Practical Web 2.0
Applications with PHP

Quentin Zervaas

Apress*

Practical Web 2.0 Applications with PHP
Copyright © 2008 by Quentin Zervaas

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-906-8

ISBN-10 (pbk): 1-59059-906-3

ISBN-13 (electronic): 978-1-4302-0474-9

ISBN-10 (electronic): 1-4302-0474-5

Printed and bound in the United States of America987654321

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

Lead Editor: Ben Renow-Clarke

Technical Reviewer: Jeff Sambells

Editorial Board: Steve Anglin, Ewan Buckingham, Tony Campbell, Gary Cornell, Jonathan Gennick,
Jason Gilmore, Kevin Goff, Jonathan Hassell, Matthew Moodie, Joseph Ottinger, Jeffrey Pepper,
Ben Renow-Clarke, Dominic Shakeshaft, Matt Wade, Tom Welsh

Project Manager: Richard Dal Porto

Copy Editors: Andy Carroll, Kim Wimpsett

Assistant Production Director: Kari Brooks-Copony

Production Editor: Liz Berry

Compositor: Diana Van Winkle

Proofreader: Lisa Hamilton

Indexer: Broccoli Information Management

Artist: Diana Van Winkle

Cover Designer: Kurt Krames

Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2855 Telegraph Avenue, Suite 600,
Berkeley, CA 94705. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit
http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to any
person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly by
the information contained in this work.

The source code for this book is available to readers at http://www.apress.com.

Contents at a Glance

Aboutthe AUthor. XV
About the Technical ReVIEWEro XVi
INMrOdUCHION Xvii
CHAPTER 1 Application Planning and Design 1
CHAPTER 2 Setting Up the Application Framework 9
CHAPTER 3 User Authentication, Authorization, and Management 45
CHAPTER 4 User Registration, Login,and Logout 73
CHAPTER 5 Introduction to Prototype and Scriptaculous 123
CHAPTER 6 Styling the Web Application 171
CHAPTER 7 Building the Blogging System 219
CHAPTER 8 Extending the Blog Manager 265
CHAPTER 9 PersonalizedUserAreas.........................c.ccovivn.. 297
CHAPTER 10 Implementing Web 2.0 Features 335
CHAPTER 11 ADynamiclmageGallery 371
CHAPTER 12 Implementing Site Search 427
CHAPTER 13 Integrating Google Maps 469
CHAPTER 14 Deployment and Maintenance 519
INDEX .. 547

Contents

Aboutthe AUthor. XV
About the Technical ReVIEWEro XVi
INtrodUCHION xvii
CHAPTER 1 Application Planning and Design 1
What IsWeb 2.07 2

Database Connectivity 2

Web SiteTemplates i 3

Web Site Featuresco i 3

Main Home Page and User Home Page 3

User Registration i 4

Account Login and Management 4

USErBIOgS ... oo 4

WebSiteSearch 4

Application Management 5

Other Aspects of Development 5

Search-Engine Optimization 5

PHPDoc-Style Commenting ..., 5

SECUNtY ... 7

Application Logging ... 7

Maintainability and Extensibility 7

Version Control and UnitTesting, 8

SUMMANY .. 8

CHAPTER 2 Setting Up the Application Framework 9
Web ServerSetup ... 9

Operating System 10

Installing the Apache HTTP Server 10

Installing MySQL S 11

InstallingPHP 5.2.3 11

vi CONTENTS

CHAPTER 3

Application Filesystem Structure 12
Web Root Directory o 12
Data Storage Directory 12
PHP Classes Directory ..., 13
Templates Directoryl 13
Full Directory Structure i 13
Installing the Zend Framework 14
Configuring the Web Server 15
Creating a Virtual Host inLinux 15
Creating a Virtual HostinWindows 17
Restarting Your Web Server 17
SettingUptheDatabaseoiiiiiii. 17
Using the Model-View-Controller Pattern 18
Separating Application Logic from Presentation Logic........... 19
Directing All Requests to index.php 21
Introduction to the Zend_Controller Class 22
How Requests Work with Zend_Controller 23
Creating the IndexController 25
Defining Application Settings 27
Connecting to the Database 29
Testing the Database Connection 30
The Smarty Template Enginet 30
Why Not Use a Different Template Engine? 33
Downloading and Installing Smarty 34
Automatic View Rendering with Zend_Controller 36
Integrating Smarty with the Web Site Controllers 39
Adding Logging Capabilitiescoiiiiia. 41
Writingtothe LogFile, 43
SUMMArY 44
User Authentication, Authorization, and Management. 45
Creating the User Database Table 45
Timestamps ... 47
UserProfiles o 48
Introductionto Zend_Auth 49
Instantiating Zend_Authl 50
Authenticating with Zend_Auth 52
IntroductiontoZend_Acl 54

AZend_AclExample 55

CHAPTER 4

CHAPTER 5

CONTENTS

Combining Zend_Auth, Zend_Acl, and Zend_Controller_Front 57
Managing User Records with DatabaseObject 61
The DatabaseObject_UserClass 62
Using DatabaseObject_Userc.coviiii... 64
Managing User Profiles 66
Using Profile_User i, 67
Integrating Profile_User with DatabaseObject_User 69
SUMMArY ... 72
User Registration, Login, and Logout 73
Adding User Registration to the Application 73
Creating the Form Processor for User Registration 74
Displaying the Registration Form and Processing Registrations. . . 81
Adding CAPTCHA to the User Registration Form 88
Adding E-mail Functionality 95
Implementing Account Loginand Logout 100
Creating the LoginTemplate 101
Adding the Account Controller Login Action 102
Logging Successful and Failed Login Attempts 105
Logging Users Out of Their Accounts 107
Dealing with Forgotten Passwords 108
Resetting a User’s Password 109
Functions for Resetting Passwords 112
Implementing Account Management 116
Creating the Account Home Page 116
Updating the Web Site Navigation 118
Allowing Users to Update Their Details 120
SUMMANY ... 121
Introduction to Prototype and Scriptaculous 123
Downloading and Installing Prototype 123
Prototype Documentation 124
Selecting Objects in the Document Object Model 124
The $() Function 124
The getElementsByClassName() Function 125
The $$() Functionooo i, 128
The getElementsBySelector() Function 129
Prototype’s Hash Object 129

vii

vii

viii

CONTENTS

CHAPTER 6

Other Element Extensionscoiiiiiiiiiiiint, 130
Showing and Hiding Elements 131
Retrieving Dimensions of Elements 131
Managing Classes of Elements 131
Manipulating Strings with Prototype 133

