zend_Search_Lucene_Document();
$doc->addField(Zend_Search_Lucene_Field::Keyword('post_id',

$this->getId()));

After instantiating the Zend_Search_Lucene_Document class, we add a field to hold the ID of
the blog post. Each document in the index will have its own internal ID; however, we are not
able to set this ourselves, so we must still store the relevant blog post ID from our database.

In the previous section, we looked at the five different types of fields we can add to an
indexable document. There is a static method in the Zend_Search_Lucene_Field class for each
of these types. This creates an object compatible with the addField() method. The name of
the field is the first argument, while its value is the second argument.

In the post_id field we use the Keyword type. These are the reasons we use this type:

• We want to retrieve the document from the index later using this ID (that is, we want to
search on this ID).

• We want to retrieve the ID from any search results so the database data can be loaded
accordingly.

• It is not textual data that needs to be tokenized (therefore ruling out the Text type).

Next we must add the data we want users to be able to search on to this document. Since
we want to search on this data but we don’t need to store it in the index (since we will retrieve
the found blog posts from the database), we can use the UnStored field type.

Listing 12-2 shows the code we use to index the other fields for a blog post. Since the blog
post content is actually made up of HTML tags, we must strip these tags since they are not rel-
evant to the search results. Additionally, tags returned from getTags() are in an array, so we
must turn these into a single string by using join().

Listing 12-2. Adding the Indexable Fields to the Document (BlogPost.php)

$fields = array(
'title' => $this->profile->title,
'content' => strip_tags($this->profile->content),
'published' => $this->profile->ts_published,
'tags' => join(' ' , $this->getTags())

);

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH432

9063Ch12CMP3 11/13/07 9:26 PM Page 432

foreach ($fields as $name => $field) {
$doc->addField(

Zend_Search_Lucene_Field::UnStored($name, $field)
);

}

return $doc;
}

// ... other code
}

?>

Retrieving the Index Location
Next we will add a utility function to DatabaseObject_BlogPost that returns the location on the
file system of the search index data. We will be storing the search index in a directory called
search-index within the application data directory (./include/data). Assuming your permis-
sions are set up so this directory is writable by the web server, the files will be automatically
created on the file system when we create the index.

Listing 12-3 shows the code for the getIndexFullpath() method that we add to BlogPost.php
in ./include/DatabaseObject. We will use this function whenever we need to access the index,
that is, when adding documents to the index, deleting documents from the index, and querying
the index.

Listing 12-3. Returning the Location of the Search Index (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public static function getIndexFullpath()
{

$config = Zend_Registry::get('config');

return sprintf('%s/search-index',
$config->paths->data);

}

// ... other code
}

?>

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 433

9063Ch12CMP3 11/13/07 9:26 PM Page 433

Building the Entire Index
Before we integrate the automatic maintenance of indexed documents, we will now write a
function to build the entire index from scratch. This is useful the very first time we try to index
a new document because the index will not yet exist.

Typically you won’t need to build an index from scratch, but in addition to building the
index when you first integrate this functionality, you may need to rebuild the indexes if the
data goes missing or is corrupted. For example, if you needed to move the web application to
a new server, you would copy the database, application files (such as PHP scripts and tem-
plates), and images uploaded (assuming you used the method described in Chapter 11). You
wouldn’t, however, move the data that is automatically generated by the application, such as
compiled templates or search indexes. In this case you would rebuild the indexes on the new
server.

To build the index from scratch, all we need to do is call the GetPosts() function to
retrieve all live posts and then loop over each document and call the getIndexableDocument()
method on the blog post object accordingly.

Listing 12-4 shows the setup code for the static buildIndex() function that we add to
DatabaseObject_BlogPost. We use the create() method from the Zend_Search_Lucene class to
create a new index, with the first and only argument being the file system path of the index.
When we query the index later, we will be using the open() method instead of create(). We
use the getIndexFullpath() from Listing 12-3 as the argument to create().

Listing 12-4. Creating a New Search Index (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public static function RebuildIndex()
{

try {
$index = Zend_Search_Lucene::create(self::getIndexFullpath());

Since we are building the entire index from scratch, we must now retrieve all existing blog
posts in the database and add them to the index. Thankfully, everything we need to achieve
this is already in place.

First, we call the GetPosts() function to retrieve all the blog posts. Since we don’t want
people to find unpublished blog posts in their searches, we retrieve only live posts. Next, it is
simply a matter of looping over the returned posts and adding them to the index using the
addDocument() method. This method takes an instance of Zend_Search_Lucene_Document as its
only argument, which is exactly what the getIndexableDocument() function we created earlier
in this chapter returns. This is shown in Listing 12-5.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH434

9063Ch12CMP3 11/13/07 9:26 PM Page 434

Listing 12-5. Retrieving All Blog Posts and Adding Them to the Index (BlogPost.php)

$options = array('status' => self::STATUS_LIVE);
$posts = self::GetPosts(Zend_Registry::get('db'),

$options);

foreach ($posts as $post) {
$index->addDocument($post->getIndexableDocument());

}

Finally, we must save the changes to the index. This is done by calling the commit()
method on the index. Listing 12-6 shows the code we use to this, as well the code for handling
any errors that might occur. Note that we use the logging capabilities we implemented earlier
in the book to track any errors that might occur.

Listing 12-6. Saving Changes to the Index and Handling Errors (BlogPost.php)

$index->commit();
}
catch (Exception $ex) {

$logger = Zend_Registry::get('logger');
$logger->warn('Error rebuilding search index: ' .

$ex->getMessage());
}

}

// ... other code
}

?>

We will modify other parts of this class shortly to call this function, but in the meantime, if
you want to test this function, you can add the following call to one of your existing controller
actions:

DatabaseObject_BlogPost::RebuildIndex();

If this call works correctly, you will have a directory called
/var/www/phpweb20/data/search-index in your application that is populated with the various
files that Zend_Search_Lucene creates.

Indexing and Unindexing a Single Blog Post
We must make several changes to the DatabaseObject_BlogPost class to ensure blog posts are
correctly stored in the index. All of these changes will be triggered in the events that are called
when records are created, updated, or deleted.

Before we handle each of these events, we are going to implement two new methods to
this class. The first we will use to add a single blog post to the search index (which we also use
for updates to blog posts), while the second will be used to remove a blog post from the index.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 435

9063Ch12CMP3 11/13/07 9:26 PM Page 435

Adding a Single Blog Post to the Index
We will now create a function called addToIndex() that is responsible for adding a single live
blog post to the index. Since we will also be using this function when a blog post is updated,
we need to add functionality so the index is updated correctly.

Zend_Search_Lucene does not allow a document in an index to be updated, so in order to
reindex a document, the old version must be removed from the index before readding the new
version. Therefore, we must query the index to find the old document and remove it accord-
ingly, as you will soon see.

First, we must open the index so we can add the document to it, as shown in Listing 12-7.
Note that we are using the open() method rather than the create() method. In fact, calling
open() on a search index that does not yet exist throws an exception, so we simply handle this
exception by calling the rebuildIndex() method we created earlier this chapter.

Listing 12-7. Opening the Index for Modification (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

protected function addToIndex()
{

try {
$index = Zend_Search_Lucene::open(self::getIndexFullpath());

}
catch (Exception $ex) {

self::RebuildIndex();
return;

}

■Note This is the point in the code where the index is initially created (if it does not yet exist). Rebuilding
the index at this point will include the current blog post; therefore, we can return from this method immedi-
ately, since the remainder of the method deals with adding this single blog post to the index.

Second, we must find any existing records for the current blog post in the search index (so
we can delete that record before creating a new one). For a new blog post, none will be found,
but if an existing live post is being updated, then there should be one match.

Although Zend_Search_Lucene features a built-in query parser, we prefer in this
case to manually build a query using the Zend_Search_Lucene API. If you recall from the
getIndexableDocument() method, we indexed the ID of the blog post in the post_id field. All
we need to do now is to search for that ID. Once again, we wrap all this code in a try … catch
statement because our later actions on the index may result in a thrown exception.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH436

9063Ch12CMP3 11/13/07 9:26 PM Page 436

As we see in Listing 12-8, we call the find() method on the index to execute a search
query. We then loop over the returned results and call delete() on each. We must pass the
internal ID (not the blog post ID) of the indexed document to delete().

Listing 12-8. Finding Any Existing Entries in the Index for the Current Blog Post (BlogPost.php)

try {
$query = new Zend_Search_Lucene_Search_Query_Term(

new Zend_Search_Lucene_Index_Term($this->getId(), 'post_id')
);

$hits = $index->find($query);
foreach ($hits as $hit)

$index->delete($hit->id);

Many options are available for building a query as we have done here. I recommend you
read http://framework.zend.com/manual/en/zend.search.lucene.searching.html for further
details on this. The available classes allow you to build some powerful queries.

■Note When we handle user searches later this chapter, we don’t really need to deal with building a query
manually. Zend_Search_Lucene provides a powerful syntax to query an index in many different ways, as
you will see. However, as mentioned, you should build the query programmatically if the complete scope of
the query is known (as in this case).

Now that any possible existing entries for the current post have been deleted (in fact,
pending deletion, commit() must be called for the action to be final), we reindex the current
post. We want to index the post only if it is live, as you can see in Listing 12-9.

Listing 12-9. Reindexing a Live Blog Post and Committing Changes to the Index (BlogPost.php)

if ($this->status == self::STATUS_LIVE)
$index->addDocument($this->getIndexableDocument());

$index->commit();
}
catch (Exception $ex) {

$logger = Zend_Registry::get('logger');
$logger->warn('Error updating document in search index: ' .

$ex->getMessage());
}

}

// ... other code
}

?>

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 437

9063Ch12CMP3 11/13/07 9:26 PM Page 437

As you may have noticed, by structuring the code the way we have, we automatically deal
with the case where a user sends a live post back to draft. That is, this function will remove it
from the index and not write it back (since the status property will no longer indicate the post
is live).

Removing a Blog Post from the Index
Next we write a function to remove a blog post from the index. In fact, the function we
have just written includes this as part of it; however, we are going to create a stand-alone
function to achieve the same thing. This allows us to call it from the preDelete() function in
DatabaseObject_BlogPost.

Although duplication in code should typically be avoided, we make an exception here
because this will reduce the overhead in opening and closing the search index. The only real
differences between this function and the last is that we don’t have a call to addDocument().
Additionally, we don’t bother rebuilding the index from scratch if it can’t be opened.

Listing 12-10 shows the deleteFromIndex() function that we use to remove a blog post
from the search index.

Listing 12-10. Removing a Blog Post from the Search Index (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

protected function deleteFromIndex()
{

try {
$index = Zend_Search_Lucene::open(self::getIndexFullpath());

$query = new Zend_Search_Lucene_Search_Query_Term(
new Zend_Search_Lucene_Index_Term($this->getId(), 'post_id')

);

$hits = $index->find($query);
foreach ($hits as $hit)

$index->delete($hit->id);

$index->commit();
}
catch (Exception $ex) {

$logger = Zend_Registry::get('logger');
$logger->warn('Error removing document from search index: ' .

$ex->getMessage());
}

}

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH438

9063Ch12CMP3 11/13/07 9:26 PM Page 438

// ... other code
}

?>

Triggering Search Index Updates
Now that the key functions for managing search index data are in place, we must trigger these
functions accordingly. Five different events must be handled:

• When a post is created

• When a post is updated

• When a post is deleted

• When a tag is added to a post

• When a tag is removed from a post

Note that at this point in the code, we don’t care whether the post is live, since the
addToIndex() function we just created will check this.

When a Post Is Created
To handle this case, we add a call to addToIndex() in the postInsert() function that already
exists in the BlogPost.php file in ./include/DatabaseObject, as shown in Listing 12-11.

Listing 12-11. Automatically Adding New Blog Posts to the Index (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

protected function postInsert()
{

$this->profile->setPostId($this->getId());
$this->profile->save(false);

$this->addToIndex();

return true;
}

// ... other code
}

?>

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 439

9063Ch12CMP3 11/13/07 9:26 PM Page 439

When a Post Is Updated
To handle this case, we add a call to addToIndex() in the postUpdate() function that already
exists, as shown in Listing 12-12.

Listing 12-12. Updating the Search Index When a Blog Post Is Updated (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

protected function postUpdate()
{

$this->profile->save(false);

$this->addToIndex();

return true;
}

// ... other code
}

?>

When a Post Is Deleted
Once again to handle this case, we add to the appropriate DatabaseObject callback. In this case,
we add a call to deleteFromIndex() to the preDelete() function, as shown in Listing 12-13.

Listing 12-13. Removing a Blog Post from the Index Upon Deletion (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

protected function preDelete()
{

// ... other code

$this->deleteFromIndex();

return true;
}

// ... other code
}

?>

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH440

9063Ch12CMP3 11/13/07 9:26 PM Page 440

When a Post’s Tags Are Changed
The final two events to be handled are when a tag is either added to a post or removed from a
post. I have grouped them together here since they are similar cases. Basically, we just add a call
to addToIndex() to both the addTags() and deleteTags() methods, as shown in Listing 12-14.

Listing 12-14. Updating the Search Index When Tags Are Modified (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public function addTags($tags)
{

// ... other code

$this->addToIndex();
}

public function deleteTags($tags)
{

// ... other code

$this->addToIndex();
}

// ... other code
}

?>

■Note I have not included a call to addToIndex() in the deleteAllTags() method, simply because this
method is used only when deleting a blog post. If it were included, then there would be extra unnecessary
overhead involved in deleting a blog post since the post would be reindexed before being removed.

Whenever you save or delete a blog post (or add/remove tags) now, the index will be
updated accordingly. We haven’t yet implemented the ability to search the index; however, you
can test whether the index is being modified by viewing the ./data/search-index directory
before and after saving a blog post to see whether the files have changed.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 441

9063Ch12CMP3 11/13/07 9:26 PM Page 441

Creating the Search Tool
Now that the blog content is automatically being indexed whenever a user creates or edits a
blog post, we can add an interface to the search index to the web site. In other words, we can
add a search form.

In the following sections, we will extend the application templates to include a clearly
visible search form, as well as writing a new controller action to handle search requests. This
action will query the search index accordingly and display results to the user.

In addition to implementing this functionality, we will also look at the different types of
searches made available using Zend_Search_Lucene.

Adding the Search Form
We’ll first add a search form to the application template. We will add this form to the top of the
left column of the site. You may prefer to add it to the main header of the site, but I’ve decided
to include it here for the purposes of this chapter.

Listing 12-15 shows the form code we add to the footer.tpl template (from the ./include/
templates directory). This is fairly straightforward, since all the hard work is done in the script
to which this form submits. Note that we have removed the placeholder code we had for the
left column if no $leftcolumn template is specified.

Listing 12-15. The Application Search Form That Will Now Appear Site-Wide (footer.tpl)

<!-- // ... other code -->

<div id="left-container" class="column">
<div class="box" id="search">

<form method="get" action="{geturl controller='search'}">
<div>

<input type="text" name="q" value="{$q|escape}"
id="search-query" />

<input type="submit" value="Search" />
</div>

</form>
</div>

{if isset($leftcolumn) && $leftcolumn|strlen > 0}
{include file=$leftcolumn}

{/if}
</div>

<!-- // ... other code -->

The value of the q (short for query) form input will be prepopulated by the $q variable.
This will be made available only from the search page. This means by default the field will
be empty, although when a search has been performed, it will be prepopulated with the
search term.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH442

9063Ch12CMP3 11/13/07 9:26 PM Page 442

Once you have added this HTML to your code, a typical page in your web application
should look like Figure 12-1. Note the search form now at the top of the left column.

Figure 12-1. The web application now with a search form

Handling Search Requests
In the search form we added in Listing 12-15, the form action was to be submitted to the URL
/search. We must now create a new action handler to deal with requests to this URL. To do so,
we must create a new controller called SearchController, meaning requests to /search will
automatically be routed to the indexAction() function of this controller.

First up we will create the new controller with minimal functionality. Listing 12-16 shows
the code for the SearchController.php file, which we store in ./include/Controllers. So far all
this does is retrieve the submitted query from the request and then write it back to the view
controller. Additionally, the page title of Search is set.

Listing 12-16. Creating the SearchController Class (SearchController.php)

<?php
class SearchController extends CustomControllerAction
{

public function indexAction()
{

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 443

9063Ch12CMP3 11/13/07 9:26 PM Page 443

$request = $this->getRequest();

$q = trim($request->getQuery('q'));

$this->breadcrumbs->addStep('Search');
$this->view->q = $q;

}
}

?>

We must also create the template for outputting search results. For now we will create an
empty placeholder, as shown in Listing 12-17. This code should be stored in a file called
index.tpl in the ./templates/search directory (you may have to create this directory).

Listing 12-17. The Search Results Page (index.tpl)

{include file='header.tpl'}

{include file='footer.tpl'}

You should now be able to enter a query in the search form we created and submit the
form. When submitted, you will be taken to this search page. Obviously no results will be
shown yet; however, the submitted query should reappear in the search box.

Querying the Search Index
Next we must extend the indexAction() function so it will actually search in the index.
Although performing the actual lookup in the index is trivial, the whole process is slightly
more complicated, because of the following reasons:

• We will be generating paged results. That is, we are going to show only five results from
a search at a time. If there are more than five results, then a list of pages will be dis-
played so the user can view the other results.

• After finding the matches in the index, we must load the corresponding blog posts
accordingly. If you recall, we did not actually store the blog post data in the index, so
instead we must call the GetPosts() function of DatabaseObject_BlogPost to retrieve
these posts.

The first thing we are going to do is build an array of search summary information. This is
data we assign to the template to help output the paging and results information. Listing 12-18
shows the initialization of this array. The values in this array will be modified throughout this
function.

■Note This array also contains the master value for the maximum number of results to return (the limit
value). If you want to display a different number of search results on a single page, then you can simply
change this value.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH444

9063Ch12CMP3 11/13/07 9:26 PM Page 444

Listing 12-18. Building Search Summary Data (SearchController.php)

<?php
class SearchController extends CustomControllerAction
{

public function indexAction()
{

$request = $this->getRequest();

$q = trim($request->getQuery('q'));

$search = array(
'performed' => false,
'limit' => 5,
'total' => 0,
'start' => 0,
'finish' => 0,
'page' => (int) $request->getQuery('p'),
'pages' => 1,
'results' => array()

);

The parameters in this array are as follows:

• performed: This is a Boolean value that indicates whether a search was performed. If
this script is called with an empty search term, then a search is not performed. This
allows us to differentiate between a search with no term and a search with no results.

• limit: The maximum number of results to be returned per page in the search. This
value is not modified later in the function.

• total: The total number of results found based on the specified query term. This value
will be updated after the search is performed.

• start: This indicates the position in the results of the first result that is displayed. Note
that this begins at 1 and not 0. So if the limit is set to 5, this value would be set to 1 on
the first page, 6 on the second page, and so on.

• finish: This indicates the position in the results of the last result that is displayed. So if
the limit is 5 and the user is viewing the second page, then this value would be set to 10.

• page: This parameter determines which page of results to show. This is set by the URL
parameter p. Valid values are in the range 1…N, where N is the total number of pages.

• pages: The total number of pages of results found. This is calculated by dividing the
number of results by the page limit. We use this value to ensure the page parameter is
valid.

• results: An array to hold the search results. After finding matching blog posts, we will
retrieve the posts and write them to this array.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 445

9063Ch12CMP3 11/13/07 9:26 PM Page 445

Next we try to open the search index and perform the search. We wrap this code in try …
catch so we can handle any errors that may occur trying to query the search index. Addition-
ally, we use this exception handler to deal with empty queries.

If the specified query is empty, we throw an exception so the remainder of the code isn’t
executed. Note that this will result in the performed variable in the $search array to remain set
to false, thereby allowing us to detect when a search hasn’t been performed.

As you can see in Listing 12-19, we call the find() function on the index to perform the
search. Since the $q variable is a string, the Zend_Search_Lucene query parser is invoked auto-
matically. We will look at some examples of queries that can be performed shortly.

Listing 12-19. Opening the Search Indexing and Performing the Search

try {
if (strlen($q) == 0)

throw new Exception('No search term specified');

$path = DatabaseObject_BlogPost::getIndexFullpath();
$index = Zend_Search_Lucene::open($path);
$hits = $index->find($q);

Now that the search has been performed, we can update the values in the $search array as
we need. Listing 12-20 shows the code we use to do this.

First, we update the performed value to true since the search has in fact now been per-
formed. Second, since the results are returned in an array, we can call count() to determine
the total number of matches.

Next, we use the total and the limit to determine the number of pages. Since this typically
won’t return a round number, we use ceil() to round the number to the nearest integer. We
can now ensure the current page is a valid value. We use the min() and max() functions to
ensure the number is no less than 1 and no more than the total number of pages. If no page
was specified in the URL, this will result in the page being set to 1.

After we finish updating this array, we will need to extract the results for the current page
from the $hits array. Since this array begins at zero, we need to determine which results to
take from this array. To calculate this, we use the current page and multiply it by the number
of results per page. However, if you use the first page as an example, this would mean the off-
set for the first page is 1 * 5 = 5, rather than 0. As such, we must subtract 1 from the page
number first.

Using the value in $offset, we can determine the start and finish values. The start
value will always be the offset plus one (since the returned results are zero-indexed but the
start and finish values begin at 1). The finish value can be calculated by using the start
value plus the number of hits per page, subtracted by 1. Note that if the final page of results
isn’t a complete page, then this number will be wrong. As such, we also use the total value to
determine the correct finish value.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH446

9063Ch12CMP3 11/13/07 9:26 PM Page 446

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 447

Listing 12-20. Updating the Search Summary Information (SearchController.php)

$search['performed'] = true;
$search['total'] = count($hits);
$search['pages'] = ceil($search['total'] / $search['limit']);
$search['page'] = max(1, min($search['pages'], $search['page']));

$offset = ($search['page'] - 1) * $search['limit'];

$search['start'] = $offset + 1;
$search['finish'] = min($search['total'],

$search['start'] + $search['limit'] - 1);

Next we must extract the results for the current page from the returned hits, as shown in
Listing 12-21. To do this, we use the array_slice() function in conjunction with the $offset
and $search['limit'] values. We can then loop over the remaining results and extract the
post_id field we set when indexing the blog posts.

We can then call the GetPosts() function to retrieve the matched blog posts. Be aware,
though, that GetPosts() will not return the posts in the order they were returned from the
search index. To correct this, we simply loop over the original $post_ids array we created and
write each post to the results array accordingly.

Listing 12-21. Extracting the Relevant Results and Retrieving Data from the Database
(SearchController.php)

$hits = array_slice($hits, $offset, $search['limit']);
$post_ids = array();
foreach ($hits as $hit)

$post_ids[] = (int) $hit->post_id;

$options = array('status' => DatabaseObject_BlogPost::STATUS_LIVE,
'post_id' => $post_ids);

$posts = DatabaseObject_BlogPost::GetPosts($this->db,
$options);

foreach ($post_ids as $post_id) {
if (array_key_exists($post_id, $posts))

$search['results'][$post_id] = $posts[$post_id];
}

// determine which users' posts were retrieved
$user_ids = array();
foreach ($posts as $post)

$user_ids[$post->user_id] = $post->user_id;

9063Ch12CMP3 11/13/07 9:26 PM Page 447

// load the user records
if (count($user_ids) > 0) {

$options = array(
'user_id' => $user_ids

);

$users = DatabaseObject_User::GetUsers($this->db, $options);
}
else

$users = array();

Finally, we can close the exception handler block (which doesn’t need to actually do any-
thing). We can then also set the page title according to the search that was performed. This
means the search term will be included in the page and browser title. Additionally, we then
write the search summary data to the view, as shown in Listing 12-22.

Listing 12-22. Completing the Search Request and Assigning Results to the Template
(SearchController.php)

}
catch (Exception $ex) {

// no search performed or an error occurred
}

if ($search['performed'])
$this->breadcrumbs->addStep('Search Results for ' . $q);

else
$this->breadcrumbs->addStep('Search');

$this->view->q = $q;
$this->view->search = $search;
$this->view->users = $users;

}
}

?>

Displaying Search Results
Now that the search data is being generated for all user searches and assigned to the template,
we must modify the search results template we created earlier this chapter.

We must include several elements in this template consistent with most search engines.
These include the following:

• A message to perform a search if one was not performed (that is, if the page was
accessed with an empty search term).

• A message if no results were found for the specified search term.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH448

9063Ch12CMP3 11/13/07 9:26 PM Page 448

• A summary of the returned results if there are matches. This includes the total number
of matches as well as which results are being shown.

• Each of the search results. We can reuse the blog-post-summary.tpl template we cre-
ated earlier for displaying the summary of a single blog post.

• A list of all the pages found. In other words, if the result limit is 5 and there were 23
results in total, then there will be 5 pages. We need to provide links so the user can
access subsequent pages.

Listing 12-23 shows the beginning of the index.tpl template in ./templates/search. We
first check that a search has been performed, and if so, we check whether any results were
returned. If not, we display a message accordingly; otherwise, we proceed to display the sum-
mary information and loop over the results.

Listing 12-23. Ensuring a Search Has Been Performed and Displaying the Results Accordingly
(index.tpl)

{include file='header.tpl'}

{if $search.performed}
{if $search.total == 0}

<p>
No results were found for this search.

</p>
{else}

<p>
Displaying results {$search.start}-{$search.finish} of {$search.total}

</p>

{foreach from=$search.results item=post}
{assign var='user_id' value=$post->user_id}
{include file='user/lib/blog-post-summary.tpl'

post=$post
user=$users.$user_id
linkToBlog=true}

{/foreach}

Next we output the paging information, as shown in Listing 12-24. We use the Smarty
{section} construct to loop once for each page in the total results. Note that {section} begins
at zero and loops accordingly to the loop parameter. Since we show users page numbers
beginning at 1, we use the index_next variable rather than index so the page numbers don’t
begin at zero. The other thing we do is highlight the current page in the pager so the user can
easily identify the active page.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 449

9063Ch12CMP3 11/13/07 9:26 PM Page 449

Listing 12-24. Linking to Each Results Page (index.tpl)

<div class="pager">
{section loop=$search.pages name=page}

{assign var=p value=$smarty.section.page.index_next}
{if $p == $search.page}

{$p}
{else}

<a href="{geturl controller='search'}?q={$q|escape}&p={$p}"
>{$p}

{/if}
{/section}

</div>

■Note We have included only the pager beneath the search results. You may prefer to display it above
and below the results. In this case, you may want to save the code in Listing 12-24 to a separate
template and include it at the top and bottom accordingly.

We complete this template by closing the if … else statements and displaying a message
prompting the user to search if they haven’t yet done so, as shown in Listing 12-25.

Listing 12-25. Completing the Search Results Template (index.tpl)

{/if}
{else}

<p>
Please use the search form in the left column to find content.

</p>
{/if}

{include file='footer.tpl'}

As a final improvement to this page, we should style the .pager class so the pages are cen-
tered on the page. The CSS we add to styles.css in ./htdocs/css is as follows in Listing 12-26.

Listing 12-26. Styling the Page Listing (styles.css)

.pager {
text-align : center;
border-top : 1px dashed #eee;
padding-top : 5px;
font-size : 85%;

}

If you now perform a search, you will be shown results similar to those in Figure 12-2.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH450

9063Ch12CMP3 11/13/07 9:26 PM Page 450

Figure 12-2. Results from performing a search in our web application

Types of Searches
Now that our search engine is working, it would be useful to know how to actually query it.
Earlier this chapter you saw some brief examples of the most basic searches you can perform
with Zend_Search_Lucene. You can find further details of the query language used at http://
framework.zend.com/manual/en/zend.search.lucene.query-language.html, but I will now
cover some examples.

When we indexed blog posts, we added five fields to each indexed document (post_id,
title, content, published, and tags). When a search is performed normally, all of these fields
are searched for the given terms. Zend_Search_Lucene allows a user to search in one or more
of these fields if they choose simply by prepending the field name to the search term. For
instance, if a user wanted to search for blog posts based on their tags, they would include
tags: in front of the term (since that is the name of the field we used when indexing the blog
posts).

Specifically, if you wanted to find blog posts with the tag PHP, you would use this:

tags:PHP

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 451

9063Ch12CMP3 11/13/07 9:26 PM Page 451

Additionally, you can search for phrases by surrounding the query in quotes. So if you
knew a post existed with a title of Holiday Photos, you could use the following search to the
find the post:

title:"Holiday Photos"

The most important thing when you consider these different types of searches is that you
let users know how to use the search tool. You should typically have some brief instructions on
the search page to let them know how to do things such as searching based on tags.

Adding Autocompletion to the Search Tool
We have just finished creating an interface to the indexes we created earlier in the chapter,
meaning users can now search for content from each of the users in our web application. The
solution we created does not require the user to have any JavaScript capabilities, since all
functionality is performed on the server side. We will now extend this search tool to use Ajax to
help the user choose a search term.

This feature is based on the Google Suggest tool, which you can find at http://www.
google.com/webhp?complete=1. Google Suggest allows users to search on Google just as they
would normally, except when they begin to type a search term, an Ajax request is performed in
the background to find the most relevant searches beginning with those characters they have
already typed. The results are returned in real time, allowing the user either to finish typing
what they’ve already started or to select one of the found terms (either with their arrow keys or
with their mouse).

Providing Search Suggestions
To make suggestions to users as to what they should search for, we need some data to generate
these suggestions. We’ll use the tags that users have assigned to their blog posts as suggestions.

Thus, if they begin to type the term MySQL, when they have typed my, the following SQL
query would be used to find suggestions for them:

SELECT DISTINCT tag
FROM blog_posts_tags
WHERE tag LIKE 'my%'
ORDER BY lower(tag)

We want to provide suggestions based on tags only for live posts; thus, we must check that
the tag found from blog_posts_tags belongs to a live post. To do this, we use an SQL join
against the blog_posts table.

To get a list of suggestions for partial search string, we will add a new method called
GetTagSuggestions() in the BlogPost.php file (in ./include/DatabaseObject). Listing 12-27
shows this method. It takes the partial tag as its second argument (after the database connec-
tion), while the optional third argument specifies the number of the tags to return.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH452

9063Ch12CMP3 11/13/07 9:26 PM Page 452

Listing 12-27. Generating a List of Tags Based on a Partial Search Term (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public static function GetTagSuggestions($db, $partialTag, $limit = 0)
{

$partialTag = trim($partialTag);
if (strlen($partialTag) == 0)

return array();

$select = $db->select();
$select->distinct();
$select->from(array('t' => 'blog_posts_tags'), 'lower(tag)')

->joinInner(array('p' => 'blog_posts'),
't.post_id = p.post_id',
array())

->where('lower(t.tag) like lower(?)', $partialTag . '%')
->where('p.status = ?', self::STATUS_LIVE)
->order('lower(t.tag)');

if ($limit > 0)
$select->limit($limit);

return $db->fetchCol($select);
}

// ... other code
}

?>

The returned data is an array with no more than $limit elements (unless the value of
$limit is 0, in which case all found tags are returned).

Creating an Action Handler to Return Search Results
The next step is to create a new method in the SearchController class to return the search
suggestions. The suggestions will be returned in JSON format based on a partial search string
that will be supplied to the method. In the next section, we will write Ajax code to call this
function as the user types in their search query.

Listing 12-28 shows the code for the suggestionAction() method, which belongs in the
SearchController.php file in ./include/Controllers. It uses the GetTagSuggestions() method
in Listing 12-27, as well as the sendJson() method we implemented in Chapter 6.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 453

9063Ch12CMP3 11/13/07 9:26 PM Page 453

Listing 12-28. Returning All Matching Search Terms in JSON Format (SearchController.php)

<?php
class SearchController extends CustomControllerAction
{

public function suggestionAction()
{

$q = trim($this->getRequest()->getPost('q'));

$suggestions = DatabaseObject_BlogPost::GetTagSuggestions($this->db,
$q,
10);

$this->sendJson($suggestions);
}

}
?>

You can test that this functionality works by visiting http://phpweb20/search/
suggestion?q=term, where term is the partial tag for which you want to find suggestions.
To return valid results, you must have live posts in your database with tags that match the
term you supply.

Retrieving Search Suggestions
Our next step is to write a JavaScript class that will retrieve suggestions from the
suggestionAction() function we just wrote when the user types a search query. The way
this will work is to monitor the search query input box. When the user types a query, an
Ajax request will be performed to retrieve those results and then display them to the user.

One important thing to be aware of is that you don’t want to retrieve the suggestions every
time the user enters a single character, since this will not only slow down the user’s experience
but will also consume excessive server resources. Thus, the way it will work is to display search
suggestions only after the user has stopped typing. To achieve this, every time the user types a
key, we begin a timer. Once the timer expires, we initiate the Ajax request. If the user presses
another key before the timer expires, the existing timer is cancelled, and a new one is created.

Listing 12-29 shows the beginning of the SearchSuggestor class. We store this in a file
called SearchSuggestor.class.js in the ./htdocs/js directory. First we set the URL that pro-
vides the search suggestions (which is the suggestionAction() function we created in the
previous section).

We then set the timer delay of 200 milliseconds (or 0.2 seconds). Additionally, we define a
placeholder to hold the timer returned from the setTimeout() function. Finally, we add a
placeholder to hold the current query.

■Note Although we specify the delay here in seconds, setTimeout() accepts the delay in milliseconds.
This means we must multiply the delay by 1,000. We do this only as a convention since Prototype and
Scriptaculous do the same thing.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH454

9063Ch12CMP3 11/13/07 9:26 PM Page 454

Listing 12-29. Beginning the SearchSuggestor Class (SearchSuggestor.class.js)

SearchSuggestor = Class.create();

SearchSuggestor.prototype = {

url : '/search/suggestion',
delay : 0.2,

container : null,
input : null,
timer : null,
query : null,

Next we write the initialize() function, which is the naming Prototype uses for class
constructors, as shown in Listing 12-30. The argument for this function is the container of the
search form (which we called #search).

We then find the form query input (using its name of q). We add the keypress event to this
element, since we want to start the timer to initialize an Ajax request every time a key is pressed.
Once again, we must use the Prototype bindAsEventListener() function so we can define the
event handler within this class.

Because modern web browsers save the values you type into forms so they can display
them next time, this will interfere with the autocompletion we are implementing. We
therefore set the autocomplete attribute on the input element to disable this. You could also
use autocomplete="off" in the HTML code, but this is nonstandard HTML and will cause the
document to be invalid.

Listing 12-30. The SearchSuggestor Constructor (SearchSuggestor.class.js)

initialize : function(container)
{

this.container = $(container);
if (!this.container)

return;

this.input = this.container.down('input[name=q]');
if (!this.input)

return;

this.input.setAttribute('autocomplete', 'off');
this.input.observe('keypress',

this.onQueryChanged.bindAsEventListener(this));
},

Now we define the onQueryChanged() function, which is called whenever a key is pressed
in the search form. Listing 12-31 shows this function, which first cancels an existing timer if
one is set and then creates a new timer. When the timer expires, the loadSuggestions()
function will be called.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 455

9063Ch12CMP3 11/13/07 9:26 PM Page 455

Listing 12-31. Stopping and Starting Timers When a Key Is Pressed (SearchSuggestor.class.js)

onQueryChanged : function(e)
{

clearTimeout(this.timer);
this.timer = setTimeout(this.loadSuggestions.bind(this), this.delay * 1000);

},

Now we must write the function to initiate the Ajax request and retrieve the search sug-
gestions. First we retrieve the current query value from the form and trim it using strip()
(remove the whitespace). Next we check the length of the query. If the query is empty or if it is
the same as the previous query, we return from the function. If we didn’t do this, then a new
Ajax request would be performed even if the user simply pressed a key that didn’t change the
query (such as an arrow key). Once we determine the query can be submitted, we update the
class query property to remember the query for the next time.

At this stage, we can perform the Ajax request to retrieve the search results. We use the
onSuggestionLoad() function as the callback handler for the Ajax request. Although we define
that function in Listing 12-32, we don’t actually do anything with the results yet. We will build
on this function and the rest of this class later in the chapter.

Listing 12-32. Initiating the Ajax Request and Handling the Response (SearchSuggestor.class.js)

loadSuggestions : function()
{

var query = $F(this.input).strip();
if (query.length == 0 || query == this.query)

return;

this.query = query;

var options = {
parameters : 'q=' + query,
onSuccess : this.onSuggestionLoad.bind(this)

};

new Ajax.Request(this.url, options);
},

onSuggestionLoad : function(transport)
{

var json = transport.responseText.evalJSON(true);
}

};

■Tip The $F() function is a Prototype shortcut to retrieve the value from a form element. In the previous
code, you could also use this.input.getValue() as another Prototype way of retrieving the value.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH456

9063Ch12CMP3 11/13/07 9:26 PM Page 456

Loading the SearchSuggestor Class
Although we have not yet completed the SearchSuggestor class, we can add it to our site tem-
plate. To do this, we must first load the SearchSuggestor.class.js file and then load the class
in the onload callback we created in the scripts.js file earlier in the book.

Listing 12-33 shows the changes that are to be made to header.tpl in ./templates to load
the SearchSuggestor.class.js file.

Listing 12-33. Loading the SearchSuggestor Class in the Site Template (header.tpl)

<!-- // ... other code -->

<script type="text/javascript" src="/js/SearchSuggestor.class.js"></script>
<script type="text/javascript" src="/js/scripts.js"></script>

<!-- // ... other code -->

At this stage, however, the SearchSuggestor class is not actually being used. We must
modify the init() function in the scripts.js file to bind the class to the query text input.
As mentioned previously, the argument to the SearchSuggestor function is the ID of the con-
tainer holding the search form in footer.tpl. Listing 12-34 shows the code we add to the
scripts.js file.

Listing 12-34. Instantiating the SearchSuggestor Class on Page Load (scripts.js)

function init(e)
{

// ... other code

new SearchSuggestor('search');
}

Displaying Search Suggestions
The next step is to display each of the found search results to the user. We will do this by creat-
ing an unordered list and displaying it directly beneath the search input. This will require
changes both to the SearchSuggestor class and to the site CSS.

To display the search suggestions directly beneath the input without affecting the normal
flow of the page, we must make the list’s position absolute. For this to work, we must also
make the parent container’s position (#search) relative.

After making the necessary changes to the JavaScript, HTML like the following will be
generated. Note that we don’t actually include this in our templates at all, since we will
be building the element using the appropriate DOM functions.

<div class="box" id="search">
<form method="get" action="/search">

<!-- // ... other code -->
</form>

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 457

9063Ch12CMP3 11/13/07 9:26 PM Page 457

Search suggestion 1
Search suggestion 2
Search suggestion 3

</div>

Listing 12-35 shows the styles we add to the styles.css file (in ./htdocs/css) to make the
generated list display directly beneath the search text input.

Listing 12-35. Styling the Search Suggestion Container (styles.css)

#search { position : relative; }

#search-query {
width : 170px;
border : 1px solid #707070;
padding : 2px;

}

#search ul {
position : absolute;
list-style-type : none;
width : 174px;
margin : -2px 0 0 0;
padding : 0;
background : #f7f7f7;
border : 1px solid #707070;
font-size : 85%;

}

#search li {
padding : 2px;
margin : 0;

}

Now we modify the SearchSuggestor class to display the search suggestions in the list.
The first thing we do is modify the onSuggestionLoad() function, as shown in Listing 12-36.
All the returned suggestions will be held in the array called json, so we pass this to the
showSuggestions() function that we will create shortly.

Next we use the Scriptaculous Builder class to create the unordered list. We then loop
over the list of terms and create a list item for each one. We then update the list item so the
search term is used as the item content. Finally, we add the list to the search container.

Listing 12-36. Displaying Suggestions After the Ajax Request Completes (SearchSuggestor.class.js)

// ... other code

onSuggestionLoad : function(transport)

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH458

9063Ch12CMP3 11/13/07 9:26 PM Page 458

{
var json = transport.responseText.evalJSON(true);
this.showSuggestions(json);

},

showSuggestions : function(suggestions)
{

this.clearSuggestions();

if (suggestions.size() == 0)
return;

var ul = Builder.node('ul');

for (var i = 0; i < suggestions.size(); i++) {
var li = $(Builder.node('li'));
li.update(suggestions[i]);
ul.appendChild(li);

}

this.container.appendChild(ul);
},

Another thing we do in the showSuggestions() function is clear any existing terms before
new ones are shown. We do this using clearSuggestions(), which is shown in Listing 12-37.
This is called regardless of whether any search suggestions have been found; if there are no
suggestions, there is nothing to show, and if there are suggestions, then we want to show only
the new ones, not ones that were previously there.

Listing 12-37. Removing Existing Search Suggestions from the Search Container
(SearchSuggestor.class.js)

clearSuggestions : function()
{

this.container.getElementsBySelector('ul').each(function(e) {
e.remove();

});

this.query = null;
}

};

One more minor change we must now make is to the loadSuggestions() function. Cur-
rently in this function if the search term is empty, then we don’t bother performing this Ajax
request. We must now make it so in addition to not performing the Ajax request, the current
list of suggestions is hidden. The reason we add this is because if the user highlights the search
input and presses Backspace, the term would be deleted but the suggestions would remain.
The code in Listing 12-38 fixes this issue.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 459

9063Ch12CMP3 11/13/07 9:26 PM Page 459

Listing 12-38. Clearing Suggestions When the Search Term Is Cleared (SearchSuggestor.class.js)

loadSuggestions : function()
{

var query = $F(this.input).strip();

if (query.length == 0)
this.clearSuggestions();

if (query.length == 0 || query == this.query)
return;

// ... other code
},

Adding Mouse Navigation to Results
Although the search suggestions are now being displayed when the user begins to enter a
search term, it is not yet possible to do anything useful with these suggestions. The first thing
we are going to do is allow users to click one of the suggestions. This will trigger the search
form being submitted using the selected term.

To do so, we must first handle the mouseover, mouseout, and click events for each list item.
The functionality we want to occur for each event is as follows:

• When the mouse is over a suggestion, highlight the suggestion. We do this by creating a
new CSS style called .active and adding it using the Prototype addClassName() method.

• When the mouse moves away from a suggestion, remove the .active class using
removeClassName().

• When a search term is clicked, replace the term currently in the search input with the
clicked term and then submit the form.

First, we will add the new CSS style. We will simply make the active item display with a red
background and white text. Listing 12-39 shows the new CSS selector we add to styles.css.

Listing 12-39. Styling the Active Search Suggestion (styles.css)

#search li.active {
background : #f22;
color : #fff;
cursor : pointer;

}

Now we use the observe() method to handle the three events discussed earlier. Listing 12-40
shows the code we add to the showSuggestions() function to observe these events, as well as the
suggestionClicked() function that we call from within the click event.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH460

9063Ch12CMP3 11/13/07 9:26 PM Page 460

Listing 12-40. Handling the Mouse Events with the Search Suggestions (SearchSuggestor.class.js)

// ... other code

showSuggestions : function(suggestions)
{

this.clearSuggestions();

if (suggestions.size() == 0)
return;

var ul = Builder.node('ul');

for (var i = 0; i < suggestions.size(); i++) {
var li = $(Builder.node('li'));

li.update(suggestions[i]);

li.observe('mouseover',
function(e) {

Event.element(e).addClassName('active')
});

li.observe('mouseout',
function(e) {

Event.element(e).removeClassName('active')
});

li.observe('click',
this.suggestionClicked.bindAsEventListener(this));

ul.appendChild(li);
}

this.container.appendChild(ul);
},

suggestionClicked : function(e)
{

var elt = Event.element(e);
var term = elt.innerHTML.strip();

this.input.value = term;
this.input.form.submit();

this.clearSuggestions();
},

// ... other code

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 461

9063Ch12CMP3 11/13/07 9:26 PM Page 461

As you can see, in the suggestionClicked() event handler, the first thing we do is determine
which suggestion was clicked using the Event.element() function. We can then determine what
the search term is by retrieving the innerHTML property of the element (we also use strip() to
clean up this code in case extra whitespace is added to it).

We then update the value of the form element and submit the form. Additionally, we clear
the suggestions after one has been clicked, preventing the user from clicking a different sug-
gestion while the form is being submitted.

Adding Keyboard Navigation to Results
The final thing we do to improve the search suggestions is to add keyboard controls to the sug-
gestions. Essentially what we want to be able to do is let the user choose a suggestion using
their up and down arrow keys. The keyboard handling rules we will add are as follows:

• If the user presses the down arrow and no term has been highlighted (that is, set to use
the .active class), then select the first term.

• If the user presses the down arrow and a suggestion is highlighted, move to the next
suggestion. If the user presses down when the last suggestion is highlighted, then select
no suggestion so the user can hit Enter on what they have typed so far.

• If the user presses up and no term is selected, then select the last suggestion.

• If the user presses up and a suggestion is highlighted, move to the previous suggestion.
Select no suggestion if up is pressed when the first suggestion is selected.

• Submit the search form with the highlighted term when Enter is pressed.

• Hide the suggestions if the Escape key is pressed.

As you can probably tell, the work involved with adding keyboard controls is slightly more
involved than adding mouse controls.

The first thing we are going to do is to write some utility functions to help us select items
and to determine which item is selected.

Listing 12-41 shows the getNumberOfSuggestions() function that we add to
SearchSuggestor.class.js, which simply counts the number of list items present and
returns that number. This is helpful in determining the item index of the next or previous
item when using the arrow keys.

Listing 12-41. Determining the Number of Suggestions Showing to the User
(SearchSuggestor.class.js)

SearchSuggestor = Class.create();

SearchSuggestor.prototype = {

// ... other code

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH462

9063Ch12CMP3 11/13/07 9:26 PM Page 462

getNumberOfSuggestions : function()
{

return this.container.getElementsBySelector('li').size();
},

■Note When you add this function and the other new functions in this section to
SearchSuggestor.class.js, make sure the comma is correctly placed after the close brace of each func-
tion in the class (except for the final one).

Next we write a function to select an item (that is, to apply the .active class) based
on its numerical index in the list of items. This list is zero-indexed. Listing 12-42 shows the
selectSuggestion() class, which works by looping over all list items and adding the .active
class if it matches the passed-in argument. Note that this function also deselects every other
list item. In effect we can use this function to ensure no items are selected at all by passing an
invalid index (such as -1).

Listing 12-42. Selecting a Single Suggestion Based on Its Index (SearchSuggestor.class.js)

selectSuggestion : function(idx)
{

var items = this.container.getElementsBySelector('li');

for (var i = 0; i < items.size(); i++) {
if (i == idx)

items[i].addClassName('active');
else

items[i].removeClassName('active');
}

},

Next, we write a function to determine the index of the item that is currently selected,
shown in Listing 12-43. This is in some ways the opposite of the selectSuggestion() function.
It works almost identically, but rather than updating the class name, it checks instead for the
presence of the .active class. If no items are currently selected, then -1 is returned.

Listing 12-43. Determining the Index of the Selected Suggestion (SearchSuggestor.class.js)

getSelectedSuggestionIndex : function()
{

var items = this.container.getElementsBySelector('li');

for (var i = 0; i < items.size(); i++) {
if (items[i].hasClassName('active'))

return i;

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 463

9063Ch12CMP3 11/13/07 9:26 PM Page 463

}

return -1;
},

Now we write a function called getSelectedSuggestion(), which is shown in Listing 12-44.
This function is identical to getSelectedSuggestionIndex() except that it returns the actual
search term that is selected rather than its index in the list. We will use this function when the
user hits Enter while a term is selected.

Listing 12-44. Determining the Search Suggestion That Is Currently Selected
(SearchSuggestor.class.js)

getSelectedSuggestion : function()
{

var items = this.container.getElementsBySelector('li');

for (var i = 0; i < items.size(); i++) {
if (items[i].hasClassName('active'))

return items[i].innerHTML.strip();
}

return '';
}

};

The final thing we must do is modify the onQueryChanged() function, which is the event
handler we defined that is called whenever a key is pressed in the search input. Currently, all the
function does is clear any existing timers and set a new timer for fetching suggestions. We will
now add handlers for specific keys to this function (in addition to the timer-handling code).

Listing 12-45 shows the code we use to handle the Enter key being pressed. When the user
hits Enter, if a suggestion is highlighted, then we want to populate the search input with this
term and submit the form. If no term is highlighted, then we submit the form with whatever
the user has typed so far. When the search term populates the input, we clear the suggestions,
just as we did in the mouse-handling code.

Also, note that we leave the call to clearTimeout() in front of the switch() statement. This
is because we will be returning from the keys handled in the switch() statement, but we still
want to cancel the timer. All normal key presses will travel beyond the switch() statement and
trigger the new timer.

Listing 12-45. Searching on the Selected Term When the User Hits Enter (SearchSuggestor.class.js)

SearchSuggestor = Class.create();

SearchSuggestor.prototype = {

// ... other code

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH464

9063Ch12CMP3 11/13/07 9:26 PM Page 464

onQueryChanged : function(e)
{

clearTimeout(this.timer);

switch (e.keyCode) {
case Event.KEY_RETURN:

var term = this.getSelectedSuggestion();
if (term.length > 0) {

this.input.value = term;
this.clearSuggestions();

}
return;

Next we handle the Escape key being pressed. This case is fairly simple, because all we
need to do is to hide the search suggestions, as shown in Listing 12-46.

Listing 12-46. Hiding the Search Suggestions When the User Hits Escape

case Event.KEY_ESC:
this.clearSuggestions();
return;

We now handle the trickier case where the user presses the down arrow key. According
to the rules we specified earlier in this section, we want to select the first term if no term is
selected; otherwise, we want to select the next term. As another special case, if the last term
is selected, then pressing the down arrow should result in no suggestion being selected.

Listing 12-47 shows the code we use to determine which suggestion should now be
selected as a result of the down arrow being pressed. We make use of the utility functions we
just created to help with this.

Listing 12-47. Selecting the Next Item When the Down Arrow Is Pressed (SearchSuggestor.class.js)

case Event.KEY_DOWN:
var total = this.getNumberOfSuggestions();
var selected = this.getSelectedSuggestionIndex();

if (selected == total - 1) // currenty last item so deselect
selected = -1;

else if (selected < 0) // none selected, select the first
selected = 0;

else // select the next
selected = (selected + 1) % total;

this.selectSuggestion(selected);
Event.stop(e);
return;

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 465

9063Ch12CMP3 11/13/07 9:26 PM Page 465

To handle the case where the up arrow is pressed, we basically just do the opposite of the
down arrow calculations. Listing 12-48 shows the code for this case. This code also includes
the final call of the function to initiate the new timer. Note that this won’t be called for presses
of the Enter, Escape, up arrow, and down arrow keys, because we’ve returned from each of
them in this function.

Listing 12-48. Selecting the Previous Suggestion When the Up Arrow Is Pressed
(SearchSuggestor.class.js)

case Event.KEY_UP:
var total = this.getNumberOfSuggestions();
var selected = this.getSelectedSuggestionIndex();

if (selected == 0) // first item currently selected, so deselect
selected = -1;

else if (selected < 0) // none selected, select the last item
selected = total - 1;

else // select the previous
selected = (selected - 1) % total;

this.selectSuggestion(selected);
Event.stop(e);
return;

}

this.timer = setTimeout(this.loadSuggestions.bind(this), this.delay * 1000);
},

// ... other code
};

If you now type a search term in the search box (assuming some existing searches have
already taken place), you will be shown a list of suggestions for your search, as shown in
Figure 12-3.

You might want to add some extra functionality to the tool in the future, such as display-
ing the number of results that would be returned if the user were to perform the given search.
The difficulty in providing features such as this is that they are resource intensive. You need to
perform the search of each term in real time (not recommended) to determine how many
results the search would return, or you need to cache the result counts so the data can be
accessed quickly.

In any case, you need to be aware of the implications of adding features like this to your
server. Even the suggestion lookup tool as it is results in a new HTTP request and database
query each time, so imagine if you had hundreds or thousands of people using the search tool
at any one time.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH466

9063Ch12CMP3 11/13/07 9:26 PM Page 466

Figure 12-3. Search suggestions are now being displayed below the search input.

Summary
In this chapter, we created a fully functioning search engine for our web application using
Zend_Search_Lucene. We achieved this by creating a search index for all of the blog posts in the
application. We altered the blog management code so the index is automatically maintained
when posts are created, updated, or deleted.

Next we added a search form to the website to allow users to find blog posts. The powerful
querying syntax of Lucene meant posts could be found based on several criteria, including the
title, the body, or its tags.

Finally, we improved the search form to behave similarly to Google’s Suggest interface.
This provides users with some suggestions on what to search for, based on the tags registered
users have applied to their blog posts.

In the next chapter, we will be looking closely at Google Maps. We will extend the blog func-
tionality so users can add locations to their blog posts and display those maps accordingly.

CHAPTER 12 ■ IMPLEMENTING SITE SEARCH 467

9063Ch12CMP3 11/13/07 9:26 PM Page 467

9063Ch12CMP3 11/13/07 9:26 PM Page 468

Integrating Google Maps

All of the code we have developed so far in this book has been self-contained with no
reliance on any outside services. Frequently in your web development endeavors you will
need to integrate features that you don’t necessarily have the resources to provide. Or it simply
may be that an outside service provides you with access to data you wouldn’t otherwise be
able to access.

In this chapter, we will be integrating Google Maps (http://maps.google.com) into our
web application as an example of using third-party services. Specifically, we will allow users to
assign one or more locations to each of their blog posts and then display a map marking the
location when visitors view the respective blog post.

Many other services are available on the Internet that can be used on your web site (or
even desktop applications), such as displaying product information and reviews using Ama-
zon Web Services or processing credit card payments (using PayPal, Google Checkout, or one
of the many other similar options available).

In addition to displaying maps with Google Maps, we will also make use of the geo micro-
format, extending what we learned about microformats in Chapter 10.

Google Maps Features
The Google Maps API is a well-documented and comprehensive JavaScript API that gives
developers a wide range of options for displaying maps and controlling how their maps
behave. Before we begin planning our usage of the maps, let’s take a look at some of the key
features available.

Geocoding
Gecoding is the process of converting a street address into geographical coordinates (latitude
and longitude). For example, Google’s address is 1600 Amphitheatre Pkwy, Mountain View,
California. If you were to enter this address into the Google Maps geocoder, then the coordi-
nates of latitude 37.423111 and longitude -122.081783 would be returned. These coordinates
can then be used to mark locations on the displayed map.

Google provides two ways to access its geocoder. The first method is to use their
JavaScript interface to look up addresses. This allows you to look up and add new points on
your map from within the client-side web browser.

469

C H A P T E R 1 3

9063Ch13CMP3 11/15/07 8:20 AM Page 469

The second method to access the geocoder is to query their geocoder web service on the
server side. This makes it easy to look up addresses and save the results in your database for
future use, and it doesn’t therefore rely on the end-user having a JavaScript-enabled web browser.

For any given request, the geocoder may return zero, one, or several matches. Since an
API key is required to access Google Maps (which we will create shortly) and each IP address
has a limitation on the number of geocoder requests daily (15,000), an incorrect key or too
many requests might be the cause for no matches being returned. Note that these errors are
indicated in the status section of the response.

■Note An API key is what Google uses to control access to their services. For you (as a web site owner or
developer) to use Google Maps on your own web site, you must have an API key. When a user tries to load a
map from your site, your API key is used in the request.

If multiple addresses are found (perhaps you entered an address such as 123 Main St.
without specifying the town), it is up to you as the developer to determine which address is
the one you were after. The response includes an accuracy rating with each matched address.
The rating indicates to what level the response is accurate (such as country, region, city, street,
intersection, or an exact match).

We will use the client-side geocoder in this chapter to look up addresses entered by users
when they try to add locations to their blog posts.

Displaying Maps
When displaying a map with Google Maps, you must provide an HTML element on your page
in which to hold the map. The map will automatically fill the entire width and height of the
specified element.

Additionally, the objects in the following sections can be placed on maps as required.

Map Controls
When the map is initially displayed, there will be no controls displayed. Controls are buttons
on the map that allow the user to manipulate the display. The available controls are as follows:

• Zoom. The user can zoom in or zoom out using the appropriate buttons or slider.

• Panning. The user can move the map north, south, east, or west using the panning but-
tons.

• Map Type. The user can choose the type of map displayed, which by default includes a
street map, a satellite map, or a combination of the two (called a hybrid map).

• Mini-map. This a small map that sits in the corner of the main map that is zoomed out
further than the main map, allowing users to change the location of the map more
quickly for large distances.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS470

9063Ch13CMP3 11/15/07 8:20 AM Page 470

• Map scale. This indicates how many meters, yards, kilometers, or miles the displayed
distance represents.

Figure 13-1 shows an example map that includes each of these controls.

Figure 13-1. A sample map showing various map controls

The Google Maps API allows you to add any of these controls as required. Additionally,
you can choose which corner of the map to anchor the control. By default, the zoom and pan-
ning buttons are in the top-left, the map type buttons are in the top-right, the mini-map is in
the bottom-right, and the scale is in the bottom-left.

Although we will not be doing so in this chapter, the API also allows developers to create
custom controls that can be overlaid on the map. For example, if you wanted to use graphical
icons to switch between the map types instead of the text buttons, you could do so by creating
a custom control.

Map Overlays
A map overlay is any object (aside from the map controls) that appears on top of the map that
isn’t actually part of the map yet moves with the map as it is panned. The use of overlays is
essential to portray any useful custom information to your users. The different types of over-
lays available in Google Maps are as follows:

• Markers. A marker represents a single point on the map. It is possible to use any icon
you desire to display the marker, although the simplest solution is to use the built-in
icon (shown in Figure 13-2). A map can have any number of markers, although there
may be scalability issues you need to take into account for a large number of markers.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 471

9063Ch13CMP3 11/15/07 8:20 AM Page 471

■Note The Google Maps API provides a class (google.maps.MarkerManager) that can be used to man-
age a large number of points. Since loading a large number of points (hundreds or thousands) can result in
a large amount of memory use in the client web browser, then how these points are loaded and displayed
needs to be managed—there’s no sense in loading points that are in Europe when the user is viewing North
America. Since we will not be displaying a large number of markers at any one time in this book, we will not
be using this class. However, if you wanted to extend the functionality we add this chapter to display every
location of every blog post in our database, then you would consider using this class.

• Information windows. An information window is a callout box you can add to your map
that points to a specified point on the map (which may or may not have a corresponding
marker). Within the information window you can display any HTML content you please
(such as text, links, or images). This is commonly used to display information after a
marker has been clicked. The API also allows you to display tabbed information windows,
allowing you to display multiple pages of information in a single information window.

• Polylines. By specifying a series of points, you can draw lines on the map using the
polyline classes. Google uses this on its own maps to display driving directions between
locations. You can use this feature in many ways, such as if you want to plot the path
and distance of your morning jog (since the distance between two points can be calcu-
lated using their latitude and longitude).

Figure 13-2 shows an example of what a marker and information window looks like on
a map.

Figure 13-2. Map overlays in Google Maps

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS472

9063Ch13CMP3 11/15/07 8:20 AM Page 472

We will be using markers to display one or more points on users’ blog posts as required.
We will look at some advanced usage of markers as we will allow users to click and drag mark-
ers to a new location if they please.

Controlling Maps
In addition to using the controls that can be added to maps, it is also possible to control maps
programmatically. For example, you must choose where to center the map initially; you can
use code to switch between satellite and street map view, and you can open or close informa-
tion windows as required using function calls.

The code we write in this chapter will use a combination of programmed map control as
well as allowing users to control the map as they please. For example, when a marker is dragged
to a new location, we will make its information window appear, but we will also allow the users
to close and reopen the window as they please.

Planning Integration
Now that we have an idea of the functionality that Google Maps provides, it’s time to plan how
we use the available features. As mentioned previously, we are going to allow users to add one
or more locations to each of their blog posts. In doing so, we must consider a number of
issues:

• We will use the geocoder to find the coordinates of each location being added by the
user. This means we must add a map to the blog manager section of the site and display
a marker when they enter an address.

• Since the found location might not be the exact point the user wants to display, we will
allow them to drag the marker to any location on the map that they please.

• We will save the coordinates and a description for each point in the database.

• For each post that has locations assigned to it, we must display the map on the post
details page, as well as including an information window showing the description for
every marker that is added.

Limitations of Google Maps
Although the terms and conditions of Google Maps state there is no limit to the number of
page views for each map, there is a limitation for the number of geocoder requests. Each IP
address has a limit of 15,000 geocoder requests per day. This means when the geocoder is used
from a user’s web browser, the request counts against their quota (not your server’s). Note,
however, that if you use the server-side geocoder, then each request counts against your
server’s IP address.

Theoretically, you could perform a geocoder request every time somebody viewed the
page with the address that was added; however, you could potentially go over the limit, mean-
ing the geocoder request would fail (we discuss the different error codes returned from the
geocoder shortly).

It is unnecessary and slower to perform the geocoder request for every view, especially
since the locations for a given blog post won’t change. Because of this, it is important to cache

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 473

9063Ch13CMP3 11/15/07 8:20 AM Page 473

the geocoder response for later use. Although we won’t be caching the entire response, we will
be caching the latitude and longitude for each point in the database.

Browser Compatibility
Google Maps is compatible with all modern graphical browsers. Obviously since it is com-
pletely reliant on JavaScript, users must have JavaScript enabled in their browser. In case a
user has a browser that does support JavaScript but doesn’t support Google Maps (perhaps
it’s an older browser or a browser with an incomplete JavaScript implementation), the
google.maps.BrowserIsCompatible() function is available to check whether the browser has
the capabilities Google Maps requires.

In addition to using google.maps.BrowserIsCompatible() to ensure Google Maps will
work, we should also provide a non-JavaScript solution for users viewing blog posts that have
location data. To handle this case, we will simply display a list of any saved locations that
belong to a post (using microformats) rather than displaying a map.

Because we have implemented similar solutions in previous chapters, I have chosen not
to include a non-JavaScript implementation in this chapter for the management of blog post
locations. However, I have included notes later about how to approach the issue.

Documentation and Resources
Since I cannot cover every part of the API in this chapter, it is very much worth your while to
use the documentation provided by Google if you want further information about using
Google Maps.

For an introduction to how Google Maps works (including many examples), it is worth
reading http://www.google.com/apis/maps/documentation/index.html.

For the complete API reference (that is, documentation of all classes, functions, and corre-
sponding arguments), visit http://www.google.com/apis/maps/documentation/reference.html.

■Note We will be using the Google Ajax API loader (http://code.google.com/apis/ajax/
documentation), meaning all classes belong in the google.maps.* namespace. This means dropping
the G from the beginning of each class name as it appears in the documentation and adding google.maps.
instead. For example, to create a new latitude/longitude point, we use the google.maps.LatLng class
rather than the documented GLatLng class.

Creating a Google Maps API Key
To use Google Maps on your own web site, you must create an API key. A unique API key must
be created for every domain on which you want to display maps (every subdomain must also
have its own key).

To create a key, you must visit http://www.google.com/apis/maps/signup.html and enter
your web site domain name. It is free to create a key (although you must agree to Google’s
terms and conditions, available at the sign-up URL).

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS474

9063Ch13CMP3 11/15/07 8:20 AM Page 474

■Note You will also need a Google account to create a key. If you have used any of Google’s other services
(such as Gmail), then you already have an account.

Once you’ve created the API key, add it to your application configuration file. We will add
it to the settings.ini file using the key google.maps.key. Listing 13-1 shows the line we add to
the end of settings.ini.

Listing 13-1. Storing the API Key in the Application Settings File (settings.ini)

google.maps.key = "your key here"

Adding Location Storage Capabilities
Before we actually begin integrating Google Maps in our application, we must do what we
have done for other functionality we’ve added to the application: create a new database table
and a DatabaseObject subclass to manage the database data.

Creating the Database Table
First let’s create a new database table. We will call this table blog_posts_locations, and a
single record will hold one location for one blog post. Each post can have any number of
locations associated with it.

Listing 13-2 shows the schema for blog_posts_locations, which can be found in the
schema-mysql.sql file.

Listing 13-2. The MySQL Database Table for Storing Blog Post Locations (schema-mysql.sql)

create table blog_posts_locations (
location_id serial not null,
post_id bigint unsigned not null,
longitude numeric(10, 6) not null,
latitude numeric(10, 6) not null,
description text not null,

primary key (location_id),
foreign key (post_id) references blog_posts (post_id)

) type = InnoDB;

As usual, the corresponding PostgreSQL schema can be found in the schema-pgsql.sql file.

Creating the DatabaseObject_BlogPostLocation Class
We must also create a new class that extends from DatabaseObject in order to manage the data
in this table. Listing 13-3 shows the DatabaseObject_BlogPostLocation class, which we store in
the BlogPostLocation.php file in ./include/DatabaseObject.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 475

9063Ch13CMP3 11/15/07 8:20 AM Page 475

There are no new concepts in this code, because parts of classes covered earlier in this
book have been combined to create this class. The key thing to notice is the inclusion of the
GetLocations() method, which allows us to fetch all of the locations for a single blog post
easily.

Listing 13-3. Managing Location Data in the blog_posts_locations Table (BlogPostLocation.php)

<?php
class DatabaseObject_BlogPostLocation extends DatabaseObject
{

public function __construct($db)
{

parent::__construct($db, 'blog_posts_locations', 'location_id');

$this->add('post_id');
$this->add('longitude');
$this->add('latitude');
$this->add('description');

}

public function loadForPost($post_id, $location_id)
{

$post_id = (int) $post_id;
$location_id = (int) $location_id;

if ($post_id <= 0 || $location_id <= 0)
return false;

$query = sprintf(
'select %s from %s where post_id = %d and location_id = %d',
join(', ', $this->getSelectFields()),
$this->_table,
$post_id,
$location_id

);

return $this->_load($query);
}

public static function GetLocations($db, $options = array())
{

// initialize the options
$defaults = array('post_id' => array());

foreach ($defaults as $k => $v)
$options[$k] = array_key_exists($k, $options) ? $options[$k] : $v;

$select = $db->select();

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS476

9063Ch13CMP3 11/15/07 8:20 AM Page 476

$select->from(array('l' => 'blog_posts_locations'), 'l.*');

// filter results on specified post ids (if any)
if (count($options['post_id']) > 0)

$select->where('l.post_id in (?)', $options['post_id']);

// fetch post data from database
$data = $db->fetchAll($select);

// turn data into array of DatabaseObject_BlogPostLocation objects
$locations = parent::BuildMultiple($db, __CLASS__, $data);

return $locations;
}

}
?>

Modifying Blog Posts to Load Locations
The next change we make is to the DatabaseObject_BlogPost class. We are going to make this
class automatically load all saved locations, just as it does with its profile and any assigned
images. Doing so makes it easy for us to include the saved locations when outputting a blog
post.

To do so, we call the GetLocations() function we added to DatabaseObject_BlogPostLocation
in the postLoad() function of BlogPost.php, as shown in Listing 13-4. Note that we can reuse the
$options array used for retrieving images.

Listing 13-4. Automatically Loading Saved Locations When Loading a Blog Post (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public $locations = array();

// ... other code

protected function postLoad()
{

$this->profile->setPostId($this->getId());
$this->profile->load();

$options = array(
'post_id' => $this->getId()

);
$this->images = DatabaseObject_BlogPostImage::GetImages($this->getDb(),

$options);

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 477

9063Ch13CMP3 11/15/07 8:20 AM Page 477

$this->locations = DatabaseObject_BlogPostLocation::GetLocations(
$this->getDb(),
$options

);
}

// ... other code
}

?>

Additionally, we must modify the GetPosts() function in this same class so locations
are loaded automatically when blog posts are (meaning if you wanted to you could easily
list locations on any of the blog post index pages). To do so, we make the changes shown in
Listing 13-5.