Ajax Operations in Prototype 134
Ajax Request Optionsoo i 134
Ajax Callback Functions 135
JavaScript Object Notation (JSON) 138
An Ajax.RequestExample 140

Event Handling in Prototype, 145
ObservinganEvent, 145
Finding Out Which Element an Event OccurredOn 146
CancelinganEvent 147

Creating JavaScript Classes in Prototype 147
Creatinga Class ...t 147
Binding Function Calls to Objects 148

From Prototype to Scriptaculous 151
Prebuilt Controls 151
DragandDrop ... 152
Visual Effects 152
DOM ElementBuildero i 153
JavaScriptUnitTestingl 153

Downloading and Installing Scriptaculous 154

Combining Prototype, Scriptaculous, Ajax, and PHP

inaUseful Example 154
Creating the Main HTML Page: index.php 156
Styling the Application: styles.css 157
Creating and Populating the Database: schema.sgl 158
Managing the List ltems on the Server Side: items.php 159
Processing Ajax Requests on the Server Side: processor.php ... 161
Creating the Client-Side Application Logic: scripts.js 163

SUMMANY .. 169

Styling the Web Application 171

Adding Page Titles and Breadcrumbs 171
The Breadcrumbs Class ...t 172
GeneratingURLS ... 174
Setting the Title and Trail for Each Controller Action 178
Creating a Smarty Plug-In to Output Breadcrumbs 180

Displayingthe Page Titleoiiialt. 182

CHAPTER 7

CONTENTS

Integrating the Design into the Application 183
Creatingthe StaticHTML 184
Moving the HTML Markup into Smarty Templates 188

Constructingthe CSS o 192
Specifying Media Types and Loading the CSSFile 192
Creating the Application CSS 193
Creating a Print-Only Style Sheet 198
The Full Application Style Sheet 201

Styling the ApplicationWeb Forms 204

Loading Prototype and Scriptaculous 207

Implementing Client-Side Form Validation 208
Adding JSON Support to CustomControllerAction 209
Modifying the Form Processor 209
Modifying the Registration Controller Action 210
Creating the JavaScript Form Validator 212
Loading the UserRegistrationForm Class 216

SUMMArY ... 217

Building the Blogging System 219

Creating the Database Tables 219

Setting Up DatabaseObject and Profile Classes 221
Creating the DatabaseObject_BlogPost Class 221
Creating the Profile_BlogPostClass 223

Creating a Controller for Managing Blog Posts 223
Extending the Application Permissions 223
The BlogmanagerController Actions 225
Linkingto Blog Manager, 226

Creating and Editing Blog Posts 228
Creating the Blog Post Submission Form Template 228
Instantiating FormProcessor_BlogPost in editAction() 231
Implementing the FormProcessor_BlogPost Class 233
Generating a Permanent LinktoaBlogPost 240
Filtering Submitted HTML 243
CreatingaNew BlogPost 247

Previewing Blog Postsc i 248
Creating the Preview Action 249
Implementing the Preview Template 249

Requesting Confirmation for User Actions 252

ix

X

CONTENTS

CHAPTER 8

CHAPTER 9

Updating the Status of aBlog Post 254
Completing setstatusAction() 254
Notifyingthe User i, 256

SUMMANY ... 262

Extending the Blog Manager 265

Listing Blog Posts on the Blog Manager Index 265
Fetching Blog Posts from the Database 266
Assigning Recent Posts and the Monthly Summary

totheTemplate 274
Displaying Recent Posts inthe Template 276
Displaying the Monthly Summary 279

Ajaxing the Blog Monthly Summary 283
Creating the Ajax Request Output 284
The BlogMonthlySummary JavaScript Class 285
Installing the BlogMonthlySummary Class 287
Notifying the User About the ContentUpdate 287

Integrating a WYSIWYG Editor 291
Downloading and Installing FCKeditor 292
Configuring FCKeditorco i, 293
Loading FCKeditor in the Blog EditingPage 294

SUMMANY ... 296

Personalized UserAreas 297

Controlling User Settings 297
Presenting Customizable SettingstoUsers 298
Processing Changes to User Settings 299
Creating Default User Settings 301

The UserController Class ... s, 302
Routing Requests to UserController 303
Handling Requests to UserController 309

Displayingthe User'sBIog ..., 313
Displaying the Blog IndexPage 313
Displaying Individual Blog Posts 318
Generating Blog Archive Links 322
Displaying the Monthly Archive 324

Populating the Application Home Page 326
Loading Recent PublicPosts 326
Implementing the Application Home Page 327

SUMMArY 333

CHAPTER 10

CHAPTER 11

CONTENTS

Implementing Web 2.0 Features 335
A0S o 336
Implementing Tagging ... 336
Managing Blog PostTagsoooiiiiiiii... 340
Displaying a User’s Tagson TheirBlog 344
DisplayingaTagSpacecciiiiiiiiiin... 347
Displaying TagsonEach Post 351
WebFeeds ... 351
Data FormatsforWeb Feeds................................ 352
Creating an Atom Feed with Zend_Feed 352
Adding the Feed to UserController 353
LinkingtoYourFeedo 355
OtherFeed Options ...t 357
Microformats 358
An Example of Using Microformats 358
Why Use Microformats?coiii.t. 360
MicroformattingYourTags L. 362
Allowing Users to Create a Public Profile 363
Allowing Users to Create a Public Profile 363
Displaying aUser’s Profile 366
SUMMArY ... 369
A Dynamic Image Gallery 371
Storing Uploaded Files ... 372
Creating the Database Table for Image Data 373
Controlling Uploaded Images with DatabaseObject 373
Uploading Filescco i 374
Setting the Form Encoding 375
Addingthe Form 375
Specifying the File InputType 377
Setting the Maximum File Size 378
Handling Uploaded Files 379
SendingImages ... 387
ResizingImages ... 390
Creating Thumbnails 390