Listing 13-5. Loading Locations Automatically in GetPosts() (BlogPost.php)

<?php
class DatabaseObject_BlogPost extends DatabaseObject
{

// ... other code

public static function GetPosts($db, $options = array())
{

// ... other code

// load the locations for each post
$locations = DatabaseObject_BlogPostLocation::GetLocations($db,

$options);

foreach ($locations as $l)
$posts[$l->post_id]->locations[$l->getId()] = $l;

return $posts;
}

// ... other code
}

?>

We now have the necessary structures in place to load locations when blog posts are
loaded, thereby allowing us to easily display the locations (or add them to the map).

Creating Our First Map
The remainder of this chapter will be dedicated to extending the blog post manager to allow
users to add locations to their blog posts and then display them on their public blog accord-
ingly. We will add a new page to the blog post management area that displays a map while also

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS478

9063Ch13CMP3 11/15/07 8:20 AM Page 478

allowing the user to enter an address. We will then search on this address using the geocoder
and add the found location to the map. Once the location has been added, the user will be
able to move or remove the location from the map, or they will be able to add more locations.

All of this functionality will be implemented using a combination of the Google Maps API
as well as using Ajax to save location data in our application database. We will develop a new
class to manage the map as well as to send location data between the browser and our server.

To begin with, we’ll create the most basic map possible to fit within our application, and
then we’ll build on it as we continue through this chapter.

Creating a New Blog Manager Controller Action
The first thing to do is to create a new action in the BlogmanagerController.php file. This page
will simply be a placeholder to display the Google map and the form to add new locations.
Since all functionality will be implemented via Ajax, this action won’t need to do anything
other than loading the blog post that locations are being added to. We will create another
action handler shortly to deal with loading, saving, and removing locations from a blog post
via Ajax.

Listing 13-6 shows the code for locationsAction(), which we add to BlogmanagerController.
php in ./include/Controllers.

Listing 13-6. The New Controller Action for Managing Locations (BlogmanagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

// ... other code

public function locationsAction()
{

$request = $this->getRequest();

$post_id = (int) $request->getQuery('id');

$post = new DatabaseObject_BlogPost($this->db);
if (!$post->loadForUser($this->identity->user_id, $post_id))

$this->_redirect($this->getUrl());

$this->breadcrumbs->addStep(
'Preview Post: ' . $post->profile->title,
$this->getUrl('preview') . '?id=' . $post->getId()

);
$this->breadcrumbs->addStep('Manage Locations');

$this->view->post = $post;
}

}
?>

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 479

9063Ch13CMP3 11/15/07 8:20 AM Page 479

If you were to now view this controller action (assuming you passed in a valid blog post ID
in the URL of http://phpweb20/blogmanager/preview?id=PostId), an error would be displayed
since we haven’t created the corresponding template.

Listing 13-7 shows a template we can use for now until we create the map display code.
This file is written to locations.tpl in the ./templates/blogmanager directory.

Listing 13-7. A Starting Template for Managing Blog Post Locations (locations.tpl)

{include file='header.tpl' section='blogmanager' maps=true}

<div id="location-manager"></div>

{include file='footer.tpl'
leftcolumn='blogmanager/lib/left-column.tpl'}

We will use the #location-manager div to hold the map. Note that we include maps=true
when including header.tpl. We will modify that template shortly so the Google Maps API is
loaded when this variable is specified.

Linking to the locationsAction() Function
Before we complete the template for the newly created action handler, we are going to link to
it from the blog post preview page. Similarly to how tags and images are displayed on this
page, we are going to add a block above the blog content that lists all locations that belong to
the post. To cut down on page load time, we are not going to display the map on this page.
Rather, we will provide a link to locationsAction() (which in turn will display the map).

First we display a block in the preview.tpl file in ./templates/blogmanager that lists each
existing location along with a link, as shown in Listing 13-8. We add this between the image
management area and the blog post details.

Listing 13-8. Displaying Locations in the Blog Post Preview Page (preview.tpl)

<!-- // ... other code -->

<fieldset id="preview-locations">
<legend>Locations</legend>

{foreach from=$post->locations item=location}

{$location->description|escape}
{foreachelse}

No locations have been assigned to this post.
{/foreach}

<form method="get" action="{geturl action='locations'}">
<div>

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS480

9063Ch13CMP3 11/15/07 8:20 AM Page 480

<input type="hidden" name="id" value="{$post->getId()}" />
<input type="submit" value="Manage Locations" />

</div>
</form>

</fieldset>

<!-- // ... other code -->

Additionally, we must add some new styles to the styles.css file (in ./htdocs/css) in
order to make this block look like the tag and image management blocks, as shown in Listing
13-9.

Listing 13-9. Styling the Locations Summary on the Blog Post Preview Page (styles.css)

/* ... other code */

#preview-locations {
margin : 5px 0;
padding : 5px;

}

#preview-locations input, #preview-locations li {
font-size : 0.95em;

}

/* ... other code */

Displaying Your First Google Map
Now that the basic infrastructure in the blog manager is ready, we can begin our actual Google
Maps implementation. To begin, we will look at how to load the Google Maps API as well as
how to initialize and display the map. We will do this by creating a new JavaScript class in
which all calls to the API are contained.

Loading the Google Maps API
The first thing we are going to do is load the Google Maps JavaScript file. Like most of the
other scripts we have loaded in our application, we will load this in the <head> section of our
HTML document. To do so, we must load the file from header.tpl.

Just like we did with Lightbox in Chapter 11, we want to load the Google Maps API only
when we actually display a map. As such, we will add a conditional include for loading the
JavaScript file.

To load the API, you must load the script at http://www.google.com/jsapi?key=KEY, where
KEY is the Google Maps API you created earlier in this chapter and wrote to the application set-
tings file.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 481

9063Ch13CMP3 11/15/07 8:20 AM Page 481

■Note As mentioned previously, we are using the Google Ajax API loader, so if you have used Google Maps
in the past, this URL may be different from what you’re used to using. Using this loader allows you to easily
use different Google APIs in your code while needing to load only one JavaScript file.

Since we require the google.maps.key setting we added earlier in this chapter to load the
API, we require access to this value in the template. To make this available, we are going to
assign the application settings to the template by default. This is not something we have
needed in the past; however, it may be something you use if you want to output other applica-
tion settings directly.

To allow this, we must make a minor change to the CustomControllerAction class, which
is used to set up the default template data. Listing 13-10 shows the change we make to this
class, which can be found in the ./include/Controllers/CustomControllerAction.php file.

Listing 13-10. Assign the Application Settings to the Template (CustomControllerAction.php).

<?php
class CustomControllerAction extends Zend_Controller_Action
{

// ... other code

public function postDispatch()
{

// ... other code
$this->view->config = Zend_Registry::get('config');

}
}

?>

Now we can use the settings to load the Google Maps API. Listing 13-11 shows the code
we add to header.tpl to load the required JavaScript if the $maps variable is set to true.

Listing 13-11. Loading the Google Maps API If the $maps Variable Is True (header.tpl)

<!-- // ... other code -->
<head>

<!-- // ... other code -->

{if $maps}
<script type="text/javascript"

src="http://www.google.com/jsapi?key={$config->google->maps->key|escape}"></script>
{/if}

</head>
<body>

<!-- // ... other code -->

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS482

9063Ch13CMP3 11/15/07 8:20 AM Page 482

Beginning the BlogLocationManager JavaScript Class
We will now begin to write a new JavaScript class called BlogLocationManager, which will be
responsible for loading the map, initiating geocoder requests, and initiating Ajax requests to
load, save, update, and delete markers.

Because many features will be going into this class—bringing together the Google Maps
API with what you learned previously in this book—we will build the class step by step. Ini-
tially, we’ll display a hybrid map (combination of satellite and street map) with some basic
controls, centered on the Googleplex—home of the people who brought you Google Maps!

■Note You must specify a starting point when displaying a Google map, so we’ll simply use the coordi-
nates returned by a geocoder request of Google’s own address, as described earlier in this chapter. Once we
have our own locations to display, we’ll center the map on those locations instead, but for now we’ll use this
location so you can see how to actually use the API.

The first thing we must do in this class is to actually load the Google Maps API. Even
though I said we loaded it earlier, in fact all we did is load the generic Google API. This API is
used to load a number of different APIs offered by Google. To do so, we use the google.load()
method. The first argument is the name of the API we want to load (in this case it is maps),
while the second argument is the version of the API.

■Tip Being able to specify the version number allows you to run any version of the Google Maps API you
please. For example, if an upgrade was made by Google that broke an existing application of yours, you
could temporarily force your application to use the older version until you make your application compatible
with the newest version.

For our purposes, we simply specify 2 as the API version, which uses the latest version of
the Google Maps 2 code. As such, we need to call google.load('maps', '2') to load the
Google Maps API. We do this before declaring the class so the API is ready to be used when the
class is instantiated.

Listing 13-12 shows the initialization of the class. Inside the constructor (initialize()),
we observe the onload event on the page. The Google documentation recommends that you
display the map only after the page has completed loading. We will look at the loadMap()
function shortly. As we have done previously for classes we have written, we bind the call to
loadMap() to this so we have the correct context when inside the function.

Note that we store this code in a file called BlogLocationManager.class.js in the
./htdocs/js directory.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 483

9063Ch13CMP3 11/15/07 8:20 AM Page 483

Listing 13-12. Initializing the BlogLocationManager Class (BlogLocationManager.class.js)

google.load('maps', '2');

BlogLocationManager = Class.create();

BlogLocationManager.prototype = {

container : null, // DOM element in which map is shown
map : null, // The instance of Google Maps

initialize : function(container)
{

this.container = $(container);
Event.observe(window, 'load', this.loadMap.bind(this));

},

Next we implement the loadMap() method, which is responsible for creating the map, as
well as adding all of the controls and markers. We must perform some basic tasks related to
managing maps correctly in our browsers. The first thing to do is call the
google.maps.BrowserIsCompatible() function to ensure the user’s browser can display maps.
If it can’t, we simply return from the function, thereby not making any calls to the maps API.

The other thing we do—which is extremely important—is to observe the window unload
event. This means when the browser closes or the user navigates to a new page, we call the
unloadMap() function. This allows us to perform any map shutdown code required, which we
will soon see is important when we cover unloadMap().

Listing 13-13 shows the code we use to check for compatibility and to unload the maps
correctly.

Listing 13-13. Ensuring Browser Compatibility and Destructing the Map Correctly
(BlogLocationManager.class.js)

loadMap : function()
{

if (!google.maps.BrowserIsCompatible())
return;

Event.observe(window, 'unload', this.unloadMap.bind(this));

We are now free to create the map by instantiating the google.maps.Map2 class. This class
takes the container in which the map will be displayed as its first argument (additionally you
can specify further options to customize the map in the second argument; however, we will
not be using this).

Once the map has been created, we make the map display by setting the center of the
display using setCenter(). This function takes an instance of google.maps.LatLng as its first
argument, the zoom level as its second argument (with 20 being the maximum zoom level),
and the type of map as the third argument (optional). The API documentation states that this
method must be called before adding any controls or overlays to the map.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS484

9063Ch13CMP3 11/15/07 8:20 AM Page 484

To make a hybrid map appear, we use G_HYBRID_MAP as the map type. The default value for
the map type is G_NORMAL_MAP, while a satellite map can be specified using G_SATELLITE_MAP.
Note that you can also use the setMapType() method to change the map type.

Next we can add controls to the map using the addControl() method. By default, six
different controls are available to be added, although it is possible to create custom controls.
We will add MapTypeControl (allows you to switch between map, satellite, and hybrid),
LargeMapControl (a control with buttons to pan and zoom), ScaleControl (displays the map
scale), and OverviewMapControl (displays a mini-map in the corner at a lower zoom level). The
other available controls are SmallMapControl (the same as LargeMapControl but without zoom
slider) and SmallZoomControl (zoom buttons only).

Listing 13-14 shows the remainder of the loadMap() function, which creates the maps,
adds controls, and finally centers on the Googleplex.

Listing 13-14. Initializing the Map and Centering on the Googleplex
(BlogLocationManager.class.js)

this.map = new google.maps.Map2(this.container);
this.map.setCenter(new google.maps.LatLng(37.423111, -122.081783),

16, // zoom level
G_HYBRID_MAP); // map type

this.map.addControl(new google.maps.MapTypeControl());
this.map.addControl(new google.maps.ScaleControl());
this.map.addControl(new google.maps.LargeMapControl());
this.map.addControl(new google.maps.OverviewMapControl());

},

Finally, we must create the unloadMap() function, which is called when the window unload
event is fired. To unload the map, we simply need to make a call to google.maps.Unload(), a
Google API function that cleans up internal data structures to release memory. If this function
is not called, then browser memory leaks may occur (depending on the browser).

Listing 13-15 shows the code for unloadMap() as well as closing this initial version of
BlogLocationManager.

Listing 13-15. Correctly Unloading Google Maps (BlogLocationManager.class.js)

unloadMap : function()
{

google.maps.Unload();
}

};

Loading BlogLocationManager
To use this class, we must now load and instantiate on the locationsAction() template. We do
this by loading the class in the ./templates/header.tpl file, as well as instantiating the class in
the ./htdocs/js/scripts.js file.

Listing 13-16 shows the changes we make to header.tpl. This code assumes that if we’ve
chosen to load the maps (as we did by including maps=true when including header.tpl from

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 485

9063Ch13CMP3 11/15/07 8:20 AM Page 485

./templates/blogmanager/locations.tpl) and we’re in the blogmanager section, then we load
the BlogLocationManager class.

Listing 13-16. Loading the BlogLocationManager JavaScript Class (header.tpl)

<!-- // ... other code -->
{if $maps}

<script type="text/javascript"
src="http://www.google.com/jsapi?key={$config->google->maps->key|escape}"></script>

{if $section == 'blogmanager'}
<script type="text/javascript"

src="/js/BlogLocationManager.class.js"></script>
{/if}

{/if}
<!-- // ... other code -->

Next we modify the locations.tpl template in ./templates/blogmanager so that
BlogLocationManager is instantiated, as shown in Listing 13-17. Although this will create an
instance of the class as soon as the line is read by the web browser, the map will be loaded
only after the page has finished loading.

Listing 13-17. Instantiating the BlogLocationManager Class (locations.tpl)

{include file='header.tpl' section='blogmanager' maps=true}

<div id="location-manager"></div>

<script type="text/javascript">
new BlogLocationManager('location-manager');

</script>

{include file='footer.tpl'
leftcolumn='blogmanager/lib/left-column.tpl'}

As we just mentioned, we must specify a height for #location-manager. Google Maps will
automatically fill its entire container, so we must specify a height so the map is loaded cor-
rectly (note that divs are block elements so automatically have a 100 percent width by default).
Listing 13-18 shows the new selector we add to styles.css.

Listing 13-18. Setting the Height of the Map Container (styles.css)

#location-manager { height : 400px; }

If you now log in to the web application and try to manage locations for an existing blog
post, you should see a map on your page, similar to that in Figure 13-3.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS486

9063Ch13CMP3 11/15/07 8:20 AM Page 486

Figure 13-3. Our first map being displayed using Google Maps

Managing Locations on the Map
The next step is to extend the location management page and JavaScript class to allow users
to enter the address they want to add to their map. We will then perform a geocoder request to
find the coordinates for the entered address and add it to the map. Additionally, we will use
Ajax in the background to save the location to the database for the active blog post.

Once an address is displayed on the map, the user will have the option of dragging it to a
new location (which will result in the new coordinates being saved via Ajax) or deleting it alto-
gether from the map.

Handling Location Management Ajax Requests
We’ll first create a new action handler (once again in BlogmanagerController) to handle each
of the different possible Ajax requests, each of which will return JSON data to the requesting
script. The four different actions we are going to handle are as follows:

• Get. We use this action to return each of the locations saved in the database for the cur-
rent blog post. Initially there will be no locations to return.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 487

9063Ch13CMP3 11/15/07 8:20 AM Page 487

• Add. This is called to save a new location to the database. We will write a new form-
processing class to aid with this. Once a new location has successfully been saved to
the database, we will return its ID as well as the coordinates and description. When the
location data is returned, we will add it to the Google map.

• Delete. This action is called to remove a location from the database. We must also tell
the Google map to remove the location from its display in real time.

• Move. This action is used to update the coordinates of an existing location. It will be ini-
tiated after the user drags and drops a location to a new point on the map.

The New Location Form Processor
As mentioned earlier, to add new locations to the database, we must write a new form proces-
sor. This class is almost identical to other form-processing classes we have written throughout
this book, so it is just shown in Listing 13-19. We store it in a file called BlogPostLocation.php
in the ./include/FormProcessor directory.

Listing 13-19. Processing New Locations and Saving Them Accordingly (BlogPostLocation.php)

<?php
class FormProcessor_BlogPostLocation extends FormProcessor
{

protected $post;
public $location;

public function __construct(DatabaseObject_BlogPost $post)
{

parent::__construct();

$this->post = $post;

// set up the initial values for the new location
$this->location = new DatabaseObject_BlogPostLocation($post->getDb());
$this->location->post_id = $this->post->getId();

}

public function process(Zend_Controller_Request_Abstract $request)
{

$this->description = $this->sanitize($request->getPost('description'));
$this->longitude = $request->getPost('longitude');
$this->latitude = $request->getPost('latitude');

// if no errors have occurred, save the location
if (!$this->hasError()) {

$this->location->description = $this->description;
$this->location->longitude = $this->longitude;
$this->location->latitude = $this->latitude;
$this->location->save();

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS488

9063Ch13CMP3 11/15/07 8:20 AM Page 488

}

return !$this->hasError();
}

}
?>

Additionally, we must modify the DatabaseObject_BlogPostLocation class to ensure valid
coordinates are being set. Just as we did when saving new users to the database, we create the
__set() method in this class to preprocess these values.

Listing 13-20 shows the code we add to the BlogPostLocation.php file in the ./include/
DatabaseObject directory. All we are doing is formatting the latitude and longitude into a
number with six decimal points (the Google API documentation states that this precision cor-
responds to a resolution of 4 inches/11 centimeters).

Listing 13-20. Formatting the Latitude and Longitude (BlogPostLocation.php)

<?php
class DatabaseObject_BlogPostLocation extends DatabaseObject
{

// ... other code

public function __set($name, $value)
{

switch ($name) {
case 'latitude':
case 'longitude':

$value = sprintf('%01.6lf', $value);
break;

}

return parent::__set($name, $value);
}

// ... other code
}

?>

Creating the locationsManage Controller Action
Now that the form processor is complete, we can write the action handler used to manage
locations. As stated earlier, this must handle four different operations (get, add, delete, and
move).

First, we must initialize the function, shown in Listing 13-21. Since all of the Ajax requests
will specify the action and post_id parameters, we extract them from the request and then try
to load the corresponding blog post. Additionally, since we will be returning JSON data for
each action, we initialize the $ret array, which will hold the return data.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 489

9063Ch13CMP3 11/15/07 8:20 AM Page 489

Listing 13-21. Initializing the Action Handler and Loading the Blog Post
(BlogmanagerController.php)

<?php
class BlogmanagerController extends CustomControllerAction
{

// ... other code

public function locationsManageAction()
{

$request = $this->getRequest();

$action = $request->getPost('action');
$post_id = $request->getPost('post_id');

$ret = array('post_id' => 0);

$post = new DatabaseObject_BlogPost($this->db);

if ($post->loadForUser($this->identity->user_id, $post_id)) {
$ret['post_id'] = $post->getId();

Next we handle the first of the operations: get. When a blog post is loaded, its correspon-
ding locations are loaded automatically (remember we added that functionality to the
postLoad() function earlier this chapter).

To complete this action, we loop over these locations and add to the $ret array accord-
ingly, as shown in Listing 13-22. The data required to add the locations to the map include the
location ID, its coordinates, and its description.

Listing 13-22. Handling the get Action (BlogmanagerController.php)

switch ($action) {
case 'get':

$ret['locations'] = array();
foreach ($post->locations as $location) {

$ret['locations'][] = array(
'location_id' => $location->getId(),
'latitude' => $location->latitude,
'longitude' => $location->longitude,
'description' => $location->description

);
}

break;

Now we handle the add operation, which uses the form processor we just created. When
we extend the BlogLocationManager JavaScript class later in this chapter, we will actually ren-
der the new location on the map only once the form processor has completed correctly.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS490

9063Ch13CMP3 11/15/07 8:20 AM Page 490

Additionally, the point will be rendered only based on the returned JSON data. As such,
if there’s an error adding the point to the database, we don’t include it in the return data.
Listing 13-23 shows the code we use to process the new location.

Listing 13-23. Processing the Request to Add a New Location (BlogmanagerController.php)

case 'add':
$fp = new FormProcessor_BlogPostLocation($post);

if ($fp->process($request)) {
$ret['location_id'] = $fp->location->getId();
$ret['latitude'] = $fp->location->latitude;
$ret['longitude'] = $fp->location->longitude;
$ret['description'] = $fp->location->description;

}
else

$ret['location_id'] = 0;

break;

Next, we handle the delete operation. This is simply a matter of loading the location to
be deleted using the submitted location_id value and then calling the delete() method, as
shown in Listing 13-24. Additionally, we set the location_id value in the return data so we can
remove the point from the map once its deletion has been confirmed.

Listing 13-24. Deleting Locations from the Database (BlogManagerController.php)

case 'delete':
$location_id = $request->getPost('location_id');
$location = new DatabaseObject_BlogPostLocation($this->db);
if ($location->loadForPost($post->getId(), $location_id)) {

$ret['location_id'] = $location->getId();
$location->delete();

}

break;

Finally, we process the move operation. This works by loading the location and then updat-
ing the longitude and latitude. We return the location data from this method so we can replot
the point once the request has been confirmed. Typically this will result in no change, but if
for some reason the new location isn’t saved, then the point will be moved back to the location
that is saved in the database.

Listing 13-25 shows the code we use to update a single point in the database and close the
locationsmanageAction() function.

Listing 13-25. Processing the Move Location Request (BlogmanagerController.php)

case 'move':
$location_id = $request->getPost('location_id');

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 491

9063Ch13CMP3 11/15/07 8:20 AM Page 491

$location = new DatabaseObject_BlogPostLocation($this->db);
if ($location->loadForPost($post->getId(), $location_id)) {

$location->longitude = $request->getPost('longitude');
$location->latitude = $request->getPost('latitude');
$location->save();

$ret['location_id'] = $location->getId();
$ret['latitude'] = $location->latitude;
$ret['longitude'] = $location->longitude;
$ret['description'] = $location->description;

}
break;

}
}

$this->sendJson($ret);
}

}
?>

■Note The previous code is used purely to process Ajax requests for managing locations. Since you should
provide a non-JavaScript solution to all forms, try updating the previous function to handle normal form
requests. Most of the functionality you require is already in place, but you’ll need to use the Google geocoder
web service (located at http://maps.google.com/maps/geo) to determine the coordinates of the submit-
ted location (as you will see soon, the form element the address will be held in is called location). You can
find more information about this web service at http://www.google.com/apis/maps/documentation/
services.html#Geocoding_Direct. Additionally, once the previous function has finished processing, you
will need to return to the locationsAction() controller action rather than sending JSON data. You can check
whether you need to process the Ajax or the non-Ajax request by using $request->isXmlHttpRequest().

Creating the Address Lookup Form
Now that the PHP code to manage locations has been completed, it’s time to develop the
client-side part of the solution. First we must extend the locations.tpl template to display a
form to allow users to add new locations. We set this form up just like a normal HTML form,
which makes developing the non-Ajax version simpler (see the previous exercise). In the
BlogLocationManager JavaScript class, we will extract the URL and post ID from the form.

Note that we also change the instantiation of BlogLocationManager to include the form as
the first argument to the constructor in addition to the container in which the map is held. We
will update the class accordingly shortly.

Listing 13-26 shows the new version of locations.tpl, stored in ./templates/blogmanager.
The added or changed lines are highlighted accordingly.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS492

9063Ch13CMP3 11/15/07 8:20 AM Page 492

Listing 13-26. The Locations Management Template with Add Location Form (locations.tpl)

{include file='header.tpl' section='blogmanager' maps=true}

<form method="post"
action="{geturl action='locationsmanage'}"
id="location-add">

<div>
<input type="hidden" name="post_id" value="{$post->getId()}" />

Add a new location:
<input type="text" name="location" />
<input type="submit" value="Add Location" />

</div>
</form>

<div id="location-manager"></div>

<script type="text/javascript">
new BlogLocationManager('location-manager', 'location-add');

</script>

{include file='footer.tpl'
leftcolumn='blogmanager/lib/left-column.tpl'}

Extending the BlogLocationManager JavaScript Class
It is now time to build on the BlogLocationManager class we developed earlier in this chapter.
Because the changes we will be making are somewhat extensive, I will cover creation of the
class from start to finish rather than simply adding to the existing code.

All code developed in the following sections belongs in the BlogLocationManager.class.js
file in the ./htdocs/js directory.

Required Methods
Because the functionality we are implementing is somewhat complex, there are a large
number of methods we need to create. Here is a list of each of the methods we will create in
BlogLocationManager, including the arguments passed and a brief description of what the
method does:

• initialize(container, form): This sets up the class and links the add location form to
the map by observing the necessary events.

• loadMap(): This creates the actual map and displays it once the page has loaded.
Additionally, it will initiate the request to fetch all existing locations for the current
blog post.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 493

9063Ch13CMP3 11/15/07 8:20 AM Page 493

• zoomAndCenterMap(): This automatically zooms the map in as far as possible to display
all of the locations. This will be called when the map is initially loaded and also when a
new location is added. If there are no locations to work with, the map will show the
entire earth.

• addMarkerToMap(location_id, lat, lng, desc): This adds a marker to the map based
on the arguments. This includes creating an information window that displays a delete
button. If a marker with the given location_id already exists, then the existing marker
is removed, and the new one is added.

• removeMarkerFromMap(location_id): This removes a marker from the map based on the
first argument. If the marker doesn’t exist, then nothing happens.

• hasMarker(id): This checks whether a marker exists for the given location ID.

• loadLocationsSuccess(transport): This handles the response from the Ajax request to
retrieve locations (called when the map is first shown). This loops over each returned
location and adds it to the map with addMarkerToMap().

• onFormSubmit(e): This is the event handler for when the form to add a new location is
submitted. This will initiate a request to the geocoder.

• createPoint(locations): This handles the response from the geocoder by submitting
the first match back to the server using Ajax to save it to the database.

• createPointSuccess(transport): This handles the response from the Ajax request to
save the point. If the point was successfully saved, this will then call addMarkerToMap()
to display the new point on the map.

• dragComplete(marker): This is called after a marker has been dragged and dropped to a
new location. We initiate the Ajax request to save the new coordinates (the move action)
to the database.

• onDragCompleteSuccess(transport): This handles the response from the Ajax request to
save a dragged marker’s new location. This method expects to receive the latitude and
longitude of the point so it can be replotted. This means if for some reason the new
coordinates were not saved, the point will revert to the location saved in the database.

• onRemoveMarker(e): This is the event handler called when the remove location button is
clicked on a marker’s information window. This will initiate the Ajax request to delete
the location from the database.

• onRemoveMarkerSuccess(transport): This is called after the Ajax request to delete a loca-
tion from the database successfully returns. This function will remove the marker from
the map.

• unloadMap(): Just like in the previous version of this class, this is responsible for clean-
ing up the map. This involves calling the google.maps.Unload() API function.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS494

9063Ch13CMP3 11/15/07 8:20 AM Page 494

Class Initialization
To begin this class, we set up a number of variables used to hold the object properties, as well
as creating the initialize method. Listing 13-27 shows the code we use to create the class and
set up holders for the processor URL, the post ID, the map container, the map object, and the
geocoder object. Remember that we need to load the Google Maps API at the start.

This code belongs in the BlogLocationManager.class.js file in the ./htdocs/js directory.

Listing 13-27. Creating the Class Properties (BlogLocationManager.class.js)

google.load('maps', '2');

BlogLocationManager = Class.create();

BlogLocationManager.prototype = {

url : null,

post_id : null, // ID of the blog post being managed
container : null, // DOM element in which map is shown
map : null, // The instance of Google Maps
geocoder : null, // Used to look up addresses

Next we create a new hash to hold all the markers that are on the map. We could use an
array for this; however, we are indexing the hash by the location ID, allowing us to easily
access the marker for the corresponding database record. This makes it easier since we don’t
need to search for the item we’re looking for—we can simply use the location ID as the key to
retrieve the item. Also, note that we use the Prototype $H() method to extend the hash.

We also create a new instance of Prototype’s Template class to hold the layout for marker
information windows (see Chapter 5 for more information about the Template class). This
template will display the location description with a button to remove the location from the
database below it. When adding a new marker (with addMarkerToMap()), we will use this tem-
plate and attach the click event to the created button.

Listing 13-28 shows the code used to create the markers hash and information window
template.

Listing 13-28. Creating an Information Window Template and a Hash to Hold All Markers
(BlogLocationManager.class.js)

markers : $H({}), // holds all markers added to map

markerTemplate : new Template(
'<div>'

+ ' #{desc}
'
+ ' <input type="button" value="Remove Location" />'
+ '</div>'

),

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 495

9063Ch13CMP3 11/15/07 8:20 AM Page 495

Now we create the initialize() method (the class constructor). In this method, we
access the add location form to retrieve the URL of the locations manager action as well as the
post ID (using the Prototype $F() function, a shortcut to retrieve the value of a form element).

We then create the geocoder object using the google.maps.ClientGeocoder class. We could
instantiate this when a geocoder request is initiated; however, since it may be used multiple
times, it’s just as easy to create it once now.

Finally, we observe two events, as shown in Listing 13-29. First, the window onload event
is used since the map should be created and displayed only after the page has loaded. Second,
we observe the onsubmit event on the location add form.

Listing 13-29. The Class Constructor, Setting Up Class Properties and Observing Events
(BlogLocationManager.class.js)

initialize : function(container, form)
{

form = $(form);
this.url = form.action;
this.post_id = $F(form.post_id);
this.container = $(container);

this.geocoder = new google.maps.ClientGeocoder();

Event.observe(window, 'load', this.loadMap.bind(this));
form.observe('submit', this.onFormSubmit.bindAsEventListener(this));

},

The loadMap() Function
Next we create the loadMap() function, which is somewhat similar to the earlier version of
loadMap() we created, in that we check for browser compatibility and set up the window
onunload event. We can now call the new zoomAndCenterMap(), which we will look at next,
rather than hard-coding the map to center on the Googleplex.

After this we create the various map controls. The mini-map (google.maps.
OverviewMapControl class) is first assigned to the overviewMap variable. This allows us to
hide it immediately. This means the mini-map appears as a small arrow in the bottom-right
corner, which can subsequently be opened by the user if required.

Next we change the way zooming works in the map. First we allow the user to zoom the
map by double-clicking it (using the enableDoubleClickZoom() function), and then we enable
smooth zooming (using enableContinuousZoom()) so when the map zooms, it gradually moves
to the new zoom level.

Finally, we initiate the Ajax request to retrieve existing locations from the database. This
uses the get operation that we created in locationsManageAction(). We will shortly look at the
loadLocationsSuccess() callback the Ajax request uses. Listing 13-30 shows the full code for
the loadMap() function.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS496

9063Ch13CMP3 11/15/07 8:20 AM Page 496

Listing 13-30. Creating the Map and Loading Existing Locations (BlogLocationManager.class.js)

loadMap : function()
{

if (!google.maps.BrowserIsCompatible())
return;

Event.observe(window, 'unload', this.unloadMap.bind(this));

this.map = new google.maps.Map2(this.container);
this.zoomAndCenterMap();

this.map.addControl(new google.maps.MapTypeControl());
this.map.addControl(new google.maps.ScaleControl());
this.map.addControl(new google.maps.LargeMapControl());

var overviewMap = new google.maps.OverviewMapControl();
this.map.addControl(overviewMap);
overviewMap.hide(true);

this.map.enableDoubleClickZoom();
this.map.enableContinuousZoom();

var options = {
parameters : 'action=get&post_id=' + this.post_id,
onSuccess : this.loadLocationsSuccess.bind(this)

}

new Ajax.Request(this.url, options);
},

The zoomAndCenterMap() Function
As explained earlier, to initialize the map, we need to set its center; however, since each blog
post can have multiple points, we want to make all points visible. Rather than showing a map
of the entire world, we want to zoom the map as far in as possible (while still showing all
points), since that will make it easier to see each point.

To do this, we implement the zoomAndCenterMap() function, which determines the
centermost point of the map based on the locations that have been added. Additionally, it
determines the highest possible zoom level that can be used while still showing all of the
added locations.

This function works by first calculating a rectangle that surrounds all points (also called a
bounding box). The Google Maps API provides a class called google.maps.LatLngBounds, which
does exactly this. When instantiated, the bounding box is essentially empty since we haven’t
added any coordinates to it. To do so, we call the extend() function on the bounding box,
which automatically extends it based on the point passed to extend() (an instance of
google.maps.LatLng).

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 497

9063Ch13CMP3 11/15/07 8:20 AM Page 497

Next we check whether the bounding box is empty (like it will be if no locations have been
added to the blog post yet). In this instance, we simply hard-code coordinates and set a zoom
level of 1. This effectively displays a map of the whole earth. The specific coordinates don’t
really matter at this zoom level, so we just use 0,0.