Linking the Thumbnailer to the Image Action Handler 395

Xi

Xii

CONTENTS

CHAPTER 12

Managing Blog PostImages 399
Automatically Loading Blog Post Images 399
Displaying Images on the Post Preview 401
Deleting Blog PostImages 403
Using Scriptaculous and Ajax to Delete Images 406
Deleting Images when PostsAre Deleted 411
Reordering Blog PostImages 412

Displaying Imageson UserBlogs 417
Extending the GetPosts() Function 47
Displaying Thumbnail Images on Blog Index 418
Displaying Images on the Blog DetailsPage 420
Displaying Larger Images with Lightbox 422

SUMMAIY ... 425

Implementing Site Search 427

Introduction to Zend_Search_Lucene 427
Comparison to MySQL Full-Text Indexing 428
Zend_Search_Lucene Field Types ...t 429
FieldNaming 430

Indexing Application Content, 430
Indexing Multiple TypesofData 431
Creating a New Zend_Search_Lucene_Document 431
Retrieving the Index Location 433
Building the Entire Index 434
Indexing and Unindexing a Single Blog Post 435
Triggering Search Index Updates 439

Creatingthe SearchTool coiiiiiii.. 442
Addingthe Search Form 442
Handling Search Requests 443
Querying the SearchIndex 444
Displaying SearchResults 448
Typesof Searches 451

Adding Autocompletion to the Search Tool 452
Providing Search Suggestions 452
Creating an Action Handler to Return Search Results 453
Retrieving Search Suggestions 454
Loading the SearchSuggestorClass 457
Displaying Search Suggestions 457
Adding Mouse NavigationtoResults 460
Adding Keyboard Navigationto Results 462

SUMMArY ... 467

CHAPTER 13

CHAPTER 14

CONTENTS

Integrating Google Maps 469
Google Maps Featureso i 469
Geocoding ... 469
Displaying Maps i 470
ControllingMaps ...t 473
Planning Integration 473
Limitations of Google Maps oii... 473
Browser Compatibilityl 474
Documentation and Resources 474
Creating a Google MapsAPIKeycoiit 474
Adding Location Storage Capabilities 475
Creating the Database Table 475
Creating the DatabaseObject_BlogPostLocation Class 475
Modifying Blog Posts to Load Locations 477
Creating QurFirstMapo i 478
Creating a New Blog Manager Controller Action 479
Displaying Your First GoogleMap 481
Managing LocationsontheMap 487
Handling Location Management Ajax Requests 487
Creating the Address Lookup Form 492
Extending the BlogLocationManager JavaScript Class 493
Using BlogLocationManager 508
Displaying the Map on Users’ PublicBlogs 509
Outputting Locations Using the Geo Microformat 509
Creating the BlogLocations Class 511
Updating the Blog Post Display Template 514
SUMMArY ... 516
Deployment and Maintenance 519
Application Logging ... 519
E-mailing Critical Errors to an Administrator 519
Using Application Logs ... 523
SiteErrorHandling 524
Objectives of Error Handling 526
Handling Predispatch Errors 526
Application Runtime Errors i 531
Web Site Administration 535
Administrator Section Features 535

Implementing Administration 536

Xiii

Application Deploymentl 538

Different Configurations for Different Servers 538
Deploying Application FileswithRsync 542
Backupand Restore 543
Exportinga Database 543
ImportingaDatabasecoiiiii 544
SUMMANY ... 545

About the Author

QUENTIN ZERVAAS is a web developer based in Adelaide, South Australia, where he has been
self-employed since 2003. After receiving his bachelor’s degree in computer science from the
University of Adelaide in 2001, Quentin worked for several web development firms before
branching out on his own, developing a wide range of custom web applications for customers
all around the world.

Quentin has recently started a new company called Recite Media (http://www.recite.
com.au) with two partners. Recite Media develops web applications primarily for other devel-
opment or design companies to resell. Its flagship product, Recite CMS, is being used by
some of Australia’s largest companies.

Quentin also runs and writes for his PHP development resource site, PhpRiot (www.phpriot.com),
which provides a number of useful articles on a wide variety of PHP-related topics.

After completing his role as the technical reviewer for Beginning Ajax with PHP: From
Novice to Professional (Apress, 2006), he decided to undertake writing this book.

Xv

About the Technical Reviewer

JEFFREY SAMBELLS is a graphic designer and self-taught web application developer best
known for his unique ability to merge the visual world of graphics with the mental realm of
code. After obtaining his bachelor’s of technology degree in graphic communications manage-
ment with a minor in multimedia, Jeffrey originally enjoyed the paper-and-ink printing
industry, but he soon realized the world of pixels and code was where his ideas would prosper.

Jeffrey has previously published articles related to print design and has contributed to
award-winning graphical and Internet software designs. His latest book, AdvancED DOM
Scripting: Dynamic Web Design Techniques (friends of ED, 2007), was an instant success. In
late 2005, Jeffrey also became a PHP 4 Zend Certified Engineer; he updated the certification to
PHP 5 in September 2006 to become one of the first PHP 5 Zend Certified Engineers. Jeffrey
also maintains a blog at http://jeffreysambells.com where he discusses his thoughts about
everything from web development to photography.

He currently lives and plays in Ontario, Canada, with his wife, Stephanie; his daughter,
Addison; and their little dog, Milo.

XVi

Introduction

Many of today’s web development books and articles cover single aspects of the development
life cycle, delving only into specific features rather than looking at the whole picture.

In this book, we will develop a complete web application. Although we will be using various
third-party libraries and tools to aid in development, we will be developing the application from
start to finish.

The focus of this book is on Web 2.0, a catchphrase that has been in use for a few years
now and is typically used to refer to web sites or web applications that have particular charac-
teristics. Some of these characteristics include the following:

¢ Correctly using HTML/XHTML, CSS, and other standards

¢ Using Ajax (Asynchronous JavaScript and XML) to provide a responsive application
without requiring a full refresh of pages

* Allowing syndication of web site content using RSS
* Adding wikis, blogs, or tags

Although not everybody is an advocate of the “Web 2.0” phrase, the term does signify
forward progress in web development. And although not everybody has the need to provide
a wiki or a blog on their web site, the other characteristics listed (such as correct standards
usage) provide a good basis for a web site and should be used by all developers, regardless of
how they want their web site or application categorized.

I wrote this book because I want to share with other users how I build web sites. Having
been a web developer for ten years now (full-time for the past seven), I have a solid under-
standing of a wide range of web-related topics and have much to offer newer developers or
developers looking to expand their own knowledge.

Who This Book Is For

This book has been written primarily for intermediate to expert PHP programmers. Although
programmers of all levels will benefit from this book, we do jump in to the deep end very
quickly, so some prior knowledge of PHP is assumed.

Having said that, if you're relatively new to PHP, you will definitely benefit from this book
because it will formalize some of the techniques you have already learned and will show you
some different ways of approaching various problems.

In this book, I have made the assumption that you are familiar with HTML and CSS,
although since most of the code developed in this book is PHP and JavaScript, an advanced
knowledge of HTML and CSS is not critical. All JavaScript code is explained thoroughly, which,
in combination with the Prototype JavaScript library we will be using, makes the listings rela-

tively straightforward.
Xvii

xviii

INTRODUCTION

How This Book Is Structured

We will start the book by determining which features to implement in our web application
and then implement each one as we progress through the book. Each chapter will add a new
set of features to the application, until reaching the final chapter where we look at strategies
for deploying the application.

The specific type of application we develop in this book (a multiuser blogging system) is
not particularly important; rather, it is used simply as a tool to show you the process of devel-
oping a web application. Each chapter is specifically designed to demonstrate particular
aspects of development that may arise regardless of the type of application:

Chapter 1, Application Planning and Design. We begin the book by looking at what
defines Web 2.0, as well as looking briefly at the features that will be implemented in
the application. Additionally, this chapter covers various aspects of the web develop-
ment life cycle that should be considered when planning and implementing web
applications.

Chapter 2, Setting Up the Application Framework. In this chapter, we begin to imple-
ment the web application. This process begins by correctly setting up the environment
(that is, installing the correct web server software) and then by creating the initial file
structure of the site. In addition to connecting to the database with PHP, we will handle
user requests with the Zend Framework and manage HTML code using the Smarty
Template Engine.

Chapter 3, User Authentication, Authorization, and Management. This chapter gives
the first look at using a database. We look at how to easily manage database data when
we implement the user system. Additionally, we look at how a role-based permissions
system works and then implement it into the application.

Chapter 4, User Registration, Login, and Logout. Continuing from Chapter 3, this
chapter shows how to implement a user registration system. Since this is the first time
the book deals with user-submitted data, this chapter looks at how to correctly deal
with such data when we create the registration and login forms.

Chapter 5, Introduction to Prototype and Scriptaculous. Since we make heavy use of
JavaScript and Ajax in later chapters, we move away from the main application in this
chapter while we explore two of the most useful JavaScript libraries available. Prototype
helps programmers develop easily maintainable cross-platform JavaScript code, while
Scriptaculous simplifies the process of adding appealing visual effects to web pages.

Chapter 6, Styling the Web Application. In this chapter, we step back slightly from the
web application in that we focus more on the user experience rather than on the main
application features. We first look at implementing various navigational items (which
also gives us a first taste of developing custom Smarty plug-ins), and we then complete
the chapter by implementing a simple and clean web design into the application.

INTRODUCTION

Chapter 7, Building the Blogging System. This chapter moves on to beginning the
implementation of the blogging system. In this chapter, we give users the ability to add,
edit, and delete their blog posts. One of the key concepts covered is how to correctly
allow user-submitted HTML while keeping the site safe and secure for visitors.

Chapter 8, Extending the Blog Manager. This chapter largely builds on what was
implemented in Chapter 7. A comprehensive Ajax example is included in this chapter
that we will use to help users manage their blogs. We also integrate an open source
What You See Is What You Get (WYSIWYG) editor into a blog post creation form.

Chapter 9, Personalized User Areas. At this point in the book, users can create a new
account as well as manage their very own blogs. In this chapter, we make their blogs
public in the application. We give each user a public home page within our application
web site in which all of their blog posts are shown. This chapter shows how to imple-
ment more advanced URL schemes, as well as shows you how to enable users to
customize their own experience by managing their own profiles and settings.

Chapter 10, Implementing Web 2.0 Features. Although several of the features we

define as Web 2.0 (such as standards compliancy and Ajax) apply throughout web

applications, a few concrete features are often defined as being part of the Web 2.0
movement. In this chapter, we will look at some of these, including microformats,

web feeds (RSS and Atom), and tagging.

Chapter 11, A Dynamic Image Gallery. In this chapter, we expand the capabilities of
the blogging system by allowing users to upload photos for each of their blog posts.
This allows us to see how to correctly handle not only file uploads but also image-
specific issues, such as dynamically generating thumbnails.

Chapter 12, Implementing Site Search. This chapter is essentially split into two parts:
creating search indexes based on user blog posts and then allowing site visitors to
search for posts. Indexing data can be a complicated topic, but by using the tools pro-
vided by the Zend Framework, the task is made simpler. After implementing the basic
search functionality, we extend it to use an intuitive Ajax-based autocompleter, similar
to that of Google Suggest.

Chapter 13, Integrating Google Maps. You as a developer can use many freely available
web services on the Internet to improve your own web site. In this chapter, we extend
the blog capabilities further to allow users to add locations to their blog posts using
Google Maps. We create an advanced sample implementation of Google Maps that
combines the Google Maps API with our database using Ajax, as well as learn how to
manage map data in real-time.

Chapter 14, Deployment and Maintenance. In this, the final chapter, we cover a num-
ber of miscellaneous topics related to developing a polished application. This is partly
an extension of some functionality implemented in Chapter 2 but also introduces sev-
eral new ideas (such as application deployment).