In the case where the bounding box is not empty (that is, where there is at least one point
on the map), we call the getBoundsZoomLevel() function on the map object, passing the
bounding box as its only argument. This function returns the highest possible zoom level that
includes the entire box. Because we run the risk of points hiding behind map controls (since
they are in the corners), we decrease the zoom level by 1 as a small buffer.

Finally, we call setCenter() on the map object to reposition it at the center of the bound-
ing box (retrieved by calling getCenter()) and the zoom level we just calculated. Listing 13-31
shows the code for zoomAndCenterMap(). We make several calls to this function, because it is
a handy reset function to give the user a complete overview of the current state of the map
locations.

Listing 13-31. Automatically Recentering the Map Based on Added Locations
(BlogLocationManager.class.js)

zoomAndCenterMap : function()
{

var bounds = new google.maps.LatLngBounds();
this.markers.each(function(pair) {

bounds.extend(pair.value.getPoint());
});

if (bounds.isEmpty()) {
this.map.setCenter(new google.maps.LatLng(0, 0),

1,
G_HYBRID_MAP);

}
else {

var zoom = Math.max(1, this.map.getBoundsZoomLevel(bounds) - 1);
this.map.setCenter(bounds.getCenter(), zoom);

}
},

Adding Locations with addMarkerToMap()
Next we create addMarkerToMap(), which adds a new marker onto the map with a correspond-
ing information window (which will not be shown initially). The function is reasonably
complex, because we must observe the events necessary for dragging markers as well as for
removing them from the map.

Listing 13-32 shows the beginning of this function, in which we first remove any
existing point that already exists for id (the ID of the location database record). We will look at
removeMarkerFromMap() shortly.

Next we create the new marker by using the google.maps.Marker class. The first argument
is an instance of google.maps.LatLng (which we create using the lat and lng arguments),
while the second is a list of specific options for that marker. In our case, we set the title to be

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS498

9063Ch13CMP3 11/15/07 8:20 AM Page 498

description (this is used as the hover text for the marker), and we set the draggable property
to true, allowing the marker to be dragged.

Additionally, we assign the ID of the location to the location_id property. Although this
isn’t a standard property for markers in Google Maps, we need this value later when handling
a marker being dragged to a new location.

Listing 13-32. Creating the New Draggable Marker (BlogLocationManager.class.js)

addMarkerToMap : function(id, lat, lng, desc)
{

this.removeMarkerFromMap(id);

this.markers[id] = new google.maps.Marker(
new google.maps.LatLng(lat, lng),
{ 'title' : desc, draggable : true }

);
this.markers[id].location_id = id;

Next we set up the dragging options. Because of the way the Google Maps API handles the
drag events, we can’t use the normal way of binding functions to this like we have in our other
Prototype-based classes.

Inside the handler function, this refers to the marker being dragged. Since we want to call
the dragComplete() method of our BlogLocationManager class, we need a different way to refer
to the BlogLocationManager instance. To do this, we create a temporary variable called that,
meaning that inside the dragend handler function, this refers to the marker that was dragged,
while that refers to the BlogLocationManager instance.

■Note If the Google Maps API passed the dragged marker as an argument to the event handler, then this
workaround would not be required.

Once the marker has been created, we can add it to the map, as shown in Listing 13-33.

Listing 13-33. Setting Up Marker Dragging and Then Adding It to the Map
(BlogLocationManager.class.js)

var that = this;
google.maps.Event.addListener(this.markers[id], 'dragend', function() {

that.dragComplete(this);
});
google.maps.Event.addListener(this.markers[id], 'dragstart', function() {

this.closeInfoWindow();
});

this.map.addOverlay(this.markers[id]);

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 499

9063Ch13CMP3 11/15/07 8:20 AM Page 499

Next we must create the information window, which will use the template created in
Listing 13-27 for its content. To evaluate the template, we must pass the list of variables as
the second argument to evaluate(). In the template we created earlier, we use only the desc
variable; however, you might want to display any of the other variables in it also.

Once the HTML has been created, we need to attach the click event to the close button.
To do this, the button must exist in the DOM and not just in an HTML string. We use the Scrip-
taculous Builder class to create the node in the DOM. We can then extract the button from the
returned DOM so we can observe the click event on it.

Finally, we attach the created node to the marker using bindInfoWindow(). If we wanted to
create the window and display it immediately, we would call showInfoWindow() instead. The
other advantage of using bindInfoWindow() is that it automatically sets up the marker to open
the information window when clicked (if we used showInfoWindow(), we would also need to
then observe the onclick event to reopen it after it is closed).

Listing 13-34 shows the code we use to build the HTML node and attach the onclick
event to the close button. We will look at the onRemoveMarker() function called when the but-
ton is clicked shortly.

Listing 13-34. Building the DOM Node for the Information Window and Adding It to the Marker
(BlogLocationManager.class.js)

var html = this.markerTemplate.evaluate({
'location_id' : id,
'lat' : lat,
'lng' : lng,
'desc' : desc

});

var node = Builder.build(html);
var button = node.getElementsBySelector('input')[0];

button.setAttribute('location_id', id);
button.observe('click', this.onRemoveMarker.bindAsEventListener(this));

this.markers[id].bindInfoWindow(node);

return this.markers[id];
},

Removing Markers Using removeMarkerFromMap()
Next we add the ability to remove markers from the map. This is not the same as deleting a
location from a blog post (we do that using the delete button’s click event handler, which in
turn will call removeMarkerFromMap()).

Rather, this method is used to make the marker no longer appear on the map as well as
unsetting the corresponding entry in the markers hash. It uses the hasMarker() method to see
that the marker actually exists. We will implement hasMarker() next.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS500

9063Ch13CMP3 11/15/07 8:20 AM Page 500

Listing 13-35 shows the code for removeMarkerFromMap(). After ensuring the marker exists,
it calls the removeOverlay() API method on the google.maps.Map2 object. After that, we use the
Prototype remove() method to remove the element from the markers hash.

■Caution In Prototype 1.6.0, the remove() method on the Hash object will be replaced by the unset()
method.

Listing 13-35. Removing a Marker from the Map (BlogLocationManager.class.js)

removeMarkerFromMap : function(location_id)
{

if (!this.hasMarker(location_id))
return;

this.map.removeOverlay(this.markers[location_id]);
this.markers.remove(location_id);

},

Checking to See Whether a Marker Exists with hasMarker()
To determine whether a marker exists on the map, we implement the hasMarker() method.
This works by searching the array keys for the provided location ID. The indexOf() JavaScript
function returns -1 if the argument isn’t found; otherwise, it returns the array index of the
element.

Listing 13-36 shows the code for hasMarker(). This method is used by the
removeMarkerFromMap() and onDragCompleteSuccess().

Listing 13-36. Checking to See Whether a Marker Exists (BlogLocationManager.class.js)

hasMarker : function(location_id)
{

var location_ids = this.markers.keys();

return location_ids.indexOf(location_id) >= 0;
},

Displaying Saved Locations with loadLocationsSuccess()
Next we handle the response from the earlier Ajax request to fetch existing blog post locations.
You have seen several times earlier in this book how to handle returned JSON data. After
decoding the data, we first ensure the response matches the current blog post and that the
locations array is set.

Next we loop over each of the locations and call addMarkerToMap() accordingly. Once this
has completed, we call zoomAndCenterMap() so the user can see all of the markers, as shown in
Listing 13-37.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 501

9063Ch13CMP3 11/15/07 8:20 AM Page 501

Listing 13-37. Handling the Ajax Response for Existing Locations (BlogLocationManager.class.js)

loadLocationsSuccess : function(transport)
{

var json = transport.responseText.evalJSON(true);

if (json.locations == null)
return;

json.locations.each(function(location) {
this.addMarkerToMap(

location.location_id,
location.latitude,
location.longitude,
location.description

);
}.bind(this));

this.zoomAndCenterMap();
},

Handling the Add Location Form Submission
Next we implement the onFormSubmit() function, which is called when the user submits the
add location form. First we cancel the browser submitting the form by calling Event.stop()
since we will be using the client-side geocoder to look up the entered location.

Then we retrieve the value of the added location. If the location isn’t an empty string, we
initiate a geocoder request by calling getLocations(). We use the createPoint() function as
the callback when the request completes, as shown in Listing 13-38.

Listing 13-38. Initiating a Geocoder Request When the Add Location Form Is Submitted
(BlogLocationManager.class.js)

onFormSubmit : function(e)
{

Event.stop(e);

var form = Event.element(e);
var address = $F(form.location).strip();

if (address.length == 0)
return;

this.geocoder.getLocations(address, this.createPoint.bind(this));
},

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS502

9063Ch13CMP3 11/15/07 8:20 AM Page 502

Handling the Geocoder Response with createPoint()
We now handle the response from the geocoder’s getLocations() function. This returns JSON
data containing details about the geocoder request, such as the request status and all the
matching locations.

■Note The data returned from this function is structured similarly to if you use the geocoder web service
mentioned earlier this chapter. You can find an example of the data returned at http://www.google.com/
apis/maps/documentation/services.html#Geocoding_Direct.

The first thing we do now is to check the status of the request. The data is held in a vari-
able called locations (the name of the function’s only argument), so the status value can be
found in locations.Status.code. Listing 13-39 shows the different status codes. If at least one
location is successfully found, the status value will equal G_GEO_SUCCESS.

Just to demonstrate how to handle these errors, I’ve included a switch statement that
handles and describes each of the different errors that can occur. The error message is then
written to the status box at the top of the column on the right.

Listing 13-39 shows the code we use to handle the different status codes that are returned.
Note that if the request isn’t successful, we simply return from the function after writing the
status message, since the code following this is only for requests that have at least one
returned location.

Listing 13-39. Handling the Different Status Codes That Can Be Returned

createPoint : function(locations)
{

if (locations.Status.code != G_GEO_SUCCESS) {
// something went wrong:
var msg = '';
switch (locations.Status.code) {

case G_GEO_BAD_REQUEST:
msg = 'Unable to parse request';
break;

case G_GEO_MISSING_QUERY:
msg = 'Query not specified';
break;

case G_GEO_UNKNOWN_ADDRESS:
msg = 'Unable to find address';
break;

case G_GEO_UNAVAILABLE_ADDRESS:
msg = 'Forbidden address';
break;

case G_GEO_BAD_KEY:
msg = 'Invalid API key';
break;

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 503

9063Ch13CMP3 11/15/07 8:20 AM Page 503

case G_GEO_TOO_MANY_QUERIES:
msg = 'Too many geocoder queries';
break;

case G_GEO_SERVER_ERROR:
default:

msg = 'Unknown server error occurred';
}
message_write(msg);
return;

}

Next we extract the first location from the list of returned locations, held in the locations.
Placemark array. To simplify matters, we just ignore any subsequent locations that are returned.
You may want to handle this differently (such as adding all of the locations and letting the user
then delete the ones they don’t want).

■Note Each returned place mark has an accuracy field associated with it. This lets you easily determine
the type of location that is returned. For example, an accuracy value of 8 means “address level accuracy,”
while 1 means “country level accuracy.” You can find the different accuracy levels at http://www.google.
com/apis/maps/documentation/reference.html#GGeoAddressAccuracy.

We’ll send the first location (placemark) found in the geocoder data back to the server
using Ajax. This is so we can save it to the database for the current blog post.

The response for each placemark includes a formatted address for the found placemark,
so even if the user doesn’t include correct punctuation or capitalization of their location, the
geocoder will return a nicely formatted string (available in the address field).

The coordinates of the location can be retrieved from the placemark.Point.coordinates
array. The first element is the longitude, while the second is the latitude. A third element
(which we do not use) indicates the elevation.

Listing 13-40 shows the remainder of the createPoint() function, which extracts the place
mark and initiates the Ajax request.

Listing 13-40. Submitting the New Location via Ajax (BlogLocationManager.class.js)

var placemark = locations.Placemark[0];

var options = {
parameters : 'action=add'

+ '&post_id=' + this.post_id
+ '&description=' + escape(placemark.address)
+ '&latitude=' + placemark.Point.coordinates[1]
+ '&longitude=' + placemark.Point.coordinates[0],

onSuccess : this.createPointSuccess.bind(this)
}

new Ajax.Request(this.url, options);
},

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS504

9063Ch13CMP3 11/15/07 8:20 AM Page 504

Handling Successful Location Creation
Next we create the createPointSuccess() function, which is called after the response from the
Ajax request in Listing 13-38 is returned. We first decode the JSON data from the response, and
then we ensure the data corresponds to the current blog post.

We next create a new marker based on the returned data, which automatically displays
the marker on the map. Since there is no function call available to open an information win-
dow after it has been bound to a marker, we simply trigger the click event on the marker,
resulting in the information window opening.

Finally, we center and zoom the map so the new location is visible, as shown in Listing 13-41.

Listing 13-41. Handling the Response from Creating a New Location
(BlogLocationManager.class.js)

createPointSuccess : function(transport)
{

var json = transport.responseText.evalJSON(true);

if (json.location_id == 0) {
message_write('Error adding location to blog post');
return;

}

marker = this.addMarkerToMap(
json.location_id,
json.latitude,
json.longitude,
json.description

);

google.maps.Event.trigger(marker, 'click');

this.zoomAndCenterMap();
},

Saving New Coordinates for Dragged Locations
When creating new markers in addMarkerToMap(), we told the dragend event to call the drag-
Complete() function. We receive the dragged marker as the only argument to this function.
Using the location_id property we added to the marker when creating it, we can determine to
which database record the marker corresponds. We then retrieve the new point coordinates
and trigger the Ajax request to save them, as shown in Listing 13-42.

Listing 13-42. Saving the New Coordinates for a Dragged Marker (BlogLocationManager.class.js)

dragComplete : function(marker)
{

var point = marker.getPoint();
var options = {

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 505

9063Ch13CMP3 11/15/07 8:20 AM Page 505

parameters : 'action=move'
+ '&post_id=' + this.post_id
+ '&location_id=' + marker.location_id
+ '&latitude=' + point.lat()
+ '&longitude=' + point.lng(),

onSuccess : this.onDragCompleteSuccess.bind(this)
}

new Ajax.Request(this.url, options);
},

Handling the Response from Saving a Dragged Location
Next we handle the response from sending the Ajax request to save a dragged marker’s
new location. When a marker’s new location is saved in locationsManageAction() (in
BlogmanagerController), the location is returned via JSON.

We check the returned location_id value to ensure the marker exists on the map, and if
so, we readd it to the map using the given coordinates. If the new coordinates weren’t saved,
then the old ones will be returned, therefore replotting the location in its previous location.
Finally, we trigger the click event on the marker so the information window opens.

Listing 13-43 shows the code for the onDragCompleteSuccess() function.

Listing 13-43. Confirming the Coordinates of the Saved Location (BlogLocationManager.class.js)

onDragCompleteSuccess : function(transport)
{

var json = transport.responseText.evalJSON(true);

if (json.location_id && this.hasMarker(json.location_id)) {
var point = new google.maps.LatLng(json.latitude, json.longitude);

var marker = this.addMarkerToMap(
json.location_id,
json.latitude,
json.longitude,
json.description

);
google.maps.Event.trigger(marker, 'click');

}
},

Removing Markers from the Map
When the remove marker button is clicked in an information window, the onRemoveMarker()
function is called. The first thing we need to do is to determine which button was clicked.
We can then determine which database record the button corresponds to by retrieving the
location_id attribute.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS506

9063Ch13CMP3 11/15/07 8:20 AM Page 506

Next we initiate the Ajax request to delete the record from the database. We use the
onRemoveMarkerSuccess() function that we will look at shortly to handle the response from
this Ajax request. The actual marker is removed only once it has been confirmed that the
record has been deleted from the database.

Listing 13-44 shows the code for the onRemoveMarker() function, called when the remove
button is clicked form a marker’s information window.

Listing 13-44. Removing a Marker from the Map and Database (BlogLocationManager.class.js)

onRemoveMarker : function(e)
{

var button = Event.element(e);
var location_id = button.getAttribute('location_id');

var options = {
parameters : 'action=delete'

+ '&post_id=' + this.post_id
+ '&location_id=' + location_id,

onSuccess : this.onRemoveMarkerSuccess.bind(this)
};

new Ajax.Request(this.url, options);
},

Confirming the Deletion of the Marker
After the marker has been deleted, the onRemoveMarkerSuccess() method will be called to
handle the response. It is only when this method is called that the marker is actually removed
from the map. We do this using the removeMarkerFromMap() method, as shown in Listing 13-45.

Listing 13-45. Handling the Response from the Location Deletion Ajax Request
(BlogLocationManager.class.js)

onRemoveMarkerSuccess : function(transport)
{

var json = transport.responseText.evalJSON(true);

if (json.location_id)
this.removeMarkerFromMap(json.location_id);

},

Unloading the Map
As we saw earlier this chapter, we need to unload the map after the user browses away from the
page (or if they close their browser). To achieve this, we simply called the google.maps.Unload()
function, as shown in Listing 13-46, thereby completing the BlogLocationManager class.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 507

9063Ch13CMP3 11/15/07 8:20 AM Page 507

Listing 13-46. Unloading the Map with GUnload() (BlogLocationManager.class.js)

unloadMap : function()
{

google.maps.Unload();
}

};

Using BlogLocationManager
Once you have successfully updated your BlogLocationManager class with the code just cov-
ered, you will be able to easily add a new location simply by entering its address. For example,
if you created a blog post about an upcoming event at Microsoft, you could enter Microsoft’s
address (1 Microsoft Way, Redmond), and your map would be updated accordingly, as shown
in Figure 13-4. Note also the image shows the background HTTP request that occurs to save
the location to the database.

Additionally, if the point wasn’t sitting on the map exactly where you wanted it, you can
click and drag it to a new location, which will automatically trigger a new Ajax request to save
the updated coordinates when the marker is released.

Figure 13-4. Adding Microsoft’s address to our map

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS508

9063Ch13CMP3 11/15/07 8:20 AM Page 508

■Note You can try to extend the capabilities of the location editor by allowing users to change the descrip-
tion. The simplest way would be to create a new switch case in the locationsManageAction() function
that retrieved the new description from the request and updated the corresponding location (remember to
pass the post ID and location ID in the Ajax request). You would then modify the information window to allow
editing of the description and initiate the Ajax request when the user confirms the new description. Scriptac-
ulous provides a class called Ajax.InPlaceEditor that allows users to double-click an HTML element,
which then replaces the element with a text input or textarea field. When the user clicks away from the field,
an Ajax request is initiated to save the new value. For more details on this class, you can view http://
wiki.script.aculo.us/scriptaculous/show/Ajax.InPlaceEditor.

Displaying the Map on Users’ Public Blogs
The final thing we need to do in this chapter is to display added locations on the blog post
details page. The functionality required to achieve this is only a subset of that required to
manage locations, because we simply add each location to the map and then center the map
on those locations.

In the following sections, we’ll create a new JavaScript class (called BlogLocations) to help
us display the locations, and then we’ll update the blog post display page to use the new class.
Note that this class will only ever be used if there is at least one location on a blog post. If a
post has no locations, then we don’t display the map at all.

We will use the geo microformat when outputting locations to the map. The BlogLocations
JavaScript class will search the page for all locations using this microformat and then add each
found location to the map.

Outputting Locations Using the Geo Microformat
The geo microformat is a subset of the hCard microformat that we looked at in Chapter 10,
used to include longitude and latitude coordinates on a page. We’ll use this microformat to
output any locations added to a blog post when the live post is viewed.

There are several way to mark up this data using geo, each of which uses the class name
geo for the root element. The first way allows the inclusion of the coordinates only:

<div class="geo">
37.423111,
-122.081783

</div>

Alternatively, you can specify the coordinates using the <abbr> HTML tag and using the
title tag as the machine-readable coordinate and the value of the element a human-readable
format, like this:

<div class="geo">
<abbr class="latitude" title="37.423111">+37° 25' 23.20"</abbr>,
<abbr class="longitude" title="-122.081783">-122° 4' 54.42"</abbr>

</div>

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 509

9063Ch13CMP3 11/15/07 8:20 AM Page 509

The only problem with using either of these methods is that it doesn’t allow us to include
the location name with the coordinates. To cater for this, the geo microformat also allows the
following format:

<abbr title="37.423111;-122.081783" class="geo">
1600 Amphitheatre Pkwy, Mountain View, California

</abbr>

In this example, the value of the <abbr> is a descriptive version of the location, while the
latitude and longitude are specified as the title attribute.

■Tip For more information about the geo microformat, read either http://microformats.org/wiki/
geo or http://microformatique.com/?page_id=132.

We can now modify the blog post output page so locations are displayed on the page
using this format. Listing 13-47 shows the code we add to the view.tpl template in
./templates/user.

Listing 13-47. Outputting Each Location Using the Geo Microformat (view.tpl)

{include file='header.tpl' lightbox=true}

<!-- // ... other code -->

{if $post->locations|@count > 0}
<div id="post-locations">

<h2>Locations</h2>

{foreach from=$post->locations item=location}

<abbr class="geo"

title="{$location->latitude};{$location->longitude}">

{$location->description|escape}
</abbr>

{/foreach}

</div>

{/if}

<!-- // ... other code -->

{include file='footer.tpl'
leftcolumn='user/lib/left-column.tpl'
rightcolumn='user/lib/right-column.tpl'}

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS510

9063Ch13CMP3 11/15/07 8:20 AM Page 510

In this code each of the locations is already available in the $post->locations variable,
since we modified DatabaseObject_BlogPost earlier this chapter to automatically load them.
We loop over this array and output any found locations in an unordered list. If there are no
locations, we don’t output anything.

If you now view a blog post that has at least one location assigned to it, you will see these
locations listed on the page beneath the blog post details. Additionally, the Firefox Operator
plug-in will find this location, as shown in Figure 13-5.

Figure 13-5. Locations are automatically found by Operator.

Creating the BlogLocations Class
We’ll now write a JavaScript class to load the Google map on the blog post detail page. This
class will search for locations we just added using the geo microformat and then add them to
the map. We will call this class BlogLocations and store it in a file called
BlogLocations.class.js in the ./htdocs/js directory.

Once again, we must initialize the class by loading the Google Maps API, setting up the
map container, and observing the window onload event. Instead of passing the actual element
in which the map will be shown to the constructor, we will pass the #post-locations element
added in Listing 13-47. The map container will be a div inside #post-locations with a class
name of .map. We will add this to the template shortly.

Listing 13-48 shows the code we use to initialize the BlogLocations class. Note that the
template we use to display the information window is simplified because we don’t need to
display the remove location button. Once again, you may want to change this layout.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 511

9063Ch13CMP3 11/15/07 8:20 AM Page 511

Listing 13-48. Initializing the BlogLocations Class (BlogLocations.class.js)

google.load('maps', '2');

BlogLocations = Class.create();

BlogLocations.prototype = {

container : null, // DOM element in that holds locations
mapContainer : null, // DOM element that holds the map
map : null, // The instance of Google Maps

markers : $A([]), // holds all markers added to map
markerTemplate : new Template('<div>#{desc}</div>'),

initialize : function(container)
{

this.container = $(container);

if (!this.container)
return;

this.mapContainer = this.container.down('.map');

if (!this.mapContainer)
return;

Event.observe(window, 'load', this.loadMap.bind(this));
},

Next we implement the loadMap() function, which is similar to the BlogLocationsManager
class we implemented earlier this chapter in that we create the map and then set up various
controls.

Listing 13-49 shows the code for loadMap(), which loops over all the elements that are
found with the .geo class. Since the latitude and longitude are in the same string, we must
split the string to extract them.

The reason we call zoomAndCenterMap() twice is because the map must be centered before
adding any controls or overlays (according to the API documentation), and we want to center
it on any found locations once they have been added.

Listing 13-49. Displaying the Map and Adding the Locations (BlogLocations.class.js)

loadMap : function()
{

if (!google.maps.BrowserIsCompatible())
return;

Event.observe(window, 'unload', this.unloadMap.bind(this));

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS512

9063Ch13CMP3 11/15/07 8:20 AM Page 512

this.map = new google.maps.Map2(this.container.down('.map'));
this.zoomAndCenterMap();

this.map.addControl(new google.maps.MapTypeControl());
this.map.addControl(new google.maps.ScaleControl());
this.map.addControl(new google.maps.LargeMapControl());

this.map.enableDoubleClickZoom();
this.map.enableContinuousZoom();

this.container.getElementsBySelector('.geo').each(function(geo) {
var coords = geo.title.split(';');
this.addMarkerToMap(

coords[0],
coords[1],
geo.innerHTML

);
}.bind(this));

this.zoomAndCenterMap();
},

Next we look at the zoomAndCenterMap() function, as shown in Listing 13-50. The algorithm
for determining the viewport coordinates and zoom level is identical to BlogLocationsManager.

Listing 13-50. Zooming and Centering the Map Based on the Added Locations
(BlogLocations.class.js)

zoomAndCenterMap : function()
{

if (this.markers.size() == 0) {
this.map.setCenter(new google.maps.LatLng(0, 0),

1,
G_HYBRID_MAP);

return;
}

var bounds = new google.maps.LatLngBounds();
this.markers.each(function(marker) {

bounds.extend(marker.getPoint());
});

var zoom = Math.max(1, this.map.getBoundsZoomLevel(bounds) - 1);
this.map.setCenter(bounds.getCenter(), zoom, G_HYBRID_MAP);

},

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 513

9063Ch13CMP3 11/15/07 8:20 AM Page 513

Finally we look at the addMarkerToMap() function, as shown in Listing 13-51. This method
creates the marker and corresponding information window for the arguments that are passed
in, before being added to the map and being written to the markers array. The marker is stored
in the markers array since the zoomAndCenterMap() needs to know all of the markers in order to
work properly.

Listing 13-51. Creating a New Marker and Adding It to the Map (BlogLocations.class.js)

addMarkerToMap : function(lat, lng, desc)
{

var marker = new google.maps.Marker(
new google.maps.LatLng(lat, lng),
{ 'title' : desc }

);

var html = this.markerTemplate.evaluate({
'lat' : lat,
'lng' : lng,
'desc' : desc

});

marker.bindInfoWindowHtml(html);

this.map.addOverlay(marker);
this.markers.push(marker);

},

unloadMap : function()
{

google.maps.Unload();
}

};

Updating the Blog Post Display Template
Now that the BlogLocations class is complete, we must update the blog post display template
to use the class.

As mentioned, we are displaying the map on the page only if there is at least one location
to display. Therefore, we must conditionally set the maps argument to true when including the
header.tpl template. We can do this by calling $post->locations|@count, since nonzero values
evaluate to true (in other words, if there are no locations, then the maps argument will be set to
0, which is effectively false).

Listing 13-52 shows the code we add to view.tpl in the ./templates/user directory to
display the map.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS514

9063Ch13CMP3 11/15/07 8:20 AM Page 514

Listing 13-52. Displaying the Map on the Blog Post Details Page (view.tpl)

{include file='header.tpl' lightbox=true maps=$post->locations|@count}

<!-- // ... other code -->

{if $post->locations|@count > 0}
<div id="post-locations">

<h2>Locations</h2>

{foreach from=$post->locations item=location}

<abbr class="geo"

title="{$location->latitude};{$location->longitude}">

{$location->description|escape}
</abbr>

{/foreach}

<div class="map"></div>
</div>

<script type="text/javascript" src="/js/BlogLocations.class.js"></script>
<script type="text/javascript">

new BlogLocations('post-locations');
</script>

{/if}

<!-- // ... other code -->

{include file='footer.tpl'
leftcolumn='user/lib/left-column.tpl'
rightcolumn='user/lib/right-column.tpl'}

We must also update the styles.css file (in ./htdocs/css) to set a height for the maps
container. Additionally, since we don’t want any images to overlap the map (since they are
floated right), we add the clear : both style, as shown in Listing 13-53.

Listing 13-53. Styling the Map Container (styles.css)

#post-locations .map {
height : 400px;
clear : both;

}

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 515

9063Ch13CMP3 11/15/07 8:20 AM Page 515

Once you have updated this template and style sheet accordingly, your blog posts will be
displayed with a map of any assigned locations, similar to that of Figure 13-6. This shows the
location of Microsoft like we added in the previous section.

Figure 13-6. Displaying all of a blog post’s locations

Summary
So there you have it—we have now added some fairly advanced mapping functionality to our
application using Google Maps. What we did here really only scratched the surface of what can
be done using the Google Maps API, but you can see how powerful it is.

Although Google probably doesn’t recommend it, the Google geocoder on its own is a
powerful tool that can be used in a wide range of applications (especially when you consider
Google offers a non-JavaScript version of the geocoder that you can use on the server side).

To recap, the key concepts and features we covered in this chapter were as follows:

• Using a third-party service in conjunction with our own code to provide advanced
functionality to users that we don’t have the resources to provide ourselves. Be aware,
though, that most third-party services are typically server-side based (as opposed to
JavaScript).

• Creating structured classes with the help of Prototype to help manage a large number
of Ajax operations. Since most Ajax requests will typically result in at least two functions
(one to initiate the request and one to handle the response), the code can quickly grow
and become unmanageable if not planned initially.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS516

9063Ch13CMP3 11/15/07 8:20 AM Page 516

• Displaying and customizing maps using the Google Maps API. There are many different
ways to customize maps, such as choosing which controls are displayed as well as for
rendering markers and information windows. We didn’t even touch on drawing poly-
lines or polygons, but some powerful effects can be achieved by combining all of these
features.

• Querying address and location data using the Google Maps geocoder. With a JavaScript
interface as well as a web service (that returns XML or JSON data), it is easy to request
location data regardless of whether the end-user has JavaScript enabled in their
browser.

• Using the geo microformat to output locations in both a human- and machine-readable
format and then reading this microformatted data using JavaScript.

This brings us now to the final chapter of the book. In Chapter 14 we will look at some of the
issues involved in the deployment and maintenance of web applications, including tying up
some of the loose ends that have been created thus far in the code we have developed.

CHAPTER 13 ■ INTEGRATING GOOGLE MAPS 517

9063Ch13CMP3 11/15/07 8:20 AM Page 517

9063Ch13CMP3 11/15/07 8:20 AM Page 518

Deployment and Maintenance

So far in this book we have developed a somewhat complete web application. Although
features can be added to an application, there is an old saying that the last 10 percent of the
development of an application takes 90 percent of the time.

What this typically refers to are all the little details in making the application something
that can be used reliably by many people. In this chapter, I will cover some of the details that
this refers to, such as handling errors and notifying the user accordingly that something went
wrong, deploying the application on a production server, using application logs, and backing
up the application.

Application Logging
In Chapter 2 we set up logging capabilities for our web application, meaning we can record
when various events occur. Although the only events we actually recorded were related to user
logins and blog indexing, the idea was that we put a foundation in place that can easily be
used anywhere in the application whenever required.

Having said that, a logging system isn’t much use if there’s no way to use the log. In the
following sections, I will talk more about the logging system and show how it can be extended
and used.

The reason for looking at the logging system first in this chapter is that the changes we
will make later in this chapter for handling site errors rely partly on the features added here.

E-mailing Critical Errors to an Administrator
Zend_Log provides the ability to have multiple writers for a single logger. A writer is a class that
is used to output log messages, be it to a file (as we have done so far), a database, or an e-mail.

The Zend Framework doesn’t ship with a writer that can e-mail log messages, but we can
easily write our own by extending the Zend_Log_Writer_Abstract class. We then register the
new writer with the logger so critical errors can be sent to the e-mail address we will add to
the application configuration.

Creating the Log Writer
The main log writers that come with the Zend Framework are the stream writer (for writing to
files) and the database writer. Both of these writers record the message to their target locations
as soon as the message is logged. If we were to do the same thing for our e-mail writer, then a
new e-mail would be sent for every recorded message. Since a single request could result in

519

C H A P T E R 1 4

9063Ch14CMP2 11/13/07 8:20 PM Page 519

several log messages, we must accumulate log messages and send them in one e-mail mes-
sage at the completion of the request.

Thankfully, Zend_Log simplifies this by allowing us to define a method called shutdown(),
which is automatically called (using PHP 5 class deconstructors) when the request completes.
The shutdown() function we create will use Zend_Mail to send an e-mail to the nominated
address.

We will call this class EmailLogger, which we store in ./include/EmailLogger.php. Listing
14-1 shows the constructor for this class. We create an array in which to hold the log messages
until they are ready to be sent. Additionally, we use Zend_Validator to ensure a valid e-mail
address has been included in the constructor arguments. By implementing the setEmail()
function, we can easily change the target e-mail address during runtime if required.

The other key line of code to note here is the final statement where we instantiate Zend_
Log_Formatter_Simple. With Zend_Log you can create a custom formatter, used to define how a
log message appears in the writer’s output. We will use the built-in Zend_Log_Formatter_Simple
class (you saw an example of its output in Chapter 2), but you could also use the built-in XML
formatter or create your own.

■Note If you want to use a different formatter, you would typically call the setFormatter() method on
the writer once it has been instantiated rather than changing the code in the writer.

Listing 14-1. Initializing the EmailLogger Class (EmailLogger.php)

<?php
class EmailLogger extends Zend_Log_Writer_Abstract
{

protected $_email;
protected $_events = array();

public function __construct($email)
{

$this->_formatter = new Zend_Log_Formatter_Simple();
$this->setEmail($email);

}

public function setEmail($email)
{

$validator = new Zend_Validate_EmailAddress();
if (!$validator->isValid($email))

throw new Exception('Invalid e-mail address specified');

$this->_email = $email;
}

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE520

9063Ch14CMP2 11/13/07 8:20 PM Page 520

Next we must create the _write() method, shown in Listing 14-2. This is an abstract
method that is called internally when a new log message is recorded. In this method we sim-
ply need to write the message to the $_events array. As noted earlier, this array is used to hold
the messages that are to be e-mailed until the e-mail is actually sent.

Before the message is written to the array, we must format the message using the format-
ter. If you prefer, you can write the raw message to the array here and format it when
generating the e-mail body in shutdown().