Xix

XX INTRODUCTION

Prerequisites

A number of third-party applications and libraries are used in this book. We discuss down-
loading and installing each of these as required, but for your reference, the following are used:

e PHP5.2.3

e Apache 2.2 on Linux (and its variants) or Windows (earlier versions of Apache may
also work)

e MySQL 5 or PostgreSQL 8

¢ Prototype 1.5.1.1

e Scriptaculous 1.7.1 beta 3

e Zend Framework 1.0.2 or newer

e Smarty Template Engine 2.6.18

¢ FCKeditor 2.4.3 (an open source JavaScript WYSIWYG editor)

In addition to these applications and libraries, in this book I use several custom PHP
classes that I have implemented. Each of these is available in the application source, which
can be downloaded as per the following instructions.

Downloading the Code

All code listings in this book are available from the book’s web site at http://www.myphpbook. com.
The source code for this book is also available to readers at http://www.apress.com on this book’s
page on the Apress web site. You can download the full web application as it stands at the end of
any of the chapters.

Additionally, I've included a number of bonus add-ons in the source code, including an
administration area and a blog post commenting system.

Contacting the Author

If you have any questions about the code in this book, your first stop should be the book’s web
site at http://www.myphpbook. com. This web site contains answers to frequently asked ques-
tions as well as various other web development resources.

Alternatively, you can contact me directly at quentin.zervaas@apress.com. Please ensure
your questions relate directly to the content of the book. It is likely I will publish your ques-
tions and the answers on the FAQ section of the book’s web site.

CHAPTER 1

Application Planning and Design

In this book we will be creating a blogging web application that will allow us to cover not only
all of the different PHP and database considerations involved, but also a number of different
Web 2.0 principles (such as Ajax and tagging). The blogging application will allow users to create
and manage their own blog. Each user will have their own public page on which their blog posts
are published.

Figure 1-1 shows how the application will be structured. As you can see, we will use a data-
base to store application data, and we will create separate logical areas in the application to
manage each feature as required. Additionally, one of the core aspects of Web 2.0 applications is
using standards-compliant XHTML and CSS. We will focus on developing clean markup and
well-structured JavaScript classes to ensure maximum compatibility and accessibility.

User Accounts Ve —~—
* Reg on
User Web Browser « Login / logout

+ Display standards-compliant XHTML and CSS # Fetch password

» Use JavaScript for rich user-interface
+ Communicate with server using Ajax User Home Page
13 = Display blog posts (including images

, and maps) Application Database
« Accept and display user comments (MySQL, PostgreSQL, etc.)
&‘ Store user accounts
Blog Management | and blog post data
e « Add/ edit/ delete posts
~ * Manage user comments
M+ Manage images and locations

‘‘_________'_/

Figure 1-1. The basic structure of our web application

There are a number of different aspects of the application that we must cover, including
database connectivity, template management, user authentication and permissions, and con-
sumption of third-party web services.

In this chapter we will look at all features of the web application from a “black box” point
of view. Each specific feature will be broken down in its respective chapter; here we will look at
the application as a whole and discuss various options that need to be considered.

In essence, this chapter can be viewed as an informal design document, including an
analysis of all required features and a look at design from a high-level. In developing the web
application, we will be using both custom-written code as well as various third-party libraries
(such as Prototype for JavaScript development, Smarty for template management in PHP, and
the Zend Framework for several other features).

CHAPTER 1 = APPLICATION PLANNING AND DESIGN

What Is Web 2.0?

So exactly what defines a web site as being “Web 2.0”2 There are many different opinions on
this, making it difficult to pinpoint an exact definition; however, some of the features typically
associated with Web 2.0 sites are as follows:

 Using standards-compliant HTML and CSS. This allows sites to work across many plat-
forms and helps with accessibility. This includes the use of microformats to generate
friendly HTML that can be used across a variety of platforms (as we will see in Chapter 10).

» Using Ajax to provide a rich user interface. By performing trivial operations in the
background using XMLHttpRequest, web pages can be more functional and intuitive.

Note xMLHttpRequest is a JavaScript API that allows a background HTTP request to occur while a user
is viewing a web page. This means that the current page can be updated based on a response from the
server without the user navigating to another page on the web site. The phrase “making an Ajax request”
(or similar) typically refers to performing an HTTP request in the background using XMLHttpRequest.

* Sharing data using web feeds and web services. Users like to aggregate many feeds to
easily receive content updates from their favorite sites using web feeds (such as RSS or
Atom). Additionally, web services can enable one site to use data from other sites (for
instance, we will display maps on our site using Google Maps).

 Incorporating social networking tools. Blogs and forums can enable users to commu-
nicate with each other.

While none of these features or aspects of development are new, we use the Web 2.0 term
to describe the current generation of web sites that make good use of HTML and CSS while
perhaps improving their interface with Ajax and social-networking tools. These are sites that
“do things right.” However, that’s not to say that a site that uses any of these features is neces-
sarily a good site.

Database Connectivity

In this application, we will need to save a number of different types of data, including
¢ User accounts
¢ User settings
* User-submitted data (such as blog posts, images, tags)

We will make use of a database abstraction layer to insert, update, and delete data from the
database. This allows us to develop PHP code that will work regardless of the type of underlying
database server. Within this book we will make use of MySQL, but if you want to use PostgreSQL
instead, it would simply be a matter of changing the application’s database connection settings.

CHAPTER 1 © APPLICATION PLANNING AND DESIGN

We will be using the Zend Framework’s Zend DB class to handle the database abstraction.
This is essentially an interface to the PDO extension for PHP 5. We will cover the installation of
all required software in Chapter 2.

Note In this book, all “database code” (i.e., PHP code that interacts with the database) will be self-
contained within its relevant class or function. This means that if you want to use a different database
abstraction layer (such as PEAR DB, ADOdb, or your own custom layer), it will be fairly straightforward to
implement in place of Zend Db.

Web Site Templates

One of the reasons PHP has become so popular is that you can easily include PHP code
directly within the HTML code you want to output. This makes developing simple and small
web applications very easy; however, this typically doesn’t scale well. When an application
grows large, it becomes difficult either to add new functionality within a bunch of HTML
markup or to change the site design by sifting through the PHP code.

To deal with this, we aim to separate our application logic from our display logic. Essen-
tially, this means the code that does the hard work (such as processing forms, reading data
from the database, or checking user permissions) is performed in one place, while the HTML
that will be output to the end user is stored in its own template file.