Listing 14-2. Formatting the Log Message and Then Accumulating It for Later Use
(EmailLogger.php)

protected function _write($event)
{

$this->_events[] = $this->_formatter->format($event);
}

Finally, we implement the shutdown() method. As mentioned, this method is called
automatically when the request ends. Our objective in this method is to generate an e-mail
subject and body and then send the message using Zend_Mail. Obviously, if there are no log
messages, then we don’t want to send an e-mail at all, which is why the code checks whether
$this->_events is empty before creating the e-mail.

Listing 14-3 shows the code for shutdown(). You may want to use different text for the sub-
ject and body than what I’ve listed here. I have simply included the number of messages in the
subject and then joined the messages to make up the body.

■Note The default formatter puts a line feed after each message, so by joining on an empty string, each
message will appear on a new line.

Listing 14-3. Sending the Log Message E-mail in shutdown() (EmailLogger.php)

public function shutdown()
{

if (count($this->_events) == 0)
return;

$subject = sprintf('Web site log messages (%d)',
count($this->_events));

$mail = new Zend_Mail();
$mail->addTo($this->_email)

->setSubject($subject)
->setBodyText(join('', $this->_events))
->send();

}
}

?>

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 521

9063Ch14CMP2 11/13/07 8:20 PM Page 521

Specifying the E-mail Recipient
Next we must define who receives the log e-mail. To do this we add a new setting to the config-
uration file (./settings.ini). Listing 14-4 shows this new value—remember to insert your
own e-mail address accordingly.

Listing 14-4. Specifying the Log Recipient (settings.ini)

logging.file = /var/www/phpweb20/data/logs/debug.log
logging.email = admin@example.com

■Note You may have noticed there is a catch-22 developing. If the application cannot read the settings file
(for example, if the file is missing or doesn’t have read permissions), then the log file path and the recipient
e-mail address cannot be determined for Zend_Log to record the error. We will resolve this in the “Site Error
Handling” section by using the Apache server configuration.

Adding the EmailLogger Writer to Zend_Log
The next step is to instantiate the EmailLogger class and notify the logger about it. Before we
can do this, there is one important step we have not covered yet. That is to filter messages by
their priority. We want to send e-mails only for critical errors (while still writing all other mes-
sages to the filesystem log). This means we will filter out messages that don’t have the priority
levels Zend_Log::CRIT, Zend_Log::ALERT, and Zend_Log::EMERG.

To do this we use the Zend_Log_Filter_Priority class. This filter accepts the priority level
as the first argument to the constructor. The default priority comparison operator is <=, mean-
ing all messages matching that argument and lower will be matched. In our case, we will
specify Zend_Log::CRIT as the priority level (this evaluates to a priority level of 2), which will
therefore include Zend_Log::ALERT (priority level 1) and Zend_Log::EMERG (priority level 0).

Once the filter has been created, we add it to the writer using the addFilter() method.
Listing 14-5 shows the code we add to the application bootstrap file, located in
./htdocs/index.php.

Note that in the EmailLogger class we implemented earlier, an exception is thrown if the
provided e-mail address is invalid. Thus, we must catch this exception accordingly. In this
code, we continue if an invalid e-mail address is used; however, in the code we add later this
chapter, we will handle this using a global exception handler.

Listing 14-5. Adding the E-mail Logger to the Application Bootstrap (index.php)

<?php
// ... other code

// create the application logger
$logger = new Zend_Log(new Zend_Log_Writer_Stream($config->logging->file));

try {
$writer = new EmailLogger($config->logging->email);

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE522

9063Ch14CMP2 11/13/07 8:20 PM Page 522

$writer->addFilter(new Zend_Log_Filter_Priority(Zend_Log::CRIT));
$logger->addWriter($writer);

}
catch (Exception $ex) {

// invalid e-mail address
}

Zend_Registry::set('logger', $logger);

// ... other code
?>

To test that this works, you can simply add a fake message such as the following in your
code. Just remember to remove it afterward; otherwise, you will receive many e-mails.

$logger->crit('Test message');

Now whenever a critical message is recorded in your application logger, you will automat-
ically be e-mailed! If you have an e-mail address that sends you an SMS message whenever
you receive an e-mail, you can be instantly notified when something critical occurs.

■Caution With a system such as this, you must be very careful how the e-mail reporting works, since you
will be e-mailed for every single HTTP request on your site that generates an error. If you run a high-traffic
site, it’s likely you will bog down your own server and perhaps even be blacklisted from your mail server for
sending so much e-mail. Because of this, you should strongly consider adding extra mechanisms so that
duplicate messages aren’t sent within a short timeframe. For example, you could hash the generated mes-
sages and write this hash to the filesystem (using either the application temporary directory or the system
temporary directory). Then the next time you go to send an e-mail, look for the hash of the new messages; if
it exists and its age is less than n minutes (such as 15 minutes), you can safely skip sending the e-mail.

Using Application Logs
It’s difficult to say exactly how you should use your log files because everybody’s mileage will
differ. Certainly the e-mail capabilities improve the system in that you will be instantly noti-
fied if something goes wrong, but it’s also good to audit application data.

As an example, we’re tracking user login attempts. We are recording both successful and
unsuccessful attempts. We recorded successful attempts with the “notice” priority, while we
recorded unsuccessful attempts with “warning” priority.

If you wanted to find all unsuccessful login attempts, command-line tools such as grep
will aid you with this:

cd /var/www/phpweb20/data/logs
grep -i "failed login" debug.log
2007-09-03T16:06:55+09:00 WARN (4): Failed login attempt from 192.168.0.75 user test

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 523

9063Ch14CMP2 11/13/07 8:20 PM Page 523

■Note The -i option for grep means the search is case-insensitive.

It can also be useful to watch the log files in real time when developing new functionality.
This is especially so when you can’t easily output debugging information directly to your
browser (such as in an Ajax subrequest or when using a third-party service). You can use tail
-f to achieve this, which means tail monitors the file for any changes and displays any new
data in the file as it is written.

tail -f /var/www/phpweb20/data/logs/debug.log

■Tip You can press Ctrl+C to exit from tail when using the -f option. Also note that when you run this
command, the last ten lines will be shown before monitoring for new content, just like when you run tail
normally (assuming you don’t specify the number of lines to be shown).

Another consideration you may need to make is managing the log files, since they can
potentially grow quite large on a high-traffic site that records lots of debugging information.
You may want to consider using a tool such as logrotate.

In any case, a solid foundation is now in place for your application logging and auditing
needs. You can now easily add logging capabilities to any new classes you develop.

Site Error Handling
We are now going to change our code to handle any errors that may occur when users access
the site. Several kinds of errors can occur in the day-to-day running of your web site:

• Database errors. This is any error relating to accessing the database server or its data.
For example, the following are possible errors that may occur:

• Connection errors, caused because the server or network may be down, the user-
name or password are incorrect, or the database name is incorrect.

• Query errors, caused when the SQL being used is invalid. If your application has
been correctly developed and tested, then these should never occur.

• Data errors, caused by violating a constraint in the database. This may occur if you
enter a duplicate value in a unique field or if you delete data from a table that is
referenced elsewhere via a foreign key. Once again, this should not occur if the
application has been developed and tested correctly.

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE524

9063Ch14CMP2 11/13/07 8:20 PM Page 524

• Application runtime errors. This is a fairly broad title for basically any error (including
uncaught exceptions) that occurs in code. Examples of application errors that may
occur are as follows:

• Filesystem and permission errors, such as if the application tries to read a file that
doesn’t exist or that it is not allowed to read. Similarly, if the application tries to
write a file but isn’t allowed to, then this will also cause an error. A file that your
application reads that is in the incorrect format may also cause an error.

• If your application accesses web services on remote servers, then how well your
application runs is partly dependent on these servers. For example, if you process
credit card payments using a third-party gateway, then that gateway must be oper-
ational for you to make sales on your site.

• HTTP errors. These are errors that occur based on the user’s request. The most com-
mon HTTP error (and the one that we are going to cover in this section) is a 404 File Not
Found error. Although many different errors can occur, other common errors are 401
Unauthorized (if a user tries to access a resource that they must be logged in for) and
403 Forbidden (if the user simply isn’t allowed to access the resource).

■Note First, because of the Apache rewrite rules we set up for our application in Chapter 2, we won’t
be handling 404 errors in the “traditional way” that people do with Apache (using ErrorDocument 404).
Rather, we will generate 404 errors when a user tries to access a controller or action that does not exist.
Second, the 401 and 403 errors don’t apply to our application, even though we have a permissions system.
This is because we’ve implemented our own user login and permissions system, so the traditional HTTP
codes don’t apply.

Although we could have included the aforementioned error handling when setting up the
application (specifically, for handling database and 404 errors), I have chosen to group it all
together into this single section so you can see how the system reacts to errors as a whole.

Note that in some cases we have already handled various application errors that occur. An
example of this is catching exceptions that have been thrown in various circumstances, such
as in Chapter 12 when implementing blog post indexing capabilities.

In the error handling we are now going to implement, we will add handling capabilities to
two areas of the application:

• Before the request is dispatched. This is to handle any errors that occur prior to dis-
patching the result with Zend_Controller_Front. In other words, it’ll deal with any
errors that occur with code inside the index.php bootstrap.

• While the request is being dispatched. This is to handle any errors that occur within the
application, such as in a controller action or in one of the many classes we have written
(errors that we haven’t yet handled, that is). This also includes HTTP errors such as
when the file isn’t found (404).

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 525

9063Ch14CMP2 11/13/07 8:20 PM Page 525

Objectives of Error Handling
Before we implement any error handling, we must determine what we’re actually trying to
achieve by handling the error. An error handling system should do the following:

• Notify the user that an error occurred. Whether it is a system error or user error that
has occurred, the user should still know that something went wrong and their request
could not be completed correctly.

• Record the error. This may involve either writing the error to a log file or notifying the
system administrator, or both. Typically a user error (such as a 404 error) is not some-
thing you’d need to notify the administrator about (although logging 404 errors can be
useful in statistics analysis).

• Roll back the current request. If a server error occurs halfway through a client request,
then any performed actions should be rolled back. Let’s use the example of having a
system that saves a user-submitted form to a local database and submits it to a third-
party server. If the third-party server is down (resulting in an error), then the form
shouldn’t be saved locally and the user should be notified so. Note that our application
isn’t required to handle errors in this manner.

■Note This example is somewhat crude. In actual fact, if you had such a system, you would typically have
an external process (such as a cron job/scheduled task) that was responsible for communicating with the
third-party server rather than performing the action in real time while completing the user request. The local
database record would then have a status column to indicate whether the form has been successfully sub-
mitted remotely. The example should demonstrate the point of rolling back the request.

Handling Predispatch Errors
First we are going to handle any errors that may arise prior to dispatching the user request. In
our application, before we dispatch the request, we load the configuration file, initialize the
application logger, and connect to the database. Additionally, we are going to catch any errors
that were not caught elsewhere (that is, in the dispatch loop).

Essentially what we are going to do is to wrap all of the code in the application bootstrap
(./htdocs/index.php) in a single try … catch statement, meaning if any error occurs (that
hasn’t otherwise been handled) in any part of handling the user request, we can deal with it in
a single spot.

Notifying the User of Errors
When we detect that an error has occurred, we are going to redirect the user’s browser to
a static HTML page that has no reliance on the database or even on PHP for that matter.
This page will simply tell them that something went wrong and their request could not be
completed.

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE526

9063Ch14CMP2 11/13/07 8:20 PM Page 526

Listing 14-6 shows the code for the error.html file, which we store in the ./htdocs direc-
tory. When using this in a production site, you will probably prefer to customize this page
further (by adding your logo and CSS styles).

Listing 14-6. Notifying the User the Site Is Undergoing Maintenance (error.html)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<title>This site is undergoing maintenance</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>
<body>

<div>
<h1>Site Under Maintenance</h1>

<p>
This site is currently under maintenance.
Please check back shortly.

</p>
</div>

</body>
</html>

Catching Errors
Now that we have an error template to display when something goes wrong, we are going to
make some changes to the bootstrap file. Instead of having several try … catch constructs in
this file, we are going to have only one. This will encompass nearly all of the code in index.php.

The only problem with this, however, is that we won’t be able to write any of these errors
to the log file, since the logger will be created inside the try block and therefore will not be
available in the catch block. To deal with this problem, we are going to create the logger first,
and instead of using the value from the configuration, we will use the Apache SERVER_ADMIN
variable. If the web server has been configured correctly, then this should contain a valid
e-mail address with which to contact the administrator.

We will use the SERVER_ADMIN value initially in the code and then use the logging.email
value in the configuration file once settings.ini has been successfully loaded. If this value
isn’t set correctly in the Apache configuration, then this will be caught by the exception han-
dler. Since Zend_Log requires at least one writer, I have used Zend_Log_Writer_Null to ensure
there will always be a writer. If this is not done, then an error will occur in the exception han-
dler, since we write the exception message to $logger.

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 527

9063Ch14CMP2 11/13/07 8:20 PM Page 527

■Note Zend_Log_Writer_Null is a special writer that just discards all messages without actually writing
or sending them anywhere.

Listing 14-7 shows the beginning of the bootstrap file, stored in ./htdocs/index.php. This
entire file will be shown in the coming listings.

Listing 14-7. Using the Apache Configuration to Determine the Log E-mail Address (index.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

// setup the application logger
$logger = new Zend_Log(new Zend_Log_Writer_Null());

try {
$writer = new EmailLogger($_SERVER['SERVER_ADMIN']);
$writer->addFilter(new Zend_Log_Filter_Priority(Zend_Log::CRIT));
$logger->addWriter($writer);

Note that we use the $writer variable to hold the EmailLogger object so we can change the
target e-mail address shortly.

Next is Listing 14-8, in which we load the application configuration. Next we modify
the $logger object so it will write to the filesystem, as well as send critical log messages to the
e-mail address in settings.ini rather than the SERVER_ADMIN value.

Listing 14-8. Altering the Logger to Use the Configuration Values (index.php)

// load the application configuration
$config = new Zend_Config_Ini('../settings.ini', 'development');
Zend_Registry::set('config', $config);

// alter the application logger
$logger->addWriter(new Zend_Log_Writer_Stream($config->logging->file));
$writer->setEmail($config->logging->email);

Zend_Registry::set('logger', $logger);

Next we have the database connection code. As mentioned when we first created the
database connection code in Chapter 2, the actual connection is not made until the first query
is performed. As such, the first thing we must do is force the database connection to be made
so we can trap any potential connection errors upon start-up—not halfway through handling
a user request.

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE528

9063Ch14CMP2 11/13/07 8:20 PM Page 528

To force the connection to be made immediately, we simply need to call the getConnection()
method on the adapter object after it is instantiated, as follows:

$db = Zend_Db::factory($config->database->type, $params);
$db->getConnection();

If the connection fails, then an exception is thrown, just like one is if the call to factory()
fails. We simply need to catch this exception and write a log message accordingly like we did
earlier when loading the configuration.

■Tip In actual fact, if the connection fails, then the exception thrown uses the Zend_Db_Adapter_
Exception class. The call to factory() will throw an exception using Zend_Db_Exception. This allows
us to easily trap the different exceptions accordingly within the same block of code. Since it doesn’t matter
to us which error occurs (that is, any error is enough for us to stop), we won’t worry about differentiating
between the exception types.

Listing 14-9 shows the database connection code as it stands in index.php.

Listing 14-9. Forcing a Database Connection at Start-Up (index.php)

// connect to the database
$params = array('host' => $config->database->hostname,

'username' => $config->database->username,
'password' => $config->database->password,
'dbname' => $config->database->database);

$db = Zend_Db::factory($config->database->type, $params);
$db->getConnection();

Zend_Registry::set('db', $db);

Next we look at Listing 14-10, which is the code used to set up the authentication, create
the front controller, set up the view renderer (to use Smarty), and create custom routes. Noth-
ing is changed in this code, apart from that it is now all within the try … catch statement
opened in Listing 14-8. I have included this code here simply so the entire index.php is shown.

Listing 14-10. Setting Up the Front Controller and Its Routes (index.php)

// setup application authentication
$auth = Zend_Auth::getInstance();
$auth->setStorage(new Zend_Auth_Storage_Session());

// handle the user request
$controller = Zend_Controller_Front::getInstance();
$controller->setControllerDirectory($config->paths->base .

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 529

9063Ch14CMP2 11/13/07 8:20 PM Page 529

'/include/Controllers');
$controller->registerPlugin(new CustomControllerAclManager($auth));

// setup the view renderer
$vr = new Zend_Controller_Action_Helper_ViewRenderer();
$vr->setView(new Templater());
$vr->setViewSuffix('tpl');
Zend_Controller_Action_HelperBroker::addHelper($vr);

// setup the route for user home pages
$route = new Zend_Controller_Router_Route(

'user/:username/:action/*',
array('controller' => 'user',

'action' => 'index')
);

$controller->getRouter()->addRoute('user', $route);

// setup the route for viewing blog posts
$route = new Zend_Controller_Router_Route(

'user/:username/view/:url/*',
array('controller' => 'user',

'action' => 'view')
);

$controller->getRouter()->addRoute('post', $route);

// setup the route for viewing monthly archives
$route = new Zend_Controller_Router_Route(

'user/:username/archive/:year/:month/*',
array('controller' => 'user',

'action' => 'archive')
);

$controller->getRouter()->addRoute('archive', $route);

// setup the route for user tag spaces
$route = new Zend_Controller_Router_Route(

'user/:username/tag/:tag/*',
array('controller' => 'user',

'action' => 'tag')
);

$controller->getRouter()->addRoute('tagspace', $route);

Next we complete this file by dispatching the request, as well as catching any exceptions
that may thrown. This is shown in Listing 14-11.

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE530

9063Ch14CMP2 11/13/07 8:20 PM Page 530

Listing 14-11. Catching Exceptions and Redirecting

$controller->dispatch();
}
catch (Exception $ex) {

$logger->emerg($ex->getMessage());

header('Location: /error.html');
exit;

}
?>

Because the $logger object was created before the try … catch construct, we are able to
write messages to it in the exception handler.

Application Runtime Errors
Next we must write code to handle application errors such as 404 errors or other unexpected
errors. To do this we use the error handler plug-in. By default, Zend_Controller_Front
loads the error handler plug-in, which will automatically look for a controller class called
ErrorController.

When an unhandled exception is thrown during dispatch, Zend_Controller_Front will
route the request to the errorAction() method of the ErrorController class. Because the error
handler plug-in is registered automatically, we don’t need to make any changes to the boot-
strap to accommodate this class.

■Note It is possible to use a different controller and action to handle the error, but by default the error
action of the error controller is used.

To get information about the error that occurred, we retrieve the error_handler parameter
from the request. Listing 14-12 shows the code we use to create the ErrorController class. This
code should be written to a file called ErrorController.php in the ./include/Controllers
directory.

Listing 14-12. Initializing the Error Handler Class (ErrorHandler.php)

<?php
class ErrorController extends CustomControllerAction
{

public function errorAction()
{

$request = $this->getRequest();
$error = $request->getParam('error_handler');

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 531

9063Ch14CMP2 11/13/07 8:20 PM Page 531

Next we determine the type of error that occurred by checking the type property of the
$error object. This variable can have one of the following values:

• EXCEPTION_NO_CONTROLLER is used if the requested URL did not match a controller (for
instance, http://phpweb20/asdf).

• EXCEPTION_NO_ACTION is used if the requested URL did match a controller but didn’t
match an action within that controller (such as http://phpweb20/account/asdf).

• EXCEPTION_OTHER is used for all other errors that occur, regardless of what causes the
error. Thus, if a database error occurs, this error type will be used.

We will treat either of the first two errors as a 404 error, since they effectively result from
an invalid URL being requested. To further modularize this code, we will create a separate
action in ErrorController for handling 404 errors, which we will call error404Action().

The code in Listing 14-13 shows how we detect the different types of errors and then for-
ward on 404 errors accordingly. We will implement the error404Action() function shortly.

Listing 14-13. Detecting the Type of Error That Has Occurred (ErrorController.php)

switch ($error->type) {
case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_CONTROLLER:
case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_NO_ACTION:

$this->_forward('error404');
return;

case Zend_Controller_Plugin_ErrorHandler::EXCEPTION_OTHER:
default:

// fall through
}

■Note It’d be nicer to name this function 404Action() rather than error404Action(); however, it is a
syntax error to begin an identifier (that is, a function or a variable name) with a digit.

Effectively what this means is that 404 errors now move out of this method because of for-
warding the request (using the _forward() utility method). The remainder of the code in this
function now is used to handle all other errors (that is, errors with the type EXCEPTION_OTHER).

Because the error might have occurred in the middle of a page being rendered, we must
first clear the response that has already been generated by calling clearBody() on the
response object. If you do not do this, the user may see half of their requested page followed
by the error message.

Finally, we log the error message using the critical priority level. This means it will be e-
mailed to the system administrator as we saw earlier in this chapter.

Listing 14-14 shows the code we use to clear the response body and then log the error.
Note that after this function ends, the Zend_Controller_Front view renderer will automatically
try to display the error.tpl template in the ./templates/error directory that we have not yet
created. We will do so next after completing the code for the ErrorHandler class.

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE532

9063Ch14CMP2 11/13/07 8:20 PM Page 532

Listing 14-14. Clearing the Response Body and Logging the Error (ErrorController.php)

$this->getResponse()->clearBody();

Zend_Registry::get('logger')->crit($error->exception->getMessage());
}

■Tip If you want to see this particular error handler in action, you can simply try throwing an exception
from one of your existing controller actions. For example, try adding throw new Exception('Testing
the error handling'); to the indexAction() function of the ./include/Controllers/
IndexController.php file and then opening http://phpweb20 in your browser. If you do this, make
sure you remove this line of code after you have tested that it works correctly!

Next up we implement the error404Action() function that the previous function for-
wards to if the requested controller or action is not found. Our goal in this function is to first
record the error, then set the appropriate HTTP error code (so the user’s browser can interpret
the response accordingly), and finally display a message to the user.

Since 404 errors can happen frequently and don’t typically indicate a big problem, we
don’t consider them to be critical. As such, we use the Zend_Log::INFO priority level (by calling
the info() method on the logger). This means the message will be written to the log file but
not e-mailed to the administrator. You may want to keep an eye on these messages since they
may indicate an incorrect link somewhere.

The final step in this function is to create a page title (using the $breadcrumbs object) and
assign the requested URI to the template so we can output it to indicate to the user that the
file wasn’t found. Listing 14-15 shows the code to be added to the ErrorController.php file.

Listing 14-15. Handling 404 Errors by Writing to the Log and Sending the Appropriate Response
(ErrorHandler.php)

public function error404Action()
{

$request = $this->getRequest();
$error = $request->getParam('error_handler');
$uri = $request->getRequestUri();

Zend_Registry::get('logger')->info('404 error occurred: ' . $uri);

$this->getResponse()->setHttpResponseCode(404);

$this->breadcrumbs->addStep('404 File Not Found');
$this->view->requestedAddress = $uri;

}
}

?>

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 533

9063Ch14CMP2 11/13/07 8:20 PM Page 533

Creating the Error Display Templates
Now that the PHP code for the error handler is complete, we must create a template for each of
the controller actions. First we create the template used to display a message when an applica-
tion error occurs. The location of this file is ./templates/error/error.tpl. This is the first time
we’ve used this error directory, so you’ll probably have to create it first. As noted earlier, you can
throw a fake exception from an existing controller action to test this error handler.

Listing 14-16 shows the contents of the error.tpl file. Note that in this template I haven’t
included the header and footer templates since in our case these templates can potentially
cause more code to execute (such as by using one of the Smarty plug-ins we wrote). This may
result in an infinite error loop, so we try to simplify the template as much as possible.

Listing 14-16. Notifying the User That a System Error Has Occurred (error.tpl)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.org/1999/xhtml" lang="en" xml:lang="en">
<head>

<title>A system error occurred</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />

</head>
<body>

<p>
An error occurred completing your request, please try again shortly.
The system administrator has been notified of the problem.

</p>
</body>

</html>

Next we write the template used when a 404 error occurs. Note that unlike handling appli-
cation errors, 404 errors can occur frequently, and they don’t typically represent an underlying
problem in the application. As such, we can use the normal header and footer to display this
error.

Listing 14-17 shows the error404.tpl template, which we write to the ./templates/error
directory. Note that we use the $requestedAddress variable we assigned in the controller
action.

Listing 14-17. Displaying an Error Message to the User Using the Normal Site Layout
(error404.tpl)

{include file='header.tpl'}

<p>
The file you requested
({$requestedAddress|escape})
could not be found.

</p>

{include file='footer.tpl'}

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE534

9063Ch14CMP2 11/13/07 8:20 PM Page 534

■Tip Many web sites take advantage of 404 errors by attempting to do something useful with the
requested URI, such as performing a search. For example, if you try to access the PHP web site at
http://php.net but specify an invalid URL, the site will automatically perform a search based on the terms
in the request. If it finds a single exact match, it redirects you directly to the page, while if multiple results
are found, it notifies you that an error occurred and then provides links to each page found in the search.
This is especially useful for a quick lookup on PHP functions. For example, if you go to
http://php.net/mysql_query, the 404 handler on the site triggers a search for mysql_query, which
results in the manual page for the mysql_query() function being displayed.

Web Site Administration
As mentioned in Chapter 1, an administration area is an important part of any web site. This
special part of the site is what allows the people who run the site to control application data or
modify how the site operates.

Because of the work potentially involved in developing this area and the fact it doesn’t
present any new concepts that we haven’t already covered in this book, we won’t actually
develop the admin area here. Instead, I will list some ideas for functionality you may want to
implement as well as provide a starting point for the admin area. Additionally, I have included
various administrator functions in the downloadable application source code.

Administrator Section Features
The features that you may want to include in your application’s administraton area are listed
next. These features are based on the functionality we have implemented in this book,
although obviously if you decide to add new features to the application, you may need to
add extra functionality here to manage the data belonging to the new feature.

User Management
This area is arguably the most important section that can be implemented, because it allows
you to easily see who is accessing the application. Typically in the user management area, you
will use the following features:

• Searching for existing users or browsing the user list.

• Updating a user’s details (such as their username or password). Additionally, you
should have an option to choose the user’s type. This allows you to nominate users as
administrators who can then access the administrator area.

• Contacting users. This may be by way of sending a periodical newsletter to all users.

■Note Be sure to give users the choice of whether they receive bulk e-mails that are sent. You can do this
by adding a new setting to their user account (refer to the “Controlling User Settings” section of Chapter 9
for an example of how to implement new user settings).

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 535

9063Ch14CMP2 11/13/07 8:20 PM Page 535

• Deleting users. Typically you won’t want to delete users from your database but on
occasion you may need to do so.

■Note Before implementing delete functionality, you need to decide exactly how you want to deal with the
deleted data. For example, if a User A leaves a comment on User B’s blog (assuming you have implemented
a commenting system), then you typically won’t want to delete that comment even if you want to delete
User A. Database foreign key constraints will prevent you from deleting the user record before all linked
comments are deleted. As such, you must either not delete the user record (perhaps disabling the account
instead) or update the comment so it is not linked against the user account.

Blog Post Management
In addition to being able to manage user accounts, it may be of use to be able to manage user
posts. Typically you won’t need to create new blog posts, but you may need to edit or delete a
post containing offensive content.

Specifically, you would need almost identical functionality to the blog management func-
tionality for normal users, which may include the following:

• Editing or deleting blog posts and comments associated with posts

• Browsing uploaded images and deleting offensive images if required

• Notifying users if any of their content has been changed (including telling them the rea-
son why)

Auditing Application Logs
Earlier in this chapter we looked at some ways to use the application logs. In addition to
searching the logs on the command line, you may want to add a web interface to search and
browse the application log.

Some of the capabilities of log viewing may include the following:

• View log entries between two dates (or for a predefined period, such as “this week” or
“last month”).

• Filter by the priority of the log entry (that is, whether it is a critical message, informa-
tion, or otherwise). See Chapter 2 for a discussion of the priority levels.

• Search for specific entries (such as for invalid logins).

Note that we are writing log entries to a filesystem file. With Zend_Log it is possible to
record log entries to a database instead. You may find it easier to filter entries in a database
rather than in a file.

Implementing Administration
Now that I’ve covered some of the features you may want to use in the administration area, I’ll
list some implementation notes to help you get started.

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE536

9063Ch14CMP2 11/13/07 8:20 PM Page 536

Permissions
First you need to consider the permissions of the administration section. Obviously you want
only privileged users to be able to access this area. Thankfully, we already catered for this in
Chapter 3 by defining permissions for a user type of administrator. The permissions defined
in that chapter stated that the administrator role would be able to access the resource called
admin.

Creating an administrator is simply a matter of signing up for a new account on the site
and then manually updating the database record of the created record using SQL.

■Note Typically it is only this initial administrator for whom you will need to perform manual SQL queries.
If you do indeed implement a user management tool for the admin area as discussed earlier, then you will be
able to create subsequent administrators, but you still need to create the initial administrator using SQL.

For instance, if I wanted to update the user with the username qz to be an administrator,
I could use the following SQL query on the application database:

mysql> update users set user_type = 'administrator' where username = 'qz';

Creating the AdminController Class
The next step for implementing an administration area is to create a new controller. To obey
the permissions defined in Chapter 3, this controller must be called AdminController.

■Note Recall that the line used in Chapter 3 was $this->acl->allow('administrator', 'admin'),
meaning the administrator role can access the admin controller, while other users cannot.

The code in Listing 14-18 shows a starting point for this controller and belongs in a file
called ./include/Controllers/AdminController.php. Note that you will still have to create all
necessary actions and templates accordingly.

Listing 14-18. A Skeleton for the Administration Area (AdminController.php)

<?php
class AdminController extends CustomControllerAction
{

public function indexAction()
{

}
}

?>

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 537

9063Ch14CMP2 11/13/07 8:20 PM Page 537

Now if you try to access http://phpweb20/admin, you will be denied access unless your
user type is administrator.

Application Deployment
We’ll now look at the process of deploying our web application to a live server. So far, we have
presumed that all development has taken place on a dedicated development server and that
the users of the application don’t have access to this server.

A typical setup for how versions of web applications are managed involves three types of
servers:

• Development server. This is where new code is created and tested. The application
may be working sometimes, while it may be completely broken at others. It is typically
accessed only by the developers and testers.

• Staging server. Once the new version of the web application is complete, it is deployed
to the staging server. This server is configured identically to the production server (the
same operating system and versions of Apache and PHP and other such software). This
application will be fully functional, yet its data may be static and stale (it is typically not
a backup or a mirror server). It is typically accessed by developers and testers (and per-
haps the client who has commissioned you to develop the application in order to
approve changes). Deploying on the staging server provides a good opportunity to
determine any “gotchas” that may arise while deploying to the production server.

• Production server. Once everything appears to be functioning correctly on the staging
server, the new application version can also be deployed to the production server. This
is the server that the real world sees, which contains the live database and up-to-date
data.

In reality, the average web developer’s process will not include the staging server since the
development server can often double as the staging server. In the following sections, we will
assume we are dealing only with a development and a production server to simplify matters.

Different Configurations for Different Servers
Before deploying the web application files to a production server, we must cater to different
servers requiring different configurations. The reason for this is that we should be able to
deploy all files to the production server and have them all ready to go straightaway without
then having to modify the production configuration file.

For example, in your development environment the database server will probably be the
same physical machine as your web server (meaning your PHP will connect to a server on
“localhost”). In a production environment, this may not be the case. Many web hosts will sep-
arate their database servers from their web servers. Because of this, you may require different
database connection settings. To deal with this, we add a new section to the settings.ini file
of our application.

When we created the settings file in Chapter 2, all configuration strings were within a sec-
tion called development, which was denoted in square brackets as follows:

[development]

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE538

9063Ch14CMP2 11/13/07 8:20 PM Page 538

We can define more sections in this file in the same manner. So if we wanted to have dif-
ferent settings for production, we would include the following line:

[production]

You would then define the settings for production following this line. The only problem
with this, though, is that some settings may be identical for both development and produc-
tion. To help with this, Zend_Config allows inheritance in configuration files.

In other words, for the production settings we can use all development settings and then
override each one as required. We do this by defining the new section as follows:

[production : development]

Returning to the earlier example of using a different hostname for the database server in
production, we could use the following configuration file:

[development]

database.type = pdo_mysql
database.hostname = localhost
database.username = phpweb20
database.password = myPassword
database.database = phpweb20

; other development settings here

[production : development]

database.hostname = 192.168.0.123

In this code, all settings (such as database username and password) used for development
will also be used in production except for the hostname, which has been overridden.

Listing 14-19 shows the code you should add to the settings.ini file. Even if you don’t
intend on changing any settings, you will need to add this line for the code following this to
work.

Listing 14-19. Defining the Production Settings Section (settings.ini)

[development]

; other development settings here

[production : development]

Telling the Bootstrap Which Configuration to Use
Once the configuration section for the production server has been created, we must change
the bootstrap file so it loads the correct section. So far we have hard-coded the bootstrap to
use the development section. The question is, how does the code know which section to load?
To do this we must add some detection mechanism into the bootstrap.

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 539

9063Ch14CMP2 11/13/07 8:20 PM Page 539

The way we are going to do this is by writing values to the web server environment in the
Apache configuration. Using the Apache SetEnv direct, we are going to write a value that speci-
fies the name of the configuration section to use, as well as the name of the settings file to use.

We then modify the index.php bootstrap to read and use these values. These values don’t
have to be specified: if they are not included in the configuration, we will use a default settings
file of settings.ini and a default configuration section of production.

■Note Typically you won’t need to change the filename of the settings file, but having the ability to do so
can be useful. For example, if you wanted to run two separate web sites from the same code base, you can
use a separate settings file for each site and then specify in the web server configuration for each site which
file to use.

As mentioned earlier, the SetEnv directive is used in Apache to set an environment vari-
able. The first value for this directive is the name of the environment variable, while the
second value is the value. The values we will use are as follows:

SetEnv APP_CONFIG_FILE "settings.ini"
SetEnv APP_CONFIG_SECTION "development"

■Note We will use an APP_CONFIG_SECTION value of development (rather than production), because
I’m treating this section as though we’re developing the application. Once you deploy it (using the instruc-
tions later in this chapter), you would then either set this value to production or omit it completely (since
we will use production as the default).

These values can then be accessed from any of your PHP scripts in the $_SERVER variable.
For example, to retrieve the config filename, you can use $_SERVER['APP_CONFIG_FILE'].

Listing 14-20 shows the changes we make to the web server configuration we created in
Chapter 2 (Listing 2-1). These changes go in the /var/www/phpweb20/httpd.conf file. You will
need to restart your web server for these values to take effect.

Listing 14-20. Setting the Settings Filename and Section in the Apache Configuration (httpd.conf)

<VirtualHost 192.168.0.80>
ServerName phpweb20
DocumentRoot /var/www/phpweb20/htdocs

<Directory /var/www/phpweb20/htdocs>
AllowOverride All
Options All

</Directory>

php_value include_path .:/var/www/phpweb20/include:/usr/local/lib/pear

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE540

9063Ch14CMP2 11/13/07 8:20 PM Page 540

php_value magic_quotes_gpc off
php_value register_globals off

SetEnv APP_CONFIG_FILE "settings.ini"
SetEnv APP_CONFIG_SECTION "development"

</VirtualHost>

The next step is to update the application bootstrap file to use these values. Listing 14-21
shows the changes we make to the ./htdocs/index.php file so the configuration filename and
section are no longer hard-coded.

Listing 14-21. Using the Apache Environment Variables to Determine the Configuration
(index.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

// setup the application logger
$logger=new Zend Log(new Zend Log Writer Null());

try {
$writer = new EmailLogger($ SERVER['SERVER ADMIN']);
$writer->addFilter(new Zend Log Filter Priority(Zend Log::CRIT));
$logger->addWriter($writer);

// load the application configuration

$configFile = '';
if (isset($_SERVER['APP_CONFIG_FILE']))

$configFile = basename($_SERVER['APP_CONFIG_FILE']);

if (strlen($configFile) == 0)
$configFile = 'settings.ini';

$configSection = '';
if (isset($_SERVER['APP_CONFIG_SECTION']))

$configSection = basename($_SERVER['APP_CONFIG_SECTION']);

if (strlen($configSection) == 0)
$configSection = 'production';

$config = new Zend_Config_Ini('../' . $configFile, $configSection);
Zend_Registry::set('config', $config);

// ... other code

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 541

9063Ch14CMP2 11/13/07 8:20 PM Page 541

These changes begin by trying to read the APP_CONFIG_FILE section from the server
variables. If no value was found (or the value was empty), the default value of settings.ini
is used.

We do then the same thing to determine which configuration section to use (using
APP_CONFIG_SECTION instead). Finally, we use these values when instantiating Zend_Config_Ini.

■Note This code forces the settings file to be in the application root directory (/var/www/phpweb20) by
using basename(). If you wanted the ability to store the file elsewhere on your system, you could modify
this code to allow full paths in the APP_CONFIG_FILE setting.

Deploying Application Files with Rsync
To help with deploying application files (both the initial deployment and also for subsequent
updates), you can use the rsync program. Rsync is a tool used to synchronize files and directo-
ries between two locations. Although programs such as FTP and SFTP can be useful, they are
cumbersome to use to deploy updates (since files may span many directories).

Rsync works by determining the differences between Copy A (in our case, the copy on the
development server) and Copy B (the copy on the production server) and then applying those
differences to Copy B. By transmitting only the differences between the copies, the amount of
data to be transmitted is minimized.

The fact that rsync can be used over an SSH connection makes it a very good way to syn-
chronize the two copies of code. Note, however, that rsync must be installed on both servers
(as well as SSH if that is being used).

If you don’t already have rsync on your servers, it can be downloaded from
http://rsync.samba.org. It is required on each server on which you want to synchronize files.

Let’s now look at an example of using rsync. Assuming both servers have rsync installed,
you can pull the files from development to production (by running rsync on the production
server), or you can push the files from development to production (by running rsync on the
development server).

If you wanted to deploy the application onto a fictional production server at
production.example.com, you would issue the following command:

rsync -rlptzv -e ssh /var/www/phpweb20 myUsername@production.example.com:/var/www

The arguments used in this command are as follows:

• -r: Copy files recursively (that is, copy all directories and subdirectories).

• -l: Copy symbolic links.

• -p: Preserve file and directory permissions.

• -t: Preserve times on files.

• -z: Compress data during the transfer.

• -v: Verbose output during execution.

• -e: Specify which shell to use as the transport. In this case we use ssh.

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE542

9063Ch14CMP2 11/13/07 8:20 PM Page 542

The next argument indicates the master copy of the files being synchronized, while the
final argument is the copy that is being updated. In this case we are copying from the develop-
ment server, so we can use a local path. If we were running rsync from production, then we
would use a URL in this argument and a local path on the production server as the final argu-
ment.

The first time you run this command, all of the application files will be copied, while sub-
sequent times only changed files will be copied. You can see this easily by running the
command twice initially—the second time nothing will be copied.

■Note You can also use the -n argument for a preview of which files will be transferred without actually
performing the transfer.

Backup and Restore
The next aspect of application management we’ll look at is the backup and restore of data on
the production server. In the following sections we will look at how to back up the MySQL
database used in our application, as well as how to restore it again if required. The PHP code
we have developed doesn’t need to be backed up from the production server since it is only a
copy of the development code (assuming you back up your local development code or use
version control already).

In many hosting environments the web host will take care of backup for you; however, it
is still useful to know how to make a backup anyway. This also allows you to copy real data
from production to development so you have some real data to work with when developing
new features.

■Caution In Chapter 11 we stored uploaded images on the filesystem when we developed the dynamic
image gallery. I covered the advantages and disadvantages of doing so at the time. This section deals only
with the backup and restore of the application database; however, be aware that you should be backing up
these uploaded images also.

Exporting a Database
To export the application database, we use the mysqldump program. This will export the entire
database (depending on the options specified) to a file that we can then save wherever
required (such as on a backup server or on CD/DVD).

We can specify many options when using mysqldump that control how the data is exported
(such as for exporting only the schema and not the data, or vice versa), but for our purposes
the default options will suffice.

The command in Linux to export a database is as follows:

mysqldump dbname

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 543

9063Ch14CMP2 11/13/07 8:20 PM Page 543

This will output the database schema and data to the terminal (stdout). Therefore, if you
want to write this to a file, you must redirect the output to a file. In other words, we can use
this:

mysqldump dbname > filename.sql

And better yet, we can compress this output (since the database may be large) by first pip-
ing the data through gzip:

mysqldump dbname | gzip > filename.sql.gz

Because we connect to our database using the phpweb20 username as well as a password,
we must specify the –u and –p parameters so we can use the required credentials. Additionally,
we can substitute the database name (phpweb20) into the earlier example:

mysqldump -u phpweb20 -p phpweb20 | gzip > phpweb20.sql.gz

Once you have executed this command, you will have a compressed backup of the data-
base in your current directory.

■Tip The PostgreSQL equivalent of mysqldump is the pg_dump tool. The arguments that must be supplied
to this program differ slightly from mysqldump; however, the programs basically work the same.

Importing a Database
Now that you have a backup of the database, it is useful to know how to re-create the database
from scratch. First you must create the database, as well as the permissions (as per the
instructions in Chapter 2), if it doesn’t already exist:

mysql> create database phpweb20;

Next you import the file from the command line. You can do this by decompressing the
file and then piping the results to the mysql program. Note that we need to pass the --stdout
argument to gunzip for this to work:

gunzip --stdout phpweb20.sql.gz | mysql –u phpweb20 -p phpweb20

If the database dump is already decompressed, you can use the following command:

mysql –u phpweb20 –p phpweb20 < phpweb20.sql

As you can see, exporting and importing database data are somewhat trivial. It can get
slightly more complicated if you need to also manage a large set of permissions or if you have
some other unique setup.

Some people prefer to split their database dumps by exporting the schema to one file and
the actual data to another file. This allows you to restore the data in two separate steps, which
is especially useful if you’re just importing the data to a database that already has the neces-
sary tables in place (such as if you were copying the data from production to the development
database).

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE544

9063Ch14CMP2 11/13/07 8:20 PM Page 544

Summary
In this chapter, we looked at a number of topics relating to creating and managing web appli-
cations. These topics are quite important since they must all be considered when creating an
application that will run smoothly with minimal maintenance.

Specifically, the topics we covered in this chapter were the following:

• Creating a useful logging system that can notify an administrator when a problem
arises

• Handling errors that may occur during runtime by logging the error and notifying the
end user that a problem occurred

• Handling 404 errors by telling the user the page they requested could not be found

• Creating an administration section that allows privileged users to control application
data as required

• Creating multiple configurations for a web application to cater for each environment
the application may be used (development, staging, and production)

• Deploying an application to a production server (including how to deploy updates)

• Backing up and restoring a MySQL database

With the conclusion of this chapter, you should have a solid understanding of what it
takes to develop a web application from start to finish. The topics covered in this chapter
should help you manage the code developed in earlier chapters in a real-world environment.

Although you may not require all of the functionality we have implemented in our Web
2.0 application, I hope it has put forward ideas and concepts that will help you to further
develop this application or create your own from scratch.

Remember that these ideas are not set in stone—they are simply the way I prefer to do
things. If you disagree with something I’ve done in this book, you should challenge it by trying
your own way and deciding for yourself what works the best. Better yet, I hope you will chal-
lenge me directly so I may learn something new also.

CHAPTER 14 ■ DEPLOYMENT AND MAINTENANCE 545

9063Ch14CMP2 11/13/07 8:20 PM Page 545

9063Ch14CMP2 11/13/07 8:20 PM Page 546

■Special Characters
$() function, 124–125
$$() function, 128–129, 408
$$('#box-container .box') function, 129
$$('#element-id') function, 129
$$('.box') function, 129
$$('div#logo img') function, 129
$$('div.box') function, 129
$$('form') function, 129
$$('input[type=radio]') function, 129
$_events array, 521
$_FILES array, 381
$_newPassword property, 98
$_POST array, 162
$_profile variable, 222
$_SERVER variable, 540
$_SESSION superglobal, 87
$_SESSION variable, 50
$A() function, 141
$('box-container').getElementsByClass-

Name('box') function, 129
$('element-id') function, 129
/** token, 6
404: File Not Found error, 137

■A
<a> tag, 245
<abbr> tag, 507
access control list (ACL), 54
account controller, 81, 116, 223
account login, 4
account management, 4, 116–121

allowing users to update details, 120–121
home page, 116–118
updating web site navigation, 118–119

account resource, 60
account template, 109
AccountController class, 81–82, 116, 178,

210–211, 214
AccountController controller, 57
AccountController.php file, 57, 81, 102, 112,

114, 211
/account/login directory, 174
ACL (access control list), 54
action element, 162
action handlers, 453–454
action parameter, 114, 489
action=load string, 165

actions, BlogmanagerController class, 225
active navigation section, 191–192
add() method, 63
add operation, 490
add variable, 340
addClassName() method, 131, 133, 460
addControl() method, 485
addDocument() method, 434, 438
addError($name, $message) error message, 74
addField() method, 432
addMarkerToMap() function, 494, 498–500,

505, 514
address lookup form, 492–493
addRoute() method, 304
addTags() method, 336, 441
addTo() function, 96
addToIndex() function, 436, 439–441
admin resource, 60, 536
AdminController class, 537
administrator role, 55, 60
administrator section, 535–536

auditing application logs, 536
blog post management, 536
user management, 535–536

administrator user type, 536
administrators, e-mailing critical errors to,

519–523
EmailLogger class, 519–523
specifying recipient, 522

administrators users, 45
afterFinish callback, 410
Ajax

combining with Prototype, Scriptaculous,
and PHP, 154–168

index.php, 156–157
items.php, 159–161
processor.php, 161–163
schema.sql, 158–159
scripts.js, 163–168
styles.css, 157–158

deleting image files using, 406–410
BlogImageManager JavaScript class,

407–410
modifying PHP deletion code, 406–407

operations, in Prototype, 134–145
Ajax.Request function, 140–145
callback functions, 135–138
JSON, 138–140

Index

547

9063Ch15Index.qxd 11/21/07 7:09 AM Page 547

Ajax (continued)
requests, 487–492

BlogPostLocation.php, 488–489
detecting, 211
locationsmanageAction() function,

489–492
Ajax class, 134
Ajaxing blog monthly summary, 283–291

BlogMonthlySummary JavaScript class,
285–287

creating Ajax Request output, 284–285
installing BlogMonthlySummary class, 287
notifying user about content update,

287–291
managing message containers, 288–289
overview, 287–288
updating messages container with

BlogMonthlySummary, 289–291
overview, 283

Ajax.InPlaceEditor class, 509
Ajax.PeriodicalUpdater method, 134
Ajax.Request class, 211
Ajax.Request() event handler, 409
Ajax.Request function, 134, 140–145, 168

complete example, 143–145
completing onFailure error handler, 143
handling XML data from, 141–142
handling XML that isn't well formed,

142–143
Ajax.Updater method, 134
allow() method, 55
AllowOverride directive, 22
alt attribute, 245
Apache HTTP Server, installing, 10
API keys, Google Maps, 474–475
application development, 1–8

account login, 4
account management, 4
application logging, 7
application management, 5
blog functionality, 4
database connectivity, 3
extensibility, 7–8
main home pages, 3
maintainability, 7–8
overview, 1
PHPDoc style commenting, 5–7
search tools, 4–5
search-engine optimization, 5
security, 7
templates, 3
unit testing, 8
user home pages, 3
user registration, 4
version control, 8
Web 2.0, defined, 2

application framework, 9, 44

application settings, defining, 27–28
database

connecting to, 29–30
setting up, 17–18

filesystem structure, 12–14
data storage directory, 12
full directory structure, 13
PHP classes directory, 13
templates directory, 13
web root directory, 12

logging capabilities, 41–44
MVC pattern, 18–26

application logic versus presentation
logic, 19–21

IndexController, 25–26
index.php, 21–22
Zend_Controller class, 22–25

overview, 9
Smarty template engine, 30–41

downloading, 34–36
improving performance, 33
installing, 34–36
integrating with web site controllers,

39–41
vs. other template engines, 33–34
using metalanguage for templates,

33–34
Zend_Controller class, 36–38

web server
configuring, 15–17
setting up, 9–12

Zend Framework, installing, 14
application logging, 7, 519–524

e-mailing critical errors to administrators,
519–523

adding EmailLogger class to Zend_Log,
522–523

EmailLogger class, 519–521
specifying recipient, 522

using logs, 523–524
application logic, 3, 19–21
application logs, auditing, 536
application management, 5
application runtime errors, 531–535
application settings, defining, 27–28
application/x-www-form-urlencoded

attribute, 375
archive links, 322–324
archiveAction() method, 302, 321, 324–326
archives, monthly, 324–326
archive.tpl template, 326
array_map() function, 339
array_slice() function, 447
$articles object, 31
assign argument, 178
Atom feeds, creating with Zend_Feed, 352
auditing application logs, 536

■INDEX548

9063Ch15Index.qxd 11/21/07 7:09 AM Page 548

$auth object, 51
$auth->authenticate() method, 54
authenticate() method, 50, 52
$authenticated variable, 117–118
authentication, user. See user authentication
authentication-box.tpl template, 283
author field, 430
authorization, user. See user authorization
autocomplete attribute, 455
Autocompleter control, 152
autocompletion, 452–466

results
adding keyboard navigation to, 462–466
adding mouse navigation to, 460–462
creating action handlers to return,

453–454
search suggestions

displaying, 457–459
providing, 452–453
retrieving, 454–456

SearchSuggestor class, 457

■B
 tag, 245
backup, 543–544
bigint unsigned type, 49
Binary field type, 429
bind() function, 148, 150
bindAsEventListener() function, 148, 150, 455
bindInfoWindow() method, 500
black list, 245
blocks, 34
blog details pages

displaying image files on, 420–422
loading Lightbox on, 423–424

blog manager, extending
Ajaxing blog monthly summary, 283–291

BlogMonthlySummary JavaScript class,
285–287

creating Ajax Request output, 284–285
installing BlogMonthlySummary class,

287
notifying user about content update,

287–291
overview, 283

integrating WYSIWYG editor, 291–296
configuring FCKeditor, 293
downloading and installing FCKeditor,

292–293
loading FCKeditor in blog editing page,

294–296
overview, 291–292

listing blog posts on blog manager index,
283

displaying monthly summary, 279–283
displaying recent posts in template,

276–278

fetching blog posts from database,
266–274

overview, 265
blog posts. See also image files

creating/editing, 228–248
filtering submitted HTML, 243–247
generating permanent link to, 240–243
submission form templates, 228–231

deleting, 411
displaying details, 321–322
displaying individual, 318–322
displaying on user home page, 315–318
image files, 399–416

automatically loading, 399–401
deleting, 403–411
displaying on preview, 401–403
reordering, 412–416

listing on blog manager index
assigning recent posts and monthly

summary to template, 274–275
displaying monthly summary, 280–283
fetching blog posts from database,

266–272
overview, 265–266

loading live using URLs, 319
loading recent public, 326–327
management, 536
modifying to load locations, 477–478
previewing, 248–253

previewAction() method, 249
preview.tpl file, 249–252
requesting confirmation for user

actions, 252–253
retrieving latest for home page, 330–331
updating status of, 254–262

FlashMessenger, 256–262
setstatusAction() method, 254–256

blog_posts table, 240, 268, 373, 452
blog_posts_images table, 373, 411
blog_posts_locations table, 475
blog_posts_profile table, 220–221
blog_posts_tags table, 452
blog_public setting, 326
blogging system, 219–263

blog posts
creating, 228–248
editing, 228–248
FlashMessenger, 256–262
previewing, 248–253
setstatusAction() method, 254–256
updating status of, 254–262

BlogmanagerController class, 223–228
actions, 225
extending application permissions,

223–225
linking to, 226–228

database tables, 219–221

■INDEX 549

9063Ch15Index.qxd 11/21/07 7:09 AM Page 549

blogging system (continued)
DatabaseObject class, 221–223
overview, 219
Profile class, 221–223

blogging web application, 1
BlogImageManager instance, 408
BlogImageManager.class.js file, 407, 410
BlogLocationManager class, 486, 499, 507

creating, 407–410
loading in blog post preview, 410

BlogLocationManager JavaScript class,
483–493

addMarkerToMap() function, 498–500
class initialization, 495–496
createPoint() function, 503–504
createPointSuccess() function, 505
dragged locations, 505–506
google.maps.Unload() function, 507
hasMarker() function, 501
loading, 485–486
loadLocationsSuccess() function, 501–502
loadMap() function, 496–497
onFormSubmit() function, 502
onRemoveMarker() function, 506–507
onRemoveMarkerSuccess() method, 507
removeMarkerFromMap() function,

500–501
required methods, 493–494
using, 508–509
zoomAndCenterMap() function, 497–498

BlogLocationManager.class.js file, 483, 492,
495

BlogLocations class, 509, 511–514
BlogLocationsManager class, 512
blogmanager controller, 376
blogmanager section, 486
BlogmanagerController class, 223–228, 231,

258, 340, 379
actions, 225
extending application permissions,

223–225
linking to, 226–228

BlogmanagerController.php class, 379–380
BlogmanagerController.php file, 232, 249,

274, 405–406, 413, 479
BlogmanagerController.php template, 284
BlogMonthlySummary class, 285–287

installing, 287
updating messages container, 289–291

BlogMonthlySummary.class.js file, 289
BlogPostImage.php file, 374, 380, 382, 396,

400, 404
BlogPostLocation.php, 475, 487–489
BlogPost.php file, 221, 233–234, 241, 246, 269,

271, 277, 315, 319, 326, 337, 347, 412,
432–433, 439, 452, 477

blog-post-summary.tpl template, 316, 331,
418, 449

blogPreview.js file, 410
blogs. See also blog manager; blog posts;

blogging system
displaying, 313–326

archive links, 322–324
index page, 313–318
individual posts, 318–322
monthly archive, 324–326

displaying tags on, 344–346
displaying tags on each post, 351
functionality, 4
indexes, displaying image files on,

418–420
retrieving posts based on tag spaces,

347–348
single posts, 435–438

adding to index, 436–438
removing from index, 438

triggering index search updates
when posts are created, 439–467
when posts are deleted, 440
when posts are updated, 440
when post’s tags are changed, 441

blog-summary-box.tpl template, 283
<body onload=""> event, 146
<body onload="doSomething()"> element,

145
<body> tag, 41, 146
Book class, 148
bootstrap file, 539–542
#box-container element, 129

 tag, 245
breadcrumbs, 171–183

Breadcrumbs class, 172–174
creating Smarty plug-in to output,

180–182
displaying page titles, 182–183
generating URLs, 174–178

in controller actions, 175–176
in Smarty templates, 176–178

setting trails for each controller action,
178–180

Breadcrumbs class, 172–174
breadcrumbs function, 180
Breadcrumbs::addStep() method, 178
Breadcrumbs::getTitle() method, 178
Breadcrumbs.php file, 172
browsers, Google Maps compatibility, 474
Builder class, 153, 458, 500
Builder.node() function, 167
buildIndex() function, 434
BuildMultiple() helper method, 270

■INDEX550

9063Ch15Index.qxd 11/21/07 7:09 AM Page 550

■C
callback functions, 135–138
canceling events, 147
CAPTCHA (Completely Automated Public

Turing test to tell Computers and
Humans Apart), 88–95

accessibility, 89–90
adding images to registration form, 93–94
circumventing, 89
generating images, 90–93
images, 73
Text_CAPTCHA component, 90
validating phrases, 95

captcha field, 94
captchaAction() method, 91
Cascading Style Sheets (CSS), 2, 171, 183,

192–204
creating, 193–198

global styles, 197
page content, 197–198
page headers, 195
tabbed navigation bars, 195–196
three-column layout, 193–194

full application, 201–204
loading files, 192–193
print-only, 198–201
specifying media types, 192–193

catch block, 527
ceil() function, 446
Class.create() function, 286
cleanHtml() method, 238, 245–247
clear : both style, 514
clear : right style, 421
clearBody() function, 532
clearIdentity() method, 54, 107
clearSuggestions() function, 459
clearTimeout() function, 464
click event handler, 145
click events, 252, 460, 495
client-side form validation, 208–217

adding JSON support to
CustomControllerAction class, 209

FormProcessor_UserRegistration class,
209–210

registerAction() method, 210–212
UserRegistrationForm JavaScript class,

212–217
displaying form errors, 214
handling form submission, 214–215
handling form validation responses,

215–216
hiding form errors, 213
initializing, 213
loading, 216–217

coalesce() function, 386
commenting, 5–7

commit() method, 435, 437
compile_dir class, 36
compile_dir database type, 31
compile_dir property, 35
Completely Automated Public Turing test to

tell Computers and Humans Apart.
See CAPTCHA

$config object, 28
$config variable, 29
$config->logging->file variable, 42
configtest command, 10
configuring

FCKeditor, 293
web server, 15–17

creating virtual host in Linux, 15–16
creating virtual host in Windows, 17
restarting, 17

confirm action, 112
confirmation, requesting for user actions,

252–253
confirmNewPassword() method, 112
connecting to database, 29–30
connection errors, 524
connectors, 291
constants, 222
constraint parameter, 414
contact details function, 361
containerId value, 163
#content container, 157
content updates, notifying user about,

287–291
managing message containers, 288–289
overview, 287–288
updating messages container with

BlogMonthlySummary, 289–291
content-length header, 388
content-type header, 163, 209, 388
Content-Type metatag, 41
controller, 19–20
controller actions

generating URLs in, 175–176
setting titles and trails for each, 178–180

controller argument, 176
$controller->dispatch() method, 304
$controller->throwExceptions(true), 28
/controller/action method, 297
Controllers directory, 13, 23
controls, map, 470–471
count() function, 33, 446
CREATE DATABASE command, 18
create() method, 434, 436
createAuthIdentity() method, 105, 117, 120
CreateHtml() method, 295
createPoint() function, 502–504
createPoint(locations) method, 494
createPointSuccess() function, 505
createPointSuccess(transport) method, 494

■INDEX 551

9063Ch15Index.qxd 11/21/07 7:09 AM Page 551

createThumbnail() method, 390–391, 398
credentials, 50
cross-site request forgery (CSRF), 7, 182, 244
cross-site scripting (XSS), 7, 182, 244
CSRF (cross-site request forgery), 7, 182, 244
CSS. See Cascading Style Sheets
css directory, 423
current() function, 418
CustomControllerAclManager class, 81, 223
CustomControllerAclManager.php file, 58
CustomControllerAction class, 26, 173, 177,

209, 257, 284, 305, 481
CustomControllerAction.php file, 26, 117,

173, 209, 257, 284, 305
CustomerControllerAclManager.php file, 224

■D
$data array, 209
./data directory, 384
data errors, 524
data formats, for web feeds, 352
data storage directory, 12
database

connecting to, 3, 29–30
setting up, 17–18

database tables, 45–49, 219–221, 373, 475
timestamps, 47–48
user profiles, 48–49

DatabaseObject class, 61–65, 221–223
controlling uploaded image files with,

373–374
DatabaseObject_BlogPost class, 221–222
DatabaseObject_User class, 62–65

DatabaseObject directory, 62
DatabaseObject subclass, 221, 403, 475
DatabaseObject_BlogPost array, 510
DatabaseObject_BlogPost class, 221–222, 240,

266–267, 271, 319, 326, 336, 340, 344,
351, 411, 417, 431, 433–435, 444, 477

DatabaseObject_BlogPost object, 239, 270,
277

DatabaseObject_BlogPost::GetPosts()
method, 314, 347

DatabaseObject_BlogPostImage class, 374,
384, 388, 390, 400, 403, 417

DatabaseObject_BlogPostLocation class,
475–477, 489

DatabaseObject_BlogPost::STATUS_DRAFT
function, 222, 255

DatabaseObject_User class, 62–65, 69–72,
105, 222, 301, 311

DatabaseObject_User function, 105
DatabaseObject_User: loginSuccess()

function, 105
DatabaseObject_User object, 88, 96, 98
DatabaseObject_User property, 61

DatabaseObject_User: usernameExists()
function, 76

DatabaseObject_User::fetchPassword()
method, 112

DatabaseObject.php file, 61
DatabaseObject::TYPE_TIMESTAMP type, 62
database.password setting, 28
databases

exporting, 543–544
importing, 544

./data/search-index directory, 441

./data/tmp directory, 35, 390
date() function, 48
date_format() function, 273
DateTime class, 236
datetime type, 47
$db object, 29, 280
db property, 26
$db->fetchAll() method, 270
$db->select() method, 266
dbConnect() function, 162
debug.log directory, 27
defaultContent property, 164–165
defining application settings, 27–28
delete() method, 61, 256, 339, 403, 411, 437,

491
delete operation, 491
delete variable, 340
deleteAllTags() method, 336, 339
deleted element, 409
deleteFromIndex() function, 438, 440
deleteTags() function, 336, 339, 441
deleting image files, 403–406

using Scriptaculous and Ajax, 406–410
when posts are deleted, 411

deny() method, 55
deployment, 538–543

overview, 519
with Rsync, 542–543
servers, 538–542

detailsAction() method, 120, 298
detailscompleteAction() method, 120, 298
detailscomplete.tpl template, 298
details.tpl template, 298–299, 365
development section, 539
directories, 12–13
DirectoryIndex directive, 12
dispatch() method, 22
display : inline style, 342
display logic, 3
display() method, 36
display: none style, 259
display_seconds attribute, 230
display_template() function, 21
displaying

blogs, 313–326
archive links, 322–324

■INDEX552

9063Ch15Index.qxd 11/21/07 7:09 AM Page 552

index page, 313–318
individual posts, 318–322
monthly archive, 324–326

form errors, 214
image files, 417–425

on blog details page, 420–422
on blog index, 418–420
extending GetPosts() function, 417–418
with Lightbox, 422–425

image files on blog post preview, 401–403
maps, 470–486

BlogLocationManager JavaScript class,
483–486

controls, 470–471
loading API, 481–482
overlays, 471–473
on public blogs, 509–516

page titles, 182–183
post details, 321–322
public profiles, 365–368
registration form/processing registrations,

81–88
AccountController class, 81–82
developing templates, 82–86
form submission, 86–88

search results, 448–450
search suggestions, 457–459
tags on blogs, 344–346
tags on each post, 351

div element, 41, 343
<dl> tag, 277
Document Object Model. See DOM
document.createElement() function, 153
documentElement property, 141
document.getElementById() method, 124
document.getElementsByClassName()

function, 125, 129
DOM (Document Object Model), 124

element builder, 153
Prototype selecting objects, 124–129

$() function, 124–125
$$() function, 128–129
getElementsByClassName() function,

125–128
getElementsBySelector() function, 129

<doSomethingMalicious> tag, 245
downloading

FCKeditor, 292–293
Prototype, 123–124
Scriptaculous, 154
Smarty template engine, 34–36

drag and drop
reordering image files, 412
Scriptaculous, 152

dragComplete() method, 494, 499, 505
dragend event, 505
draggable areas, 152

draggable property, 497
Draggables class, 152
dragged locations, 505–506
droppable areas, 152
Droppables class, 152
dynamic image galleries, 371–425

displaying images, 417–425
on blog details page, 420–422
on blog index, 418–420
extending GetPosts() function, 417–418
with Lightbox, 422–425

managing images, 399–416
automatically loading, 399–401
deleting, 403–411
displaying on post preview, 401
displaying on preview, 403
reordering, 412–416

overview, 371–372
resizing images, 390–399

linking thumbnailer to imageAction()
function, 395–399

thumbnails, 390–395
sending images, 387–389
storing image files, 372–374

controlling with DatabaseObject class,
373–374

database tables for, 373
uploading image files, 374–387

adding form, 375–376
BlogmanagerController.php class,

379–380
form encoding, 375
FormProcessor_BlogPostImage class,

380–384
setting maximum file size, 378
specifying file input type, 377–378
writing files to filesystem, 384–387

■E
e argument, 542
each() method, 127, 130
editAction() method, 226, 228, 231–233
editing blog posts, 228–248

filtering submitted HTML, 243–247
generating permanent link to, 240–243
submission form templates, 228–231

edit.tpl template, 228, 230, 282, 295
Effect.Appear effect, 153
Effect.Fade effect, 153
Effect.Grow effect, 153
Effect.Highlight class, 165, 261
Effect.Highlight effect, 153
Effect.MoveBy effect, 152
Effect.Opacity effect, 152
Effect.Parallel effect, 153
Effect.Scale effect, 152
Effect.Shrink effect, 153

■INDEX 553

9063Ch15Index.qxd 11/21/07 7:09 AM Page 553

element extensions, Prototype, 130–134
hiding elements, 131
managing classes of elements, 131–133
manipulating strings, 133–134
retrieving dimensions of elements, 131
showing elements, 131

element property, 410
elements

hiding, 131
managing classes of, 131–133
retrieving dimensions of, 131
showing, 131

 tag, 245
E-mail address field, 363
e-mail addresses, validating, 79
e-mail functionality, 95–100
email property, 360
e-mailing critical errors to administrators,

519–523
EmailLogger class, 519–523
specifying recipient, 522

EmailLogger class, 519–523
EmailLogger object, 528
enctype attribute, 375
end_year attribute, 229
entries array, 353
.error class, 204, 213, 215
error directory, 534
error display templates, 534–535
error element, 381
error handling

e-mailing to administrators, 519–523
EmailLogger class, 519–523
specifying recipient, 522

site, 524–535
application runtime, 531–535
objectives of, 526
predispatch, 526–531

$error object, 532
error_handler parameter, 531
error404Action() function, 532–533
error404.tpl template, 534
errorAction() method, 531
ErrorController class, 531
ErrorController.php file, 531, 533
error.html file, 527
$errors array, 101, 105
errors array, 215
error.tpl file, 534
error.tpl template, 85, 204, 532
escape modifier, 32
escapeHTML() method, 134
eval() function, 139
evalJSON() method, 139, 215
evaluate() method, 142
Event class, 133
event handling, in Prototype, 145–147

canceling event, 147
finding out which element event occurred

on, 146
observing event, 145–146

Event.element() event handler, 409
Event.element() function, 146, 287, 462
Event.observe() function, 288
Event.observe() method, 145–146, 164, 252,

261
events

canceling, 147
observing, 145–146

events function, 361
Event.stop() function, 147, 287, 502
EXCEPTION_NO_ACTION value, 532
EXCEPTION_NO_CONTROLLER value, 532
EXCEPTION_OTHER value, 532
exporting databases, 543–544
extend() function, 496
extensibility, 7–8

■F
factory() method, 29, 91, 529
family-name subproperty, 367
fckconfig.js file, 293
FCKeditor, 291–296

configuring, 293
downloading and installing, 292–293
loading in blog editing page, 294–296
overview, 291–292