In Chapter 2 we will look at Model-View-Controller (MVC), which is a design pattern
specifically describing this separation of application and display logic. We will be using the
Smarty Template Engine to manage the display of templates, as this is a very popular and
powerful template engine (Smarty will essentially make up the “view” portion of MVC, as we
will see in Chapter 2).

Web Site Features

So far we have only looked at peripheral aspects of web application development, so let’s take
alook at some specifics. Let’s look at what the end users of the web application would see.

Main Home Page and User Home Page

The home page of our web application will display blog posts from all users in a single journal.
Registered users will be able to decide whether or not their posts are public and therefore are
displayed on the home page.

In addition to the main home page, each user will have a public home page. This will dis-
play all of their blog posts in a single listing.

CHAPTER 1 = APPLICATION PLANNING AND DESIGN

User Registration

We will need to create an account registration tool so new users can sign up and create a blog
with our web application.
Essentially, this tool will need to do the following:

¢ Validate their details (we will use Ajax to help us with this).

e Use CAPTCHA to prevent automated registrations.

Note A CAPTCHA is typically an image made up of a series of random characters that must be entered by
the user when submitting a form. This technique is used to differentiate between humans and computers. It
is discussed further in Chapter 4.

¢ Create their account in the database.

¢ E-mail them to confirm their account details.

Account Login and Management

Once a user has created and confirmed their account, they will be able to log in to their
account. This part of the application will allow them to do several things:

* Manage their blog (see the next section).
¢ Update their account details (such as their e-mail address).

* Log out from their account.

User Blogs

The blog functionality is the core feature of the application, and we will use it to demonstrate
awide variety of web development and Ajax programming concepts. There are many features
we must implement to make a useful blogging system. Users must be able to do the following:

* Add, edit, and delete blog posts.
¢ Tag posts.
* Upload images to blog posts, and display an image gallery for the user’s account.

 Tie geographical data (maps) to the blogs.

Web Site Search

A keyword search tool is vital in any content-based web site. As such, we need to provide users
with a way of searching for any content that appears on the site.

CHAPTER 1 ' APPLICATION PLANNING AND DESIGN

It needs to be easy to use and efficient, and it must provide meaningful results. To make
it easier to use, we will develop an auto-completing search box (similar to that of Google
Suggest—see http://www.google.com/webhp?complete=1).

Application Management

Administration of a web site or application is very important, and it is often overlooked or
underdeveloped. An administration area is used to perform day-to-day management of the
web application, such as viewing web site statistics or posting news to the site.

It often doesn't receive the attention it deserves because it requires spending development
time (which means money) on an area of the site that the target demographic never sees.

In Chapter 14 we will look at various strategies for application deployment, management,
and maintenance. Because this area is not for “public consumption,” advanced features and a
rich interface aren’t as important as they are on the main area of the site, and we won't be
focusing on the development of this area. However, we will look at the features you should
consider when developing an administration area for the blogging application.

Other Aspects of Development

In addition to the specific features of our web application, there are some other aspects we
must consider in the development process. No chapters are specifically devoted to any of
these topics, but they do form the basis for content that is covered throughout the book.

Search-Engine Optimization

While we are not looking to achieve high search-engine rankings with this particular web
application (after all, it's not a real-world web site we are developing), we will still aim to
develop our code in a way that is optimal for search engines. This means that if you choose to
extend the application developed in this book, a strong basis for search-engine ranking will
have been formed.

Specifically, this means the following:

* Using friendly URLs. A friendly URL is basically a URL that doesn’t contain a lot of
extraneous characters. For example, if you had a document called “About Us,” a URL
such as http://www.example.com/about-us would be user friendly, while a URL such as
http://www.example.com/documents.php?id=1234 would not be so friendly.

* Correctly using HTML markup (such as headings, paragraphs, and tables).

* Correctly using HTTP status codes and content types (where relevant).

PHPDoc-Style Commenting

All classes we develop will be commented using PHPDoc-style comments, allowing us to
easily build API documentation for all our classes. PHPDoc is based on Sun’s Javadoc system,
which is a simple method of commenting all functions, arguments, variables, and packages so
developers can easily reuse them.

CHAPTER 1 = APPLICATION PLANNING AND DESIGN

While this is not essential for the development of our web application, it is a good habit to
get into when developing. Additionally, you may find it useful when following code examples
in this book to have a PHPDoc comment block before each function.

Note The code displayed in this book typically won’t include any PHPDoc comments since listings will
be described in the text; however, they will be included in the downloadable code for this web application
where possible.

PHPDoc works by placing a block of comments before each function, class, or variable
definition. It is not mandatory in all situations—only where you feel it is necessary.

Each comment block begins with a description, and then is followed by a series of one or
more optional parameters. For example, when adding PHPDoc comments to a function, you
specify the input parameters and return value data. Obviously, the PHPDoc comments you
would write for a variable definition would contain different information.

The following code shows an example of a PHPDoc comment for a simple user-defined
function:

<?php

/**

* mySimpleFunction

A simple function to return a friendly message
to the user based on their name and age

S SR S

* @param string $name The name of the user

* @param int $age The age of the user
* @return string The generated welcome message
*/

function mySimpleFunction($name, $age)

{

$str = sprintf('Hello %s, your age is %d', $name, $age);
return $str;

>

The first thing to note is how the block of comments begins. The /** token indicates to
the PHPDoc parser that a PHPDoc comment block is beginning.

The first line of the block is a short description. My own personal preference here is to
simply use the name of the function, class, or variable.

The next section in the comment block is a longer description. Here I try to describe what
the function, class, or variable does from a black-box perspective. That is, what it does, not
how it works. Any specific functionality considerations or funky logic that takes place is dealt
with in standard comments within the code.

CHAPTER 1 © APPLICATION PLANNING AND DESIGN

Note Although it is not required, the usual convention is to include an asterisk at the beginning of each
line of the /** .. */ block. This is primarily to improve readability and to easily identify entire PHPDoc
blocks.

The final section of the comment block contains the various PHPDoc parameters used by
the parser to link the API documentation together better and to provide you with useful docu-
mentation. Each parameter begins with @, directly followed by the name of the parameter.
Following that is the information required for that particular parameter.