$fckeditor object, 295
FCKeditor_2.4.3.tar.gz file, 292
fckeditor_php5.php file, 293–294
FCKeditor.php file, 294
feedAction() function, 353
$feedData array, 353, 355
$feedData['entries'] array, 354
feed-icon-14x14.png file, 356
$feedTitle variable, 355
$feedUrl variable, 355
fetchOne() function, 269
fetchPairs() function, 272
fetchpassword action, 81
fetchPassword() method, 112
fetchpassword privilege, 60
fetchpasswordAction() function, 112, 114
fetchpassword.tpl directory, 109
field naming, Zend_Search_Lucene tool, 430
field types, Zend_Search_Lucene tool, 429
<fieldset> tag, 85
$file variable, 381
filenames, thumbnail, 393
filesize() function, 389
filesystem structure, 12–14

data storage directory, 12
full, 13
PHP classes directory, 13

■INDEX554

9063Ch15Index.qxd 11/21/07 7:09 AM Page 554

templates directory, 13
web root directory, 12

filtering submitted HTML, 243–247
cleanHtml() method, 245–247
embedded JavaScript, 244
types of filtering, 245

find() function, 437, 446
finish parameter, 445
Firefox operator plug-In, 361–362
first name field, 363
first_name property, 118
FlashMessenger, 256–262

adding to CustomControllerAction, 257
outputting messages on web site, 259–262
writing messages to, 258–259

FlashMessenger action helper class, 256
fn property, 360
$foo variable, 33
footer.tpl file, 188, 190–191, 457
footer.tpl template, 40, 259, 281, 346, 442
foreach() function, 32
for/each loop, 32
foreach tag, 32, 351
form element, 343
<form> tag, 343
FormProcessor class, 74, 233
FormProcessor_BlogPost class

implementing, 233–240
instantiating in editAction() method,

231–233
FormProcessor_BlogPostImage class,

380–384
FormProcessor_UserDetails class, 120, 364
FormProcessor_UserRegistration class,

74–81, 208–210, 212
IsValidUsername() method, 77
usernameExists() method, 77
validating

e-mail addresses, 79
usernames, 77–78

FormProcessor::getError() method, 86
FormProcessor.php file, 75
forms

client-side validation, 208–217
adding JSON support to

CustomControllerAction class, 209
FormProcessor_UserRegistration class,

209–210
registerAction() method, 210–212
UserRegistrationForm JavaScript class,

212–217
errors

displaying, 214
hiding, 213
returning using JSON, 211–212

styling, 204–206
submission, 214–216

validation responses, 215–216
_forward() method, 88, 311
$fp object, 232
$fp variable, 230
$fp->post object, 232
FreeBSD, 10
from argument, 32
from() method, 268
from parameter, 268
full application style sheets, 201–204
full-text indexes, 427
function calls, binding to objects, 148–151
function.breadcrumbs.php file, 180
function.get_monthly_blog_summary.php

file, 280, 322
function.geturl.php file, 177, 306
function.imagefilename.php file, 397
function.wysiwyg.php file, 294

■G
G_GEO_SUCCESS element, 503
G_HYBRID_MAP map type, 485
G_NORMAL_MAP map type, 485
G_SATELLITE_MAP map type, 485
galleries. See dynamic image galleries
generateUniqueUrl() method, 241
geo class, 509
geo microformat, 509–511
geocoder, 473
geocoding, 469–470
__get() method, 63, 82
get_monthly_blog_summary function,

279–280, 322
getAttribute() method, 142
_GetBaseQuery() method, 266–269, 328, 347
getBoundsZoomLevel() function, 498
getCAPTCHAAsPng() method, 92
getCode() method, 52
getConnection() method, 529
getCustomUrl() method, 305, 312, 321
getDimensions() method, 131
getElementsByClassName() function,

125–128
getElementsBySelector() function, 129, 408
getElementsBySelector() method, 213
getElementsByTagName() function, 141
getEngine() method, 37
getError() method, 82
getError($name) error message, 74
getErrors() method, 211
getFullpath() function, 385, 389, 398
getHeight() method, 131
getId() method, 61
getIdentity() method, 54
GetImageHash() method, 396
GetImages() function, 400, 417
getImageSize() function, 383, 389, 391

■INDEX 555

9063Ch15Index.qxd 11/21/07 7:09 AM Page 555

getIndexableDocument() method, 432, 434,
436

getIndexFullpath() method, 433–434
getInstance() method, 22
getItems() function, 160–161
GetLocations() function, 52, 476–477,

501–502
GetMonthlySummary() function, 266, 272,

274, 279
getNumberOfSuggestions() function, 462
GetOptions() function, 347
GetPosts() function, 274, 434, 444, 447, 478

creating, 269–271
extending, 417–418

GetPosts() method, 266, 268, 314–315,
326–327, 330

GetPostsCount() function, 266, 268–269, 274,
315

getRouter() method, 304
getSelectedSuggestion() function, 464
getSelectedSuggestionIndex() function, 464
getSelectFields() function, 234
getStorage() method, 105
getTags() function, 336, 339
getTags() method, 351, 432
GetTagSuggestions() method, 452–453
GetTagSummary() method, 344
getTeaser() method, 277, 354
GetThumbnailPath() method, 390
getTrail() method, 180
GetUploadPath() method, 384
getUrl() function, 175, 305, 353
geturl plug-in, 176–177, 182, 190, 305–306,

397–398
GetUsers() method, 328
GetUsersCount() method, 328
getValue() function, 135
getWidth() method, 131
given-name subproperty, 367
glob() function, 404
global styles, 197
Google Maps, 469–516

API key, 474–475
browser compatibility, 474
displaying maps, 481–486

BlogLocationManager JavaScript class,
483–486

loading API, 481–482
on public blogs, 509–516

documentation/resources, 474
features, 469–473

controlling maps, 473
controls, 470–471
geocoding, 469–470
overlays, 471–473

limitations of, 473–474
location storage capabilities, 475–478

database table, 475
DatabaseObject_BlogPostLocation

class, 475–477
modifying blog posts to load locations,

477–478
locations, 487–509

address lookup form, 492–493
Ajax requests, 487–492
BlogLocationManager JavaScript class,

493–509
locationsAction() function, 479–481
overview, 469

google.load() method, 483
google.maps.* namespace, 474
google.maps.BrowserIsCompatible()

function, 474, 484
google.maps.ClientGeocoder class, 496
google.maps.key key, 475
google.maps.key setting, 482
google.maps.LatLng class, 474, 484, 498
google.maps.LatLngBounds class, 497
google.maps.Map2 class, 484
google.maps.Map2 object, 501
google.maps.Unload() function, 485, 507
guest role, 55
guests users, 45

■H
$H() function, 130, 495
<h1> tag, 182
handleClick() method, 149
handleError() callback, 143
handleFormSubmission() method, 147
handleSuccess() method, 142, 151
has() function, 57
hasClassName() function, 131
hasError() method, 76, 82, 239
hasError($name) error message, 74
Hash object, 129–130
hasIdentity() method, 54
hasMarker() function, 500–501
hasMarker(id) method, 494
hasTag() function, 336, 339
hAtom microformat, 358
hCalendar microformat, 358
hCard microformat, 335, 358
<head> section, 207, 355, 481
#header block, 187–195
header.tpl file, 188–190, 227, 261, 355, 457,

480–481, 485
header.tpl template, 40, 82, 118, 190, 196,

207, 423, 514
Hide All button, 125
hide() method, 127
hideAll() function, 128
hiding

elements, 131

■INDEX556

9063Ch15Index.qxd 11/21/07 7:09 AM Page 556

form errors, 213
Highlight effect, 260
.highlight style, 133
$hits array, 446
home pages, 3, 326–332

creating template, 331–332
displaying posts on, 315–318
loading multiple user records, 328–329
loading recent public posts, 326–327
retrieving latest posts for, 330–331

href attribute, 245
.htaccess file, 16, 21–22
htdocs directory, 12
./htdocs directory, 22, 527
./htdocs file, 21
./htdocs/css directory, 402, 423, 450
./htdocs/css/styles.css directory, 401
./htdocs/css/styles.css file, 251, 317, 322
./htdocs/images directory, 356, 423
./htdocs/index.php file, 528, 541
./htdocs/js directory, 213, 260, 288, 292, 407,

410, 423, 454, 483, 492, 495, 511
./htdocs/js/BlogImageManager.class.js

directory, 414
./htdocs/js/blogPreview.js file, 252
./htdocs/js/fckeditor/editor/filemanager

directory, 293
./htdocs/js/scripts.js file, 485
HTML, 2

filtering submitted, 243–247
cleanHtml() method, 245–247
embedded JavaScript, 244
types of filtering, 245

moving markup into Smarty templates,
188–192

active navigation section, 191–192
footer.tpl file, 190–191
header.tpl file, 189–190

static files, 184–187
html_select_date function, 229
htmlSpecialChars() function, 162
HTTP errors, 525
httpd-2.2.4.tar.gz file, 10
httpd.conf file, 12, 15–16, 21
http://phpweb20 address, 41

■I
<i> tag, 245
id parameter, 114, 232
$id variable, 388
$identity variable, 117
if statement, 56
if/else statement, 32, 251, 450
image files. See also blog posts

automatically loading, 399–401
deleting, 403–411

using Scriptaculous and Ajax, 406–410

when blog posts are deleted, 411
displaying, 417–425

on blog details page, 420–422
on blog index, 418–420
extending GetPosts() function, 417–418
with Lightbox, 422–425
on preview, 401–403

reordering, 412–416
resizing, 390–399

linking thumbnailer to imageAction()
function, 395–399

thumbnails, 390–395
sending, 387–389
uploaded, storing, 372–374
uploading, 374–387

adding form, 375–376
BlogmanagerController.php class,

379–380
form encoding, 375
FormProcessor_BlogPostImage class,

380–384
setting maximum file size, 378
specifying file input type, 377–378
writing files to filesystem, 384–387

image galleries. See dynamic image galleries
image_id element, 410
Image_Text component, 90
imageAction() function, linking thumbnailer

to, 395–399
GetImageHash() method, 396
imagefilename Smarty plug-in, 396–398
updating imageAction() to serve

thumbnails, 398
ImageCopyResampled() function, 394
ImageCreateFromPng() function, 394
ImageCreateTrueColor() function, 394
imagefilename plug-in, 396, 402
imagefilename Smarty plug-in, 396–398
ImageHandler class, 150
ImageMagick, 372
ImagePng() method, 394
images, CAPTCHA

adding to registration form, 93–94
generating, 90–93

images action handler, 376
$images array, 399
images directory, 189
imagesAction() function, 379, 405, 409, 413,

415
img style, 197
 tag, 93, 187, 245, 418
importArray() method, 352
importing databases, 544
Include directive, 15
include directory, 13
./include directory, 26, 37, 61, 66, 75, 284
include_path directive, 13, 17

■INDEX 557

9063Ch15Index.qxd 11/21/07 7:09 AM Page 557

./include/Controllers directory, 25, 81, 91,
225, 349, 388, 398, 443, 453, 531

./include/Controllers/AdminController.php
file, 537

./include/Controllers/
CustomControllerAction.php file, 482

./include/DatabaseObject class, 404

./include/DatabaseObject directory, 221,
234, 241, 269, 277, 301, 315, 337, 374,
396, 400, 411, 433, 439, 475, 489

./include/DatabaseObject/BlogPost.php
directory, 344

./include/DatabaseObject/BlogPost.php file,
255

./include/EmailLogger.php file, 520

./include/FormProcessor directory, 210, 233,
246, 380, 487

./include/Profile directory, 66, 223

./include/Templater/plugins directory, 180,
280, 397

./include/Templater/plugins/
function.geturl.php file, 177

index controller, 223
index pages, 313–318

displaying posts on user home page,
315–318

indexAction() method, 314–315
index_next variable, 449
indexAction() method, 116, 178, 226–227,

274, 279, 284, 302, 314–315, 318,
326–327, 353, 443–444

IndexController class, 25–26, 326–327
IndexController.php file, 25–26, 330
indexing content, 430–441

building indexes, 434–435
multiple types of data, 431
retrieving index locations, 433
single blog posts, 435–438

adding to index, 436–438
removing from index, 438

triggering updates, 439–441
when posts are created, 439–467
when posts are deleted, 440
when posts are updated, 440
when post’s tags are changed, 441

Zend_Search_Lucene_Document class,
431–432

indexOf() method, 501
index.php, 156–157
index.php bootstrap, 36, 348, 525, 540
index.php command, 12
index.php file, 12, 21–22, 28–29, 155, 157, 303
index.tpl file, 118, 191, 226, 315, 355, 444
index.tpl template, 40, 116, 276–277, 281,

346, 449
information windows, 472

init() function, 26, 91, 163–165, 173, 178, 257,
457

initialize() function, 455
initialize() method, 149, 496
inline element, 343
innerHTML property, 462
InPlaceEditor control, 152
installing

Apache HTTP Server, 10
BlogMonthlySummary class, 287
FCKeditor, 292–293
Lightbox, 423
MySQL 5, 11
PHP 5.2.3, 11–12
Prototype, 123–124
Scriptaculous, 154
Smarty template engine, 34–36
Zend Framework, 14

invoke() enumerator method, 213
invoke() method, 127
isAllowed() method, 56, 60
isLive() method, 250
isPost() method, 104
isSaved() method, 61
isset() method, 67
isValid() method, 52
IsValidUsername() method, 76–78
isXmlHttpRequest() method, 211, 284, 406,

413
$isXmlHttpRequest variable, 284
item argument, 32
items.php, 159–161

connecting to database, 159–160
processing and saving list order, 160–161
retrieving list items, 160

items.php file, 155, 159

■J
JavaScript

classes, in Prototype, 147–151
embedded, filtering, 244
unit testing, Scriptaculous, 153–154

JavaScript Object Notation (JSON), 138–140,
209

javascript: string, 247
join() method, 432
/js directory, 123
js directory, 423
JSON (JavaScript Object Notation), 138–140,

209
json variable, 212
json_encode() function, 139

■K
key argument, 32
keyboard navigation, adding to search

results, 462–466

■INDEX558

9063Ch15Index.qxd 11/21/07 7:09 AM Page 558

keypress event, 455
Keyword field type, 429
Keyword type, 432

■L
l argument, 542
LargeMapControl control, 485
last name field, 363
$leftcolumn parameter, 282
$leftcolumn template, 442
left-column.tpl template, 285, 318, 323, 346,

366
 tag, 245
Lightbox, displaying image files with, 422–425

installing, 423
linking to, 424–425
loading on blog details page, 423–424

lightbox.css file, 423
lightbox.js file, 423
lightbox.js script, 424
$limit elements, 453
limit parameter, 445
$limit variable, 314
<link> tag, 355
linking

to blog posts, 240–243
to BlogmanagerController class, 226–228
to Lightbox, 424–425
to locationsAction() function, 480–481
thumbnailer to imageAction() function,

395–399
GetImageHash() method, 396
imagefilename Smarty plug-in, 396–398
updating imageAction() to serve

thumbnails, 398
to web feeds, 355–357

$links array, 182
$linkToBlog variable, 331
Linux, 9–10, 15–16
listing-5-6.xml file, 141
load action, 161–163
load() method, 61, 67, 234
loadByUsername() method, 311–312
loadForPost() function, 404
loadForUser() method, 234, 319, 404
loading

BlogImageManager JavaScript class in
blog post preview, 410

BlogLocationManager JavaScript class,
485–486

FCKeditor, 294, 296
image files automatically, 399–401
Lightbox on blog details page, 423–424
live posts using URLs, 319
multiple user records, 328–329
Prototype, 207
recent public posts, 326–327

Scriptaculous, 207
UserRegistrationForm JavaScript class,

216–217
loadItems() function, 164–167
loadItemsFailure() function, 166
loadItemsSuccess callback, 165
loadItemsSuccess() function, 166
loadLivePost() method, 319
loadLocationsSuccess() function, 494, 496,

501–502
loadMap() function, 483, 485, 496–497
loadMap() method, 484, 493
loadMaps() function, 512
loadSuggestions() function, 455, 459
loadXml() function, 145
location_id property, 499, 505
location_id value, 491
#location-manager div, 480, 486
locations, 487–509

address lookup form, 492–493
Ajax requests, 487–492

BlogPostLocation.php, 488–489
locationsmanageAction() function,

489–492
BlogLocationManager JavaScript class

addMarkerToMap() function, 498–500
class initialization, 495–496
createPoint() function, 503–504
createPointSuccess() function, 505
dragged locations, 505–506
google.maps.Unload() function, 507
hasMarker() function, 501
loadLocationsSuccess() function,

501–502
loadMap() function, 496–497
onFormSubmit() function, 502
onRemoveMarker() function, 506–507
onRemoveMarkerSuccess() method,

507
removeMarkerFromMap() function,

500–501
required methods, 493–494
using, 508–509
zoomAndCenterMap() function,

497–498
storage capabilities, 475–478

database table, 475
DatabaseObject_BlogPostLocation

class, 475–477
modifying blog posts to load locations,

477–478
locations function, 361
locationsAction() function, 479–481, 492
locationsmanageAction() function, 489–492,

506
locationsManageAction() method, 496
locations.Placemark array, 504

■INDEX 559

9063Ch15Index.qxd 11/21/07 7:09 AM Page 559

locations.tpl file, 480
locations.tpl template, 486, 492
log file, writing to, 43–44
log() method, 43
$logger object, 43, 107, 528, 531
$logger->debug('Test') method, 43
$logger->log('Test', Zend_Log::DEBUG)

method, 43
logging, 7, 41–44
logging.file file, 42
loginAction() method, 102
LoginFailure() method, 105
login/logout, 100–108

Account Controller login action, 102–105
creating login templates, 101–102
logging successful/failed attempts,

105–107
logging users out of accounts, 107–108
overview, 100

LoginSuccess() method, 105, 107, 115
login.tpl template, 101
logo.gif file, 189
logo-print.gif file, 189
logoutAction() method, 108
logs, 519–524

auditing, 536
e-mailing critical errors to administrators,

519–523
EmailLogger class, 519–523
specifying recipient, 522

using, 523–524
logs directory, 27
loop parameter, 449
lower() function, 337

■M
magic_quotes_gpc setting, 16
mail() function, 96
main home pages, 3
maintainability, 7–8
maintenance, 519–545

application logging, 519–524
e-mailing critical errors to

administrators, 519–523
using logs, 523–524

backup and restore, 543–544
overview, 519
site error handling, 524–535

application runtime errors, 531–535
objectives of, 526
predispatch errors, 526–531

web site administration, 535–538
administrator section features, 535–536
implementing, 536–538

make install command, 12
manipulating strings, in Prototype, 133–134
maps. See also Google Maps

controlling, 473
displaying, 470–486

BlogLocationManager JavaScript class,
483–486

controls, 470–471
loading API, 481–482
overlays, 471–473
on public blogs, 509–516

maps argument, 514
$maps variable, 482
MapTypeControl control, 485
markers, 471
markers array, 514
math tag, 34
max() function, 236, 386, 446
MAX_FILE_SIZE element, 378
md5() method, 63, 396
media attribute, 192
member role, 55, 60
members users, 45
message_clear() function, 288
message_write() function, 288
#messages, 261
$messages array, 259
messages_hide_delay setting, 288
metalanguage, using for templates, 33–34
method option, 134
microformats, 335, 358–362

example, 358–360
reasons for using, 360–362
tag, 362

Microsoft Windows XP, 10
mime index, 389
min() function, 236, 446
mktime() function, 236, 275
mod_rewrite directory, 22
Model-View-Controller pattern. See MVC

(Model-View-Controller) pattern
month argument, 324
$month array, 275
monthAction() function, 349
monthly archives, 324–326
monthly summary, blog manager index. See

also Ajaxing blog monthly summary
displaying, 279–283

calling Smarty plug-in in side columns,
280

including additional data in side
column sometimes, 283

overview, 279
month-preview.tpl template, 276–277
month.tpl template, 346, 349
mouse navigation, adding to search results,

460–462
mouseout event, 460
mouseover event, 460
move operation, 491

■INDEX560

9063Ch15Index.qxd 11/21/07 7:09 AM Page 560

move_uploaded_file() function, 387
multipart/form-data attribute, 375
multipart/form-data directory, 381
MVC (Model-View-Controller) pattern, 3, 9,

18–26
application logic vs. presentation logic,

19–21
IndexController, 25–26
index.php file, 21–22
Zend_Controller class, 22–25

myPassword password, 18
MySQL

full-text indexing vs. Zend_Search_Lucene
tool, 428–429

version 5, installing, 11
mysql program, 544
mysqldump program, 543

■N
name argument, 231, 351
name attribute, 245, 381
name element, 381
name parameter, 294
name="preview" attribute, 230
NameController.php file, 24
navigation bars, tabbed, 195–196
$newH variable, 394
$news array, 33
NewsController class, 23
NewsController directory, 24
news/index.tpl file, 31
$newW variable, 394
notifyUser() method, 149
num_posts setting, 301

■O
object-oriented programming (OOP), 8
observe() function, 146, 460
OCR (optical character recognition) software,

89
$offset array, 446
 tag, 187, 245
on404 callback, 137
onchange event, 377
onclick event, 149
onComplete callback function, 136
onDeleteClick() event handler, 408
onDragCompleteSuccess() function, 494,

501, 506
onFailure callback, 136, 166
onFailure error handler, 143
onFailure event, 168
onFormSubmit() function, 494, 502
onFormSuccess() method, 215
onLinkClick() event handler, 289
onLinkClick() method, 286
onload callback, 457

onload event, 157, 164, 261, 483, 496, 511
onmouseout event, 133
onmouseover event, 133, 145
onQueryChanged() function, 455, 464
onRemoveMarker() function, 494, 500,

506–507
onRemoveMarkerSuccess() function, 494,

507
onSortUpdate() function, 414–415
onsubmit event, 147, 213–214, 496
onSubmit() method, 214
onSuccess callback, 136, 165–166, 415
onSuccess event, 168
onSuggestionLoad() function, 456, 458
onUpdate parameter, 414
onXYZ callback function, 137
OOP (object-oriented programming), 8
open() method, 434, 436
operating systems, 10
optical character recognition (OCR) software,

89
$options array, 268–269, 275
options hash, 165
$options['user_id'] value, 268
overlays, map, 471–473
overviewMap variable, 496
OverviewMapControl control, 485

■P
p argument, 36, 542
p parameter, 543
<p> tag, 245
page content, 197–198
page headers, 195
page parameter, 445
page titles, 171–183

Breadcrumbs class, 172–174
creating Smarty plug-in to output

breadcrumbs, 180–182
displaying, 182–183
generating URLs, 174–178

in controller actions, 175–176
in Smarty templates, 176–178

setting for each controller action, 178–180
pages parameter, 445
parameters option, 135
parameters value, 165
$params array, 177
parent::init() function, 26, 178
password column, 50
password data, 46
password field, 101
password type, 101
passwords, forgotten, 108–116
pdo_mysql database type, 29
PEAR, Text_CAPTCHA component, 90
pecl install apc type, 33

■INDEX 561

9063Ch15Index.qxd 11/21/07 7:09 AM Page 561

performed parameter, 445
performed variable, 446
permission errors, 525
permissions, 223–225, 537
Phone numbers field, 363
phone property, 360
PHP

5.2.3, installing, 11–12
combining with Prototype, Scriptaculous,

and Ajax, 154–168
index.php, 156–157
items.php, 159–161
processor.php, 161–163
schema.sql, 158–159
scripts.js, 163–168
styles.css, 157–158

PHP classes directory, 13
PHP deletion code, 406–407
PHPDoc comment block, 6
PHPDoc parser, 6
PHPDoc style commenting, 5–7
phpinfo() method, 33
phpweb20 database, 17
phpweb20 hostname, 15
phpweb20 username, 544
.phtml extension, 39
placemark.Point.coordinates array, 504
plugins directory, 36
polylines, 472
post_id element, 416
post_id field, 432, 436, 447
post_id parameter, 489
$post_ids array, 418, 447
post_images variable, 413
post_max_size element, 378
$post->locations variable, 511
$post->locations|@count variable, 514
postDelete() method, 62, 403–404
postDispatch() function, 173
.post-image class, 421
postInsert() method, 61, 69, 98, 385, 439
postLoad() function, 61, 271, 399, 477, 490
#post-locations element, 511
postNotFoundAction() method, 303, 320–322
postnotfound.tpl template, 322
posts. See blog posts
$posts array, 271, 316
postUpdate() method, 61, 69, 71, 440
prebuilt controls, Scriptaculous, 151–152
preDelete() method, 62, 339, 411, 438, 440
predispatch errors, 526–531

catching errors, 527–531
notifying users of errors, 526–527

preDispatch() method, 58, 60, 117, 309, 311
preg_replace() method, 245
preg_split() method, 97

preInsert() method, 61, 63, 98, 240–241, 301,
386

presentation logic, versus application logic,
19–21

preUpdate() method, 61
preview variable, 238
previewAction() method, 226, 232, 248–249,

255
#preview-images template, 401
previewing blog posts, 248–253

previewAction() method, 249
preview.tpl file, 249–252
requesting confirmation for user actions,

252–253
preview.tpl file, 249–252, 282, 341, 375, 401,

407, 410, 480
print-only style sheets, 198–201
$privilege privilege, 60
process() method, 74, 86, 95, 232, 235, 381,

383
processing registrations, displaying, 81–88

AccountController class, 81–82
developing templates, 82–86
form submission, 86–88

processItemsOrder() function, 160–161, 168
processor.php file, 155, 161–163, 165
$profile = new Profile_BlogPost($db,

$post_id) method, 271
Profile class, 67, 221–223, 271
$profile property, 71, 271
Profile subclass, 221, 271
Profile_BlogPost class, 223, 271
profile_key column, 48–49
Profile_User class, 66, 69–72
profile_value column, 49
Profile.php file, 66
profiles. See public profiles; user profiles
$profiles array, 271
Prototype

Ajax operations in, 134–145
Ajax.Request function, 140–145
callback functions, 135–138
JavaScript Object Notation (JSON),

138–140
request options, 134–135

combining with Scriptaculous, Ajax, and
PHP, 154–168

index.php, 156–157
items.php, 159–161
processor.php, 161–163
schema.sql, 158–159
scripts.js, 163–168
styles.css, 157–158

downloading/installing, 123–124
element extensions, 130–134

managing classes of elements, 131–133

■INDEX562

9063Ch15Index.qxd 11/21/07 7:09 AM Page 562

manipulating strings with Prototype,
133–134

overview, 130
retrieving dimensions of elements, 131
showing and hiding elements, 131

event handling in, 145–147
canceling event, 147
finding out which element event

occurred on, 146
observing event, 145–146

Hash object, 129–130
JavaScript classes, 147–151

binding function calls to objects,
148–151

creating, 147–148
loading, 207
overview, 123
selecting objects in Document Object

Model (DOM), 124–129
$() function, 124–125
$$() function, 128–129
getElementsByClassName() function,

125–128
getElementsBySelector() function, 129

public profiles, 363–368
allowing users to create, 363–366

displaying options, 365–366
user details form, 363

displaying, 366–368
public_only option, 327
public_only parameter, 331
Publish Post button, 262

■Q
$q variable, 442, 446
query errors, 524
query property, 456
querying search index, 444–448

■R
r argument, 542
ranking column, 373
Really Simple Syndication (RSS), 352
rebuildIndex() method, 436
records, user. See user records
$redirect array, 102
_redirect() method, 86, 105
$redirect variable, 105
register action, 81, 178
register privilege, 60
register_globals setting, 16
registerAction() method, 82, 86, 180, 208,

210–212, 214
registerAutoload() method, 23
registercomplete action, 81, 86, 178
registercomplete privilege, 60
registercompleteAction() method, 86, 89

registerPlugin() method, 58
register.tpl file, 83, 216
registration form

adding CAPTCHA images to, 93–94
displaying, 81–88

AccountController class, 81–82
developing templates, 82–86
form submission, 86–88

registration, user, 4
rel attribute, 362, 424
rel="tag" attribute, 362
rel-tag microformat, 335
remove() method, 130–131, 410, 501
removeClassName() function, 131, 133, 460
removeMarkerFromMap() function, 494,

498, 500–501, 507
removeOverlay() method, 501
render() method, 37, 97
reordering image files, 412–416
$request object, 76
request options, 134–135
$request->getUserParam() function, 349
$request->getUserParam('url') parameter,

319
$request->isXmlHttpRequest() function, 492
$requestedAddress variable, 534
Requested-With HTTP header, 211
requests

handling to UserController class, 309–312
routing to UserController class, 303–308

creating routes, 303–304
dynamically generating URLs for

routes, 305–307
generating required routes, 307–308
injecting routes into router, 304–305

resetErrors() method, 213
resetting forgotten passwords, 109–116
resizing image files, 390–399

linking thumbnailer to imageAction()
function, 395–399

thumbnails, 390–395
$resource privilege, 60
$resource variable, 60
$response object, 388
responseJSON property, 140
responseText property, 138
responseXML property, 138, 141
restarting web server, 17
restore, 543–544
results parameter, 445
$ret array, 489
retrieving

index locations, 433
latest posts for home page, 330–331
list items, 160
posts based on tag spaces, 347–348
search suggestions, 454–456

■INDEX 563

9063Ch15Index.qxd 11/21/07 7:09 AM Page 563

RewriteRule directive, 21
rightcolumn attribute, 346
$rightcolumn parameter, 282
right-column.tpl template, 346
$role role, 60
roundedbox block, 34
routers, injecting routes into, 304–305
routes

creating, 303–304
dynamically generating URLs for, 305–307
generating required, 307–308
injecting into router, 304–305

routing requests, to tag spaces, 348–349
.row class, 204
RSS (Really Simple Syndication), 352
Rsync, 542–543

■S
sanitize() method, 75, 78, 235
save action, 163
save() method, 61, 63–64, 67, 71, 98, 241, 385
saveItemOrder() function, 167–168
saveItemOrderFailure() function, 168
saveItemOrderSuccess() function, 168
saveXml() method, 352
saving list order, 160–161
ScaleControl control, 485
schema-mysql.sql file, 46–47, 220, 373, 475
schema-pgsql.sql file, 46, 373, 475
schema.sql, 158–159
screen section, 201
screen style sheets, 199–201
<script> tags, 244
Scriptaculous

combining with Prototype, Ajax, and PHP,
154–168

index.php, 156–157
items.php, 159–161
processor.php, 161–163
schema.sql, 158–159
scripts.js, 163–168
styles.css, 157–158

deleting image files using, 406–410
BlogImageManager JavaScript class,

407–410
modifying PHP deletion code, 406–407

DOM element builder, 153
downloading/installing, 154
drag and drop, 152
JavaScript unit testing, 153–154
loading, 207
overview, 151
prebuilt controls, 151–152
visual effects, 152–153

scriptaculous directory, 154
scriptaculous.js file, 154
scripts.js, 163–168

application settings, 163
init() function, 163–164
loadItems() function, 165–167
saveItemOrder() function, 167–168
setStatus() function, 164–165

scripts.js file, 155, 163, 260, 288, 457
$search array, 446
search suggestions

displaying, 457–459
providing, 452–453
retrieving, 454–456

search tools, 4–5, 442–452
adding search form, 442–443
displaying results, 448–450
handling requests, 443–444
querying search index, 444–448
types of searches, 451–452

$search['limit'] value, 447
SearchController class, 443, 453
SearchController.php file, 443, 453
search-engine optimization, 5
search-index directory, 433
SearchSuggestor class, 454, 457
SearchSuggestor.class.js file, 454, 457, 462
section construct, 449
section tag, 34
$section variable, 190, 196
security, 7
<select> element, 299
selectSuggestion() function, 463
self::STATUS_LIVE class, 239
send() method, 352
sendBackToDraft() function, 255
sendEmail() function, 96
sending image files, 387–389
sendJson() method, 209–210, 406, 453
sendLive() function, 239, 255
separator option, 181
serial column type, 49
serialize() function, 215, 415
SERVER_ADMIN variable, 527
servers, 538–542
__set() method, 37, 63, 489
setCenter() function, 484, 498
setControllerDirectory() method, 23, 28
setEmail() function, 520
SetEnv directive, 540
setFormatter() method, 520
setHeader() function, 389
setImageOrder() function, 412–415
setMapType() method, 485
setNoRender() method, 91
setPostId() method, 223
setstatus action, 253
setStatus() function, 164–165, 168
setstatusAction() method, 226, 249, 254–256,

258

■INDEX564

9063Ch15Index.qxd 11/21/07 7:09 AM Page 564

setStorage() method, 50
setTimeout() function, 289, 454
$settings variable, 36
settings.ini file, 27–28, 41–42, 238, 475, 538
settings-management systems, 297–302

default user settings, 301–302
presenting to users, 298–299
processing changes, 299–300

setUserId() method, 67, 223
setViewSuffix() method, 39
Show All button, 125
show() method, 127
showAll() function, 128
showError() method, 214–215
showInfoWindow() method, 500
showing elements, 131
showSuggestions() function, 458, 460
shutdown() function, 520–521
simple() method, 176, 305
site error handling, 524–535

application runtime errors, 531–535
objectives of, 526
predispatch errors, 526–531

catching errors, 527–531
notifying users of errors, 526–527

site search, 427–467
autocompletion, 452–466

results, 453–454, 460–466
search suggestions, 452–459
SearchSuggestor class, 457

indexing content, 430–441
building indexes, 434–435
multiple types of data, 431
retrieving index locations, 433
single blog posts, 435–438
triggering updates, 439–441
Zend_Search_Lucene_Document class,

431–432
search tool, 442–452

adding search form, 442–443
displaying results, 448–450
handling requests, 443–444
querying search index, 444–448
types of searches, 451–452

Zend_Search_Lucene tool, 427–430
field naming, 430
field types, 429
vs. MySQL full-text indexing, 428–429

size element, 381
Slider control, 152
SmallMapControl control, 485
SmallZoomControl control, 485
Smarty code, 33
$smarty object, 31
Smarty plug-ins

calling in side columns, 283
creating to output breadcrumbs, 180–182

imagefilename, 396–398
Smarty template engine, 9, 30–41

downloading, 34–36
improving performance, 33
installing, 34–36
integrating with web site controllers,

39–41
versus other template engines, 33–34
using metalanguage for templates, 33–34
Zend_Controller class, 36–38