In this example, you can see the @param and @return parameters. @param is used to specify
aspects of the function arguments: first, the type of argument (in this case, our first argument
is a string); next, its name (which in this case is $name); and finally, a brief description of what
the input data should contain. The @return parameter is used to give information about the
data returned from the function: the type of data is specified, followed by a brief description
of what the return data contains.

For more information about phpDocumentor, read the “phpDocumentor Guide to Creat-
ing Fantastic Documentation” at http://www.phpdoc.org/tutorial.php.

Security

We will be looking closely at the security of our web site, as this very important aspect of web
development is often overlooked or implemented incorrectly.

For instance, we will focus on making sure attacks such as SQL injection, cross-site scripting
(XSS), and cross-site request forgeries (CSRF) do not occur. This is especially important in sites
that not only make use of JavaScript and Ajax, but also make heavy use of user-submitted data.
We achieve this by correctly filtering submitted data while correctly “escaping” user-
submitted data when it is returned to users’ browsers.

Application Logging

An aspect of development that ties in closely to both the security and performance considera-
tions is that of logging. We will maintain a log file within our application to record significant
events. For example, we will record a log entry whenever somebody tries to log in but provides
incorrect information.

Maintainability and Extensibility

In addition to using some well-known third-party classes and libraries, we will also be devel-
oping our own custom classes in such a way that they can easily be expanded upon in the
future.

In the next section, we will consider the use of unit testing. Note that unit testing aids
greatly in developing applications that can easily be extended (as well as aiding in extending
the application); however, this exceeds the scope of the book. You should keep unit testing in
mind for your own future application development if you don’t already use it.

CHAPTER 1 = APPLICATION PLANNING AND DESIGN

Some of the ways we will make our code easily maintainable and extensible include
» Using a template engine to separate application logic from display logic.
e Using database abstraction to handle database server interaction.

¢ Making heavy use of the object oriented programming (OOP) features in PHP 5 to
organize code.

Version Control and Unit Testing

There are two other reasonably important aspects of the web development process that we
won't be covering in this book, but that you should at least be aware of: version control and
unit testing. While they are important, they don't directly concern the concepts and libraries
we will be looking at in this book.

Almost all web development projects I undertake use some form of version control (typi-
cally Subversion). This allows me to track any and all changes made to the files, and it also aids
with code deployment. If you're not familiar with Subversion, I encourage you to use it for your
own development projects. You can download it from http://subversion.tigris.org, and you
can download the free O’Reilly book on Subversion from http://svnbook.red-bean.com.

Unit testing is another important tool that should be used when developing your own
web sites (or when developing libraries you can use in multiple applications). A unit test is a
script designed to test the functionality of a class (or of an entire package, or just individual
methods inside a class).

You can perform automated testing using multiple unit tests, which will assist in finding
regression bugs if they occur (that is, bugs that occur incidentally as a result of changing code
that previously worked).

All of the code provided in this book has been tested, so including unit tests with all of the
code would be somewhat redundant. For your own unit testing, you can use a package such as
Simple Test (http://www.lastcraft.com/simple test.php).

Summary

In this chapter, we have looked at the required features of our Web 2.0 application, and briefly
at how they will be implemented. From here on in, we will work on the actual application
development, starting with the initial setup in Chapter 2.

CHAPTER 2

Setting Up the Application
Framework

In the last chapter, we covered the features that we will be implementing in our web applica-
tion. Before we can get started on these features, however, we must set up our development
environment. In this chapter, we will be completing a number of tasks, beginning with setting
up the required server software.

Following that, we will create a filesystem structure that will serve as the basis for our web
application. There are a number of different types of files in our web application, and we will
keep them as organized as possible. For example, we need one directory for the web server to
use as the base directory from which to serve files, we need another directory to hold custom
and third-party PHP libraries, and we need another to hold web site templates.

Next, we will set up the database. The actual creation of database schema and various
queries will be covered in later chapters, but here we will write the PHP code required to con-
nect to the database.

Then we will write code to handle client requests to our web site. We will use the Model-
View-Controller design pattern to handle requests, and we will look more closely at this model
in this chapter.

Finally, we will install the Smarty Template Engine into our application and set up some
basic templates. We will expand on these templates as we continue through this book, but the
material provided here should explain the basics of Smarty.

Also in this chapter, we will create a configuration file for our web application. This file
allows you to deploy the web applications to different servers easily. For example, we will be
storing database connection settings in this file, meaning that you can switch databases or the
database password simply by modifying this file.

Web Server Setup

Setting up a web server correctly can be a complex task, and I cannot cover all scenarios in
this book. However, I will cover the setup used for all code in this book.

I have used a somewhat typical LAMP setup (Linux/Apache/MySQL/PHP), broken down
as follows:

¢ Operating system: Linux

¢ Web server: Apache 2.2

¢ Database server: MySQL 5

» Server-side scripting language: PHP 5.2.3

10

CHAPTER 2 © SETTING UP THE APPLICATION FRAMEWORK

Operating System

The code in this book has been developed and tested on Linux, FreeBSD, and Microsoft Win-

dows XP. There are no differences in code required for any of these platforms. Note also that

references to Linux can typically also include similar platforms such as FreeBSD and Mac OS X.
For Windows there are slight differences in the configuration of the web server, as well as

in the application configuration file we will develop later in this chapter. Each of these differ-

ences is noted in the relevant places.

Installing the Apache HTTP Server

Apache HTTP Server 2.2 is the web server of choice for this book—it is the latest stable release
of Apache at the time of writing. This web server is available for Linux and Windows. Since I
can’t guarantee all PHP code in this book will work correctly on IIS, you should use Apache if
you are using Windows. Alternatively, you may choose to use an older version of Apache (such
as 1.3 or 2.0). There should be no problems with doing so, but this cannot be guaranteed.

You can download Apache 2.2 from http://httpd.apache.org. We will use a typical con-
figuration, enabling all modules (including mod_rewrite, which we require in order to use
Zend_Controller). You may also wish to include extra options that aren’t included by default
(such as SSL).

To install Apache on Windows, you can download the installer from the Apache web site,
which will take you through the installation step by step.