Smarty templates
generating URLs in, 176–178
moving HTML markup into, 188–192

active navigation section, 191–192
footer.tpl file, 190–191
header.tpl file, 189–190

Smarty_Compiler.class.php class, 33
smarty_function_geturl() function, 176
smarty_modifier_truncate() function, 182
smarty_type_name() function, 176
$smarty.foreach.loopname.last template, 351
social networking tools, 2
some-template.tpl template, 283
something() function, 146
Sortable class, 159, 412
Sortable utility, 415
Sortable.create() function, 167
Sortables class, 152
Sortable.serialize() function, 168, 415
specifying recipient, 522
src attribute, 245
start parameter, 445
start_year attribute, 229
static HTML files, 184–187
#status container, 157
status property, 138
statusErrorColor property, 163
statusId value, 163
statusSuccessColor property, 163
statusText property, 138
storing uploaded image files, 372–374
strftime() function, 251
strings, manipulating in Prototype, 133–134
strip() method, 133
strip_tags() function, 277
stripScripts() method, 133
stripTags() method, 133
 tag, 245, 358
strtoupper() function, 32
style attribute, 245
style sheets. See Cascading Style Sheets (CSS)
styles.css file, 155, 157–158, 189, 201, 376,

402, 450, 458, 515
styling, 171–217

breadcrumbs, 171–183
Breadcrumbs class, 172–174

styling (continued)

■INDEX 565

9063Ch15Index.qxd 11/21/07 7:09 AM Page 565

creating Smarty plug-in to output,
180–182

displaying page titles, 182–183
generating URLs, 174–178
setting trails for each controller action,

178–180
client-side form validation, 208–217

adding JSON support to
CustomControllerAction class, 209

FormProcessor_UserRegistration class,
209–210

registerAction() method, 210–212
UserRegistrationForm JavaScript class,

212–217
CSS, 192–204

creating, 193–198
full application, 201–204
loading files, 192–193
print-only, 198–201
specifying media types, 192–193

forms, 204–206
integrating design into application,

183–192
creating Static HTML files, 184–187
moving HTML markup into Smarty

templates, 188–192
overview, 171
page titles, 171–183

Breadcrumbs class, 172–174
creating Smarty plug-in to output

breadcrumbs, 180–182
displaying, 182–183
generating URLs, 174–178
setting for each controller action,

178–180
Prototype, 207
Scriptaculous, 207

submission form templates, 228–231
submit event listener, 407
Submit Form button, 147
submit() method, 215
substr() function, 32, 181
suggestionAction() method, 453–454
suggestionClicked() function, 460
$summary object, 280
$summary variable, 279
switch statement, 111, 162, 382, 464, 503

■T
t argument, 542
tabbed navigation bars, 195–196
tag parameter, 347
tag spaces, 347–350

handling requests to, 349–350
outputting, 350
retrieving posts based on, 347–348
routing requests to, 348–349

tag spaces function, 361
tagAction() function, 349
tagging blog posts, 336
tags, 336–351

displaying on blogs, 344–346
displaying on each post, 351
implementing, 336–340
managing, 340–343
microformats, 362
tag spaces, 347–350

handling requests to, 349–350
outputting, 350
retrieving posts based on, 347–348
routing requests to, 348–349

$tags argument, 338
tagsAction() function, 340, 379
tag.tpl template, 350
target attribute, 245
tel property, 368
Template class, 142, 495
template engines. See Smarty template

engine
template_dir class, 36
template_dir database type, 31
template_dir property, 35
template_dir type, 31
Templater class, 36, 39, 97
Templater directory, 36
Templater.php directory, 37
templates, 3, 332

creating login, 101–102
home page, 331
using metalanguage for, 33–34

./templates directory, 13, 40, 423, 457
templates_c directory, 35
./templates/account directory, 84, 101, 116,

118, 216, 226, 365
./templates/account/details.tpl template,

298
./templates/blogmanager directory, 227–228,

249, 277, 284, 375, 401, 410, 480, 492
./templates/blogmanager file, 486
./templates/blogmanager/index.tpl file, 227,

276
./templates/blogmanager/lib directory, 276,

281
./templates/email directory, 99, 116
./templates/error directory, 532, 534
./templates/error/error.tpl file, 534
./templates/header.tpl directory, 82
./templates/header.tpl file, 485
./templates/lib directory, 85
./templates/search directory, 444, 449
./templates/user directory, 315, 321–322, 346,

350–351, 362, 420, 424, 514
./templates/user/index.tpl template, 326
./templates/user/lib directory, 346, 366, 418

■INDEX566

9063Ch15Index.qxd 11/21/07 7:09 AM Page 566

./templates/user/lib/left-column.tpl file, 318

./templates/utility/captcha directory, 91
Test class, 153
testing

database connections, 30
unit testing, 8

Text field type, 429
text type, 101
Text_CAPTCHA component, 88, 90–91
Text_Password class, 90, 98
<textarea> tag, 228
$this argument, 97
$this->_events array, 521
$this->_helper function, 257
$this->_helper->url argument, 305
$this->getRequest() method, 88
$this->getUrl() function, 175
$this->messenger object, 258
$this->messenger->addMessage('The

message') method, 258
$this->user object, 312
$this->user->save() method, 76, 80
this.handleClick event handler, 150
this.handleClick.bind(this) event handler,

150
this.notifyUser() method, 150
three-column layout, 193–194
thumbnailer, linking to imageAction()

function, 395–399
GetImageHash() method, 396
imagefilename Smarty plug-in, 396–398
updating to serve thumbnails, 398

thumbnails, 390–395
creating, 394–395
filenames, 393
input/output functions, 392–393
sizing, 391–392
updating imageAction() to serve, 398

thumbnails subdirectory, 390
timestamps, 47–48
timestamptz column, 48
title attribute, 510
<title> tag, 182
tmp_name element, 381
to parameter, 268
toggle() method, 131
toggleClassName() function, 131
toQueryString() method, 130
total parameter, 445
$totalPosts variable, 278
$tpl argument, 97
.tpl extension, 39
transport argument, 138
truncate() method, 133
truncate modifier, 181, 277
try block, 527
try ... catch block, 446

try ... catch statement, 526, 529
ts_created column, 268
ts_created data, 46
ts_created field, 63
ts_last_login data, 46
ts_last_login field, 63, 105, 107
ts_published variable, 239
type element, 381
type property, 532
type subproperty, 368
type.name.php file, 177

■U
u parameter, 543
 element, 157, 245, 457
ul.sortable li selector, 158
ul.sortable selector, 158
unescapeHTML() method, 134
UnIndexed field type, 429
uniqid() function, 98
unit testing, 8
unittest.js file, 154
unix_timestamp() function, 48
unlink() function, 404
unloadMap() function, 484–485, 494
unset() method, 67
UnStored field type, 429, 432
up() function, 410
update() method, 165
updates, index search, triggering, 439–441

when posts are created, 439, 467
when posts are deleted, 440
when posts are updated, 440
when post’s tags are changed, 441

updating
blog posts status, 254–262

FlashMessenger, 256–262
setstatusAction() method, 254–256

imageAction() to serve thumbnails, 398
upload_max_filesize element, 378
uploadFile() method, 383
uploading image files, 374–387

adding form, 375–376
BlogmanagerController.php class,

379–380
form encoding, 375
FormProcessor_BlogPostImage class,

380–384
setting maximum file size, 378
specifying file input type, 377–378
writing files to filesystem, 384–387

url field, 220, 240
Url helper, 175, 305
url() method, 195, 305–306
url parameter, 321
$url variable, 317

■INDEX 567

9063Ch15Index.qxd 11/21/07 7:09 AM Page 567

URLs, 174–178
dynamically generating for routes,

305–307
generating in controller actions, 175–176
generating in Smarty templates, 176–178
loading live posts using, 319

user actions, requesting confirmation for,
252–253

user areas, 297–333
displaying blogs, 313–326

archive links, 322–324
index page, 313–318
individual posts, 318–322
monthly archive, 324–326

home page, 326–332
creating template, 331–332
loading multiple user records, 328–329
loading recent public posts, 326–327
retrieving latest posts for, 330–331

overview, 297
settings-management systems, 297–302

default user settings, 301–302
presenting to users, 298–299
processing changes, 299–300

UserController class, 302–313
handling requests to, 309–312
routing requests to, 303–308

user authentication, 45–72
overview, 45
user database table, 45–49

timestamps, 47–48
user profiles, 48–49

Zend_Acl class, 54–57
Zend_Auth class, 49–54
Zend_Controller_Front class, 57–60

user authorization, 45–72
overview, 45
user database table, 45–49

timestamps, 47–48
user profiles, 48–49

Zend_Acl class, 54–57
Zend_Auth class, 49–54

authenticating with, 52–54
combining with Zend_Acl, and

Zend_Controller_Front classes,
57–60

instantiating, 50
Zend_Controller_Front class, 57–60

user management, 45–72, 535–536
DatabaseObject class, 61–65
overview, 45
user database table, 45–49

timestamps, 47–48
user profiles, 48–49

user profiles, 66–72
integrating Profile_User with

DatabaseObject_User, 69–72

Using Profile_User class, 67–68
Zend_Acl class, 54–57

combining with Zend_Auth and
Zend_Controller_Front classes,
57–60

example, 55–57
Zend_Auth class, 49–54

authenticating with, 52–54
combining with Zend_Acl, and

Zend_Controller_Front classes,
57–60

instantiating, 50
Zend_Controller_Front class, 57–60

user profiles, 48–49. See also public profiles
managing, 66–72

integrating Profile_User with
DatabaseObject_User, 69–72

Using Profile_User class, 67–68
user records, managing with DatabaseObject

class, 61–65
user registration, 4

adding to application, 73–100
CAPTCHA, 88–95
displaying registration form/processing

registrations, 81–88
e-mail functionality, 95–100
FormProcessor_UserRegistration class,

74–81
user_id column, 47–49, 268
user_id data, 46
user_id parameter, 268, 280
user_id property, 235
user_id value, 332
$user_ids array, 331
user_type column, 47
user_type data, 46
user_type property, 60
$user->getId() method, 323
UserController class, 302–313, 349

adding web feeds to, 353–355
handling requests to, 309–312
routing requests to, 303–308

creating routes, 303–304
dynamically generating URLs for

routes, 305–307
generating required routes, 307–308
injecting routes into router, 304–305

UserController.php file, 309, 312, 314, 320,
325, 349, 353

UserDetails.php file, 298, 300
user-fetch-password.tpl file, 116
username column, 47
username data, 46
username parameter, 305, 309, 311
username property, 367
usernameExists() method, 77
usernames, 74, 77–78

■INDEX568

9063Ch15Index.qxd 11/21/07 7:09 AM Page 568

userNotFoundAction() method, 303, 309,
312

usernotfound.tpl template, 312
User.php file, 115, 301, 312, 328
/user/qz/view/my-holiday argument, 307
user-register.tpl template, 98
UserRegistrationForm JavaScript class, 212

displaying form errors, 214
handling form submission, 214–215
handling form validation responses,

215–216
hiding form errors, 213
initializing, 213
loading, 216–217

UserRegistrationForm.class.js file, 213, 215
UserRegistration.php file, 210
users

allowing to create public profiles, 363–366
displaying options, 365–366
user details form, 363

notifying of errors, 526–527
$users array, 332
users table, 66, 220, 297
$users template, 331
users_profile table, 48, 66, 220, 297, 327
/user/username/archive/year/month

argument, 308
/user/username/view/blog-post-url

argument, 307
Using Profile_User class, 67–68
/usr/local directory, 11
/usr/local/apache2 directory, 10
/usr/local/apache2/conf/httpd.conf file, 10,

16
/usr/local/lib/php directory, 11
/usr/local/mysql directory, 11
/usr/local/mysql/bin directory, 11
utility controller, 90, 223
UtilityController class, 388
UtilityController.php directory, 91
UtilityController.php file, 388, 398
/utility/image directory, 398

■V
v argument, 542
validateOnly() method, 209, 211
validating

CAPTCHA phrases, 95
e-mail addresses, 79
usernames, 77–78

value argument, 231
value parameter, 294
value subproperty, 368
/var/www/phpweb20 directory, 12
/var/www/phpweb20/data/logs directory, 41
/var/www/phpweb20/data/search-index

directory, 435

/var/www/phpweb20/htdocs/js directory,
292

/var/www/phpweb20/httpd.conf file, 15, 540
/var/www/phpweb20/include directory, 17,

172
vcard class, 360
version control, 8
view, 18, 20
viewAction() method, 24, 302, 307, 318–321
ViewRenderer plug-in, 36
view.tpl template, 346, 351, 362, 420, 424,

510, 514–516
virtual hosts

creating in Linux, 15–16
creating in Windows, 17

<virtualHost> entry, 15
visible() method, 131
visual effects, Scriptaculous, 152–153

■W
Web 2.0, defined, 2
web feeds, 2, 335, 351–357

adding to UserController, 353–355
creating Atom feeds with Zend_Feed, 352
data formats for, 352
linking to, 355–357

web root directory, 12
web server

configuring, 15–17
creating virtual host in Linux, 15–16
creating virtual host in Windows, 17
restarting, 17

setting up, 9–12
installing Apache HTTP Server, 10
installing MySQL 5, 11
installing PHP 5.2.3, 11–12
operating system, 10

web services, 2
web site administration, 535–538

administrator section features, 535–536
auditing application logs, 536
blog post management, 536
user management, 535–536

implementing, 536–538
AdminController class, 537
permissions, 537

web site controllers, 39–41
What You See Is What You Get (WYSIWYG)

editor, 265
where() method, 266
white list, 245
window element, 146
window.onload event, 260
Windows, creating virtual hosts in, 17
_write() method, 521
$writer variable, 528

■INDEX 569

9063Ch15Index.qxd 11/21/07 7:09 AM Page 569

WYSIWYG (What You See Is What You Get)
editor, 265

wysiwyg plug-in, 294

■X
XML data, 141–143
XMLDocument object, 141
XMLHttpRequest method, 211
XMLHttpRequest object, 136, 138
XSS (cross-site scripting), 7, 182, 244

■Y
year argument, 324

■Z
z argument, 542
Zend Framework, 14, 335
Zend Framework class, 23
Zend_Acl class, 54–57

combining with Zend_Auth and
Zend_Controller_Front classes,
57–60

example, 55–57
Zend_Auth class, 49–54

authenticating with, 52–54
combining with Zend_Acl, and

Zend_Controller_Front classes,
57–60

instantiating, 50
Zend_Auth column, 49
Zend_Auth component, 14, 73
Zend_Auth identity, 120
Zend_Auth_Adapter_DbTable adapter, 50, 52
Zend_Auth_Adapter_Interface interface, 50
Zend_Auth_Result object, 50
Zend_Auth_Storage_Interface interface, 50
Zend_Auth_Storage_Session class, 50
Zend_Config_Ini class, 27–28
Zend_Config_XML class, 27
Zend_Controller class, 19, 21–25, 36–39, 175,

303
Zend_Controller component, 14, 34
Zend_Controller_Action class, 26, 257
Zend_Controller_Front class, 22, 50, 57–60,

302, 347–348, 525, 531
Zend_Controller_Front object, 74, 88, 117
Zend_Controller_Front view, 532
Zend_Controller_Request_Abstract object, 74
Zend_Controller_Request_Http class, 211,

284
Zend_Controller_Router_Route class, 303
Zend_Controller_Router_Route_Regex class,

303
Zend_Controller_Router_Route_Static class,

303
Zend_DB class, 3, 29, 159, 268

Zend_Db component, 14, 61, 266
Zend_Db_Adapter_Exception class, 529
Zend_Db_Exception class, 529
Zend_Db_Select class, 338
Zend_Db_Select object, 268
Zend_Db::factory() method, 29
Zend_Feed component, 335, 352
Zend_Feed::importArray() method, 352, 355,

357
Zend_Filter component, 14, 245
Zend_Filter_StripTags filter, 245
Zend_Json class, 139
Zend_Json::encode() function, 139, 209
Zend_Log class, 41, 519, 522–523, 527
Zend_Log formatter, 44
Zend_Log_Filter_Priority class, 522
Zend_Log_Formatter_Simple class, 520
Zend_Log_Formatter_Simple formatter, 44
Zend_Log_Writer_Abstract class, 519
Zend_Log_Writer_Null class, 527
Zend_Log_Writer_Stream class, 41
Zend_Log::ALERT built-in log priority, 43
Zend_Log::CRIT built-in log priority, 43
Zend_Log::DEBUG built-in log priority, 43
Zend_Log::EMERG built-in log priority, 43
Zend_Log::ERR built-in log priority, 43
Zend_Log::INFO built-in log priority, 43
Zend_Log::INFO priority level, 533
Zend_Log::NOTICE built-in log priority, 43
Zend_Log::WARN built-in log priority, 43
Zend_Mail class, 520
Zend_Mail component, 14
Zend_Registry class, 28
Zend_Search component, 14
Zend_Search_Lucene class, 434
Zend_Search_Lucene tool, 427–430

field naming, 430
field types, 429
versus MySQL full-text indexing, 428–429

Zend_Search_Lucene_Document class,
431–432

Zend_Search_Lucene_Field class, 432
Zend_Session object, 87
Zend_Translate component, 172
Zend_Validate component, 14, 77
Zend_Validate_Alnum class, 77
Zend_Validate_EmailAddress class, 79
Zend_Validator class, 520
Zend_View class, 39
Zend_View component, 34
Zend_View_Abstract class, 36
zoomAndCenterMap() function, 494,

496–498, 501, 512, 514

■INDEX570

9063Ch15Index.qxd 11/21/07 7:09 AM Page 570

	Practical Web 2.0 Applications with PHP
	Contents at a Glance
	Contents
	About the Author
	About the Technical Reviewer
	Introduction
	Who This Book Is For
	How This Book Is Structured
	Prerequisites
	Downloading the Code
	Contacting the Author

	Application Planning and Design
	What Is Web 2.0?
	Database Connectivity
	Web Site Templates
	Web Site Features
	Main Home Page and User Home Page
	User Registration
	Account Login and Management
	User Blogs
	Web Site Search
	Application Management

	Other Aspects of Development
	Search-Engine Optimization
	PHPDoc-Style Commenting
	Security
	Application Logging
	Maintainability and Extensibility

	Version Control and Unit Testing
	Summary

	Setting Up the Application Framework
	Web Server Setup
	Operating System
	Installing the Apache HTTP Server
	Installing MySQL 5
	Installing PHP 5.2.3

	Application Filesystem Structure
	Web Root Directory
	Data Storage Directory
	PHP Classes Directory
	Templates Directory
	Full Directory Structure

	Installing the Zend Framework
	Configuring the Web Server
	Creating a Virtual Host in Linux
	Creating a Virtual Host in Windows
	Restarting Your Web Server

	Setting Up the Database
	Using the Model-View-Controller Pattern
	Separating Application Logic from Presentation Logic
	Directing All Requests to index.php
	Introduction to the Zend_Controller Class
	How Requests Work with Zend_Controller
	Creating the IndexController

	Defining Application Settings
	Connecting to the Database
	Testing the Database Connection

	The Smarty Template Engine
	Why Not Use a Different Template Engine?
	Improving Smarty Performance
	Using a Metalanguage for Templates

	Downloading and Installing Smarty
	Automatic View Rendering with Zend_Controller
	Integrating Smarty with the Web Site Controllers

	Adding Logging Capabilities
	Writing to the Log File

	Summary

	User Authentication, Authorization, and Management
	Creating the User Database Table
	Timestamps
	User Profiles

	Introduction to Zend_Auth
	Instantiating Zend_Auth
	Authenticating with Zend_Auth

	Introduction to Zend_Acl
	A Zend_Acl Example

	Combining Zend_Auth, Zend_Acl, and Zend_ Controller_Front
	Managing User Records with DatabaseObject
	The DatabaseObject_User Class
	Using DatabaseObject_User

	Managing User Profiles
	Using Profile_User
	Integrating Profile_User with DatabaseObject_User

	Summary

	User Registration, Login, and Logout
	Adding User Registration to the Application
	Creating the Form Processor for User Registration
	The Initial FormProcessor_UserRegistration Class
	The usernameExists() Method
	The IsValidUsername() Method
	Adding Username Validation to FormProcessor_UserRegistration
	Validating the User’s Name
	Validating the User’s E-mail Address
	The Complete FormProcessor_UserRegistration Class

	Displaying the Registration Form and Processing Registrations
	The Initial AccountController Class
	Developing the Templates
	Handling the Form Submission

	Adding CAPTCHA to the User Registration Form
	Circumventing CAPTCHA
	CAPTCHA and Accessibility
	PEAR’s Text_CAPTCHA
	Generating a CAPTCHA Image
	Adding the CAPTCHA Image to the Registration Form
	Validating the CAPTCHA Phrase

	Adding E-mail Functionality

	Implementing Account Login and Logout
	Creating the Login Template
	Adding the Account Controller Login Action
	Logging Successful and Failed Login Attempts
	Logging Users Out of Their Accounts

	Dealing with Forgotten Passwords
	Resetting a User’s Password
	Functions for Resetting Passwords

	Implementing Account Management
	Creating the Account Home Page
	Updating the Web Site Navigation
	Allowing Users to Update Their Details

	Summary

	Introduction to Prototype and Scriptaculous
	Downloading and Installing Prototype
	Prototype Documentation

	Selecting Objects in the Document Object Model
	The $() Function
	The getElementsByClassName() Function
	The $$() Function
	The getElementsBySelector() Function

	Prototype’s Hash Object
	Other Element Extensions
	Showing and Hiding Elements
	Retrieving Dimensions of Elements
	Managing Classes of Elements
	Manipulating Strings with Prototype

	Ajax Operations in Prototype
	Ajax Request Options
	Ajax Callback Functions
	The XMLHttpRequest Callback Argument

	JavaScript Object Notation (JSON)
	An Ajax.Request Example
	Handling XML Data from an Ajax Request
	Handling XML That Isn’t Well Formed
	Completing the onFailure Error Handler
	The Complete Ajax.Request Example

	Event Handling in Prototype
	Observing an Event
	Finding Out Which Element an Event Occurred On
	Canceling an Event

	Creating JavaScript Classes in Prototype
	Creating a Class
	Binding Function Calls to Objects

	From Prototype to Scriptaculous
	Prebuilt Controls
	Drag and Drop
	Visual Effects
	DOM Element Builder
	JavaScript Unit Testing

	Downloading and Installing Scriptaculous
	Combining Prototype, Scriptaculous, Ajax, and PHP in a Useful Example
	Creating the Main HTML Page: index.php
	Styling the Application: styles.css
	Creating and Populating the Database: schema.sql
	Managing the List Items on the Server Side: items.php
	Connecting to the Database
	Retrieving the List Items
	Processing and Saving the List Order

	Processing Ajax Requests on the Server Side: processor.php
	Handling the Load Action
	Handling the Save Action

	Creating the Client-Side Application Logic: scripts.js
	Application Settings
	Initializing the Application with init()
	Updating the Status Container with setStatus()
	Loading the List of Items with loadItems()
	Handling the Response from the Ajax Request in loadItems()
	Handling a Change to the List Order with saveItemOrder()
	Handling the Response from the Ajax Request in saveItemOrder()

	Summary

	Styling the Web Application
	Adding Page Titles and Breadcrumbs
	The Breadcrumbs Class
	Generating URLs
	Generating URLs in Controller Actions
	Generating URLs in Smarty Templates

	Setting the Title and Trail for Each Controller Action
	Creating a Smarty Plug-In to Output Breadcrumbs
	Displaying the Page Title

	Integrating the Design into the Application
	Creating the Static HTML
	Moving the HTML Markup into Smarty Templates
	Modifying header.tpl
	Modifying footer.tpl
	Highlighting the Active Navigation Section

	Constructing the CSS
	Specifying Media Types and Loading the CSS File
	Creating the Application CSS
	Creating the Three-Column Layout
	Styling the Page Header
	Styling the Tabbed Navigation Bar
	Setting the Global Styles
	Styling the Page Content

	Creating a Print-Only Style Sheet
	Modifying the Screen Style Sheet

	The Full Application Style Sheet

	Styling the Application Web Forms
	Loading Prototype and Scriptaculous
	Implementing Client-Side Form Validation
	Adding JSON Support to CustomControllerAction
	Modifying the Form Processor
	Modifying the Registration Controller Action
	Detecting Ajax Requests
	Returning Form Errors Using JSON

	Creating the JavaScript Form Validator
	Initializing the UserRegistrationForm JavaScript Class
	Hiding Form Errors
	Displaying Form Errors
	Handling the Form Submission
	Handling the Form Validation Response

	Loading the UserRegistrationForm Class

	Summary

	Building the Blogging System
	Creating the Database Tables
	Setting Up DatabaseObject and Profile Classes
	Creating the DatabaseObject_BlogPost Class
	Creating the Profile_BlogPost Class

	Creating a Controller for Managing Blog Posts
	Extending the Application Permissions
	The BlogmanagerController Actions
	Linking to Blog Manager

	Creating and Editing Blog Posts
	Creating the Blog Post Submission Form Template
	Instantiating FormProcessor_BlogPost in editAction()
	Implementing the FormProcessor_BlogPost Class
	Generating a Permanent Link to a Blog Post
	Filtering Submitted HTML
	Why Filter Embedded JavaScript?
	Types of Filtering
	Implementing the cleanHtml() Method

	Creating a New Blog Post

	Previewing Blog Posts
	Creating the Preview Action
	Implementing the Preview Template
	Requesting Confirmation for User Actions

	Updating the Status of a Blog Post
	Completing setstatusAction()
	Notifying the User
	Adding FlashMessenger to CustomControllerAction
	Writing Messages to FlashMessenger
	Outputting FlashMessenger Messages on the Web Site

	Summary

	Extending the Blog Manager
	Listing Blog Posts on the Blog Manager Index
	Fetching Blog Posts from the Database
	Creating the _GetBaseQuery() Method
	Creating the GetPostsCount() Function
	Creating the GetPosts() Function
	Retrieving a Monthly Summary of Posts

	Assigning Recent Posts and the Monthly Summary to the Template
	Displaying Recent Posts in the Template
	Displaying the Monthly Summary
	Calling the Smarty Plug-in in the Side Columns
	Including Additional Data in the Side Column Sometimes

	Ajaxing the Blog Monthly Summary
	Creating the Ajax Request Output
	The BlogMonthlySummary JavaScript Class
	Installing the BlogMonthlySummary Class
	Notifying the User About the Content Update
	Managing Message Containers
	Updating the Messages Container with BlogMonthlySummary

	Integrating a WYSIWYG Editor
	Downloading and Installing FCKeditor
	Configuring FCKeditor
	Loading FCKeditor in the Blog Editing Page

	Summary

	Personalized User Areas
	Controlling User Settings
	Presenting Customizable Settings to Users
	Processing Changes to User Settings
	Creating Default User Settings

	The UserController Class
	Routing Requests to UserController
	Creating a New Route
	Injecting the Route into the Router
	Dynamically Generating URLs for Custom Routes
	Generating Other Required Routes

	Handling Requests to UserController

	Displaying the User’s Blog
	Displaying the Blog Index Page
	Implementing the indexAction() Method
	Displaying Blog Posts on the User Home Page

	Displaying Individual Blog Posts
	Loading Live Blog Posts Using the URL
	Implementing the viewAction() Method
	Displaying the Blog Post Details
	Creating the Template for postNotFoundAction()

	Generating Blog Archive Links
	Displaying the Monthly Archive
	Implementing the archiveAction() Method

	Populating the Application Home Page
	Loading Recent Public Posts
	Implementing the Application Home Page
	Loading Multiple User Records
	Retrieving the Latest Posts for the Home Page
	Creating the Application Home Page Template

	Summary

	Implementing Web 2.0 Features
	Tags
	Implementing Tagging
	Managing Blog Post Tags
	Displaying a User’s Tags on Their Blog
	Displaying a Tag Space
	Retrieving Posts Based on a Tag
	Routing Requests to the Tag Space
	Handling Requests to the Tag Space
	Outputting the Tag Space

	Displaying Tags on Each Post

	Web Feeds
	Data Formats for Web Feeds
	Creating an Atom Feed with Zend_Feed
	Adding the Feed to UserController
	Linking to Your Feed
	Other Feed Options

	Microformats
	An Example of Using Microformats
	Why Use Microformats?
	The Firefox Operator Plug-In

	Microformatting Your Tags

	Allowing Users to Create a Public Profile
	Allowing Users to Create a Public Profile
	Processing the User Details Form
	Displaying the User Profile Options

	Displaying a User’s Profile

	Summary

	A Dynamic Image Gallery
	Storing Uploaded Files
	Creating the Database Table for Image Data
	Controlling Uploaded Images with DatabaseObject

	Uploading Files
	Setting the Form Encoding
	Adding the Form
	Specifying the File Input Type
	Setting the Maximum File Size
	Handling Uploaded Files
	Creating the Blog Manager Action Handler
	Creating the Image-Upload Form Processor
	Writing Files to the Filesystem

	Sending Images
	Resizing Images
	Creating Thumbnails
	Determining the Width and Height of the Thumbnail
	Determining the Input and Output Functions
	Generating the Thumbnail Filename
	Creating the Thumbnail

	Linking the Thumbnailer to the Image Action Handler
	Generating an Image Hash
	Generating Image Filenames
	Updating imageAction() to Serve the Thumbnail

	Managing Blog Post Images
	Automatically Loading Blog Post Images
	Displaying Images on the Post Preview
	Deleting Blog Post Images
	Using Scriptaculous and Ajax to Delete Images
	Modifying the PHP Deletion Code
	Creating the BlogImageManager JavaScript Class
	Loading BlogImageManager in the Post Preview

	Deleting Images when Posts Are Deleted
	Reordering Blog Post Images
	Drag and Drop
	Saving the Order to Database
	Adding Sortable to BlogImageManager

	Displaying Images on User Blogs
	Extending the GetPosts() Function
	Displaying Thumbnail Images on the Blog Index
	Displaying Images on the Blog Details Page
	Displaying Larger Images with Lightbox
	Installing Lightbox
	Loading Lightbox on the Blog Details Page
	Linking the Blog Post Images to Lightbox

	Summary

	Implementing Site Search
	Introduction to Zend_Search_Lucene
	Comparison to MySQL Full-Text Indexing
	Zend_Search_Lucene Field Types
	Field Naming

	Indexing Application Content
	Indexing Multiple Types of Data
	Creating a New Zend_Search_Lucene_Document
	Retrieving the Index Location
	Building the Entire Index
	Indexing and Unindexing a Single Blog Post
	Adding a Single Blog Post to the Index
	Removing a Blog Post from the Index

	Triggering Search Index Updates
	When a Post Is Created
	When a Post Is Updated
	When a Post Is Deleted
	When a Post’s Tags Are Changed

	Creating the Search Tool
	Adding the Search Form
	Handling Search Requests
	Querying the Search Index
	Displaying Search Results
	Types of Searches

	Adding Autocompletion to the Search Tool
	Providing Search Suggestions
	Creating an Action Handler to Return Search Results
	Retrieving Search Suggestions
	Loading the SearchSuggestor Class
	Displaying Search Suggestions
	Adding Mouse Navigation to Results
	Adding Keyboard Navigation to Results

	Summary

	Integrating Google Maps
	Google Maps Features
	Geocoding
	Displaying Maps
	Map Controls
	Map Overlays

	Controlling Maps

	Planning Integration
	Limitations of Google Maps
	Browser Compatibility
	Documentation and Resources
	Creating a Google Maps API Key

	Adding Location Storage Capabilities
	Creating the Database Table
	Creating the DatabaseObject_BlogPostLocation Class
	Modifying Blog Posts to Load Locations

	Creating Our First Map
	Creating a New Blog Manager Controller Action
	Linking to the locationsAction() Function

	Displaying Your First Google Map
	Loading the Google Maps API
	Beginning the BlogLocationManager JavaScript Class
	Loading BlogLocationManager

	Managing Locations on the Map
	Handling Location Management Ajax Requests
	The New Location Form Processor
	Creating the locationsManage Controller Action

	Creating the Address Lookup Form
	Extending the BlogLocationManager JavaScript Class
	Required Methods
	Class Initialization
	The loadMap() Function
	The zoomAndCenterMap() Function
	Adding Locations with addMarkerToMap()
	Removing Markers Using removeMarkerFromMap()
	Checking to See Whether a Marker Exists with hasMarker()
	Displaying Saved Locations with loadLocationsSuccess()
	Handling the Add Location Form Submission
	Handling the Geocoder Response with createPoint()
	Handling Successful Location Creation
	Saving New Coordinates for Dragged Locations
	Handling the Response from Saving a Dragged Location
	Removing Markers from the Map
	Confirming the Deletion of the Marker
	Unloading the Map

	Using BlogLocationManager

	Displaying the Map on Users’ Public Blogs
	Outputting Locations Using the Geo Microformat
	Creating the BlogLocations Class
	Updating the Blog Post Display Template

	Summary

	Deployment and Maintenance
	Application Logging
	E-mailing Critical Errors to an Administrator
	Creating the Log Writer
	Specifying the E-mail Recipient
	Adding the EmailLogger Writer to Zend_Log

	Using Application Logs

	Site Error Handling
	Objectives of Error Handling
	Handling Predispatch Errors
	Notifying the User of Errors
	Catching Errors

	Application Runtime Errors
	Creating the Error Display Templates

	Web Site Administration
	Administrator Section Features
	User Management
	Blog Post Management
	Auditing Application Logs

	Implementing Administration
	Permissions
	Creating the AdminController Class

	Application Deployment
	Different Configurations for Different Servers
	Telling the Bootstrap Which Configuration to Use

	Deploying Application Files with Rsync

	Backup and Restore
	Exporting a Database
	Importing a Database

	Summary

	Index