The easiest way to install Apache (as well as PHP and MySQL) on Linux is to use the
packaging system that comes with your operating system (such as Ports on FreeBSD).
However, if you do not use a packaging system, you can install Apache 2.2.4 on Linux by
downloading the httpd-2.2.4.tar.gz file (or a newer version if one is available) and using
the following commands:

tar -zxf httpd-2.2.4.tar.gz

cd httpd-2.2.4

./configure --enable-modules=all
make

make install

Note that by default this will install Apache into the /usr/local/apache2 directory.
Assuming each of these steps were successful, the Apache files should now be installed.

You can configure the web server by editing the /usx/local/apache2/conf/httpd.conf file.

Once that has been done, you can start the web server by issuing the following command:

/usr/local/apache2/bin/apachectl start

If there is an error in the configuration, you will be notified. Alternatively, you can issue
the configtest command instead of start with apachectl to ensure that the configuration is
correct.

We will look at the Apache configuration required for our web application in the “Config-
uring the Web Server” section later in this chapter.

CHAPTER 2 " SETTING UP THE APPLICATION FRAMEWORK

Installing MySQL 5

Next you must install MySQL 5. You can download it from http://dev.mysql.com/downloads.
Just like Apache, the Windows version of MySQL 5 is very straightforward to install as it
uses an installer. If you are installing on Linux, it is recommended that you download the
binary distribution, as MySQL can be a slow program to compile from source. I recommend
installing MySQL to the /usr/local directory, although you may prefer a different setup.
Assuming you have downloaded the 5.0.41 version, the commands to install MySQL on
Linux are as follows:

cd /usr/local

tar -zxf /path/to/mysql-5.0.41-1inux-1686.tar.gz
1In -s mysql-5.0.41-1inux-1686 mysql

cd mysql

./configure

Setting up the server using a symbolic link to /usr/local/mysql allows you to upgrade the
server version in the future much more easily.

Once you have run the configure script, you can start the MySQL server with the following
command:

./bin/mysqld safe &

Note that this assumes you are already in the /usr/local/mysql directory.
It is now recommended that you add /usr/local/mysql/bin to your system path so you
can easily load MySQL programs when required (such as mysql, mysqladmin, and mysqldump).

Installing PHP 5.2.3

The code developed in this book is designed to run on PHP 5.2.3 (or later). We will be using
many PHP 5-specific features, so you will not be able to run the code in this book on PHP 4.
Strictly speaking, you can use a version of PHP 5 earlier than 5.2.3, but it is best to use the lat-
est available version. Note that the Zend Framework requires a minimum PHP version of 5.1.4.

Download PHP 5.2.3 (or later) from the PHP web site
(http://www.php.net/downloads.php), and use the following commands to compile a fresh
version of PHP. Note that these commands only include the minimum options required for
compatibility with the code in this book.

tar -zxf php-5.2.3.tar.gz

cd php-5.2.3

./configure --with-apxs2 \
--with-gd --with-curl \
--with-mysql --with-pdo-mysql \
--with-jpeg-dir --with-png-dir \
--with-freetype-dir --with-z1lib

make

make install

Once these commands have successfully executed, PHP should be compiled and
installed, including the PEAR library in /usr/local/lib/php.

11

12

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

Note Please ensure that your version of PHP is built with the GD library enabled, as we will use it in this
book for generating CAPTCHA images (Chapter 4) and for resizing uploaded images (Chapter 11).

When you run the make install command, the Apache httpd.conf file will be modified
to load the PHP library; however, you may still need to add the following lines to ensure that
Apache recognizes files with the extension .php as PHP files:

AddType application/x-httpd-php .php
AddType application/x-httpd-php-source .phps

This second line is optional, but it is included with the PHP documentation, so I have
included it here.

You should also modify the DirectoryIndex directive in httpd.conf so index.php files are
treated as index files. You can simply add index. php to this command so it looks something
like the following:

DirectoryIndex index.php index.html

Application Filesystem Structure

Let’s now take a look at the filesystem structure we will be using for the web application. The
precise naming and organization of the directories in the web application is not in itself criti-
cal—it is simply important that everything is easy to find and manage.

In this book, we will develop the entire application within a directory called /var/www/
phpweb20 (with “phpweb20” referring to the title of this book). You can, of course, use whichever
directory on your own server that you choose, although we will refer back to this directory name
on several occasions.

Web Root Directory

We need to define a root directory for the web server to access. This is the directory specified
in the Apache configuration, and it is where Apache looks for files when a user requests a page
in the web site. I will call this directory htdocs (the full path is /var/www/phpweb20/htdocs).

Most of the files in our application will exist outside of this directory (such as PHP classes
and web site templates), which prevents users from directly accessing these files.

Data Storage Directory

Next, we need a directory for storing application data (that is, data in addition to that in the
database). Here we will store log files (both from Apache, and those we create ourselves), files
uploaded by users, as well as any other temporary data.

I'will call this directory data, and it will contain a number of subdirectories for each of the
different types of data stored. These subdirectories are logs, uploaded-files, and tmp.

CHAPTER 2 " SETTING UP THE APPLICATION FRAMEWORK

PHP Classes Directory

We next need a directory called include, which will be used to store all PHP functions and
libraries. Any third-party scripts we use (such as Smarty) will also be stored in this directory
in addition to our own code. Application controllers (scripts that define the different actions
users can perform on the web site) will be stored in a directory called Controllers in the
include directory.

When we create the Apache virtual host for our application (in the “Configuring the Web
Server” section of this chapter), we will include the include directory in the PHP include path
directive, so our application will know where to find this code.

Templates Directory

Finally, we need a directory to hold all the web site templates. We could put these directly
inside either the htdocs directory or the include directory; however, they are not PHP code
(although they do contain display logic), and they shouldn’t be directly accessible (although
they do contain HTML markup). We will put them in a directory called templates.

Full Directory Structure

Putting this all together, the directory structure of our web application will look like this:

- /logs

- /data
|

|- /uploaded-files
|

|- /Controllers
- /templates

To create this structure in Linux, you would issue the following commands:

mkdir /var/www/phpweb20
cd /var/www/phpweb20
mkdir data

mkdir data/logs

mkdir data/uploaded-files
mkdir data/tmp

mkdir htdocs

mkdir include

mkdir include/Controllers
mkdir templates

H oH HF HF HE HF HF HE H H

When you view the directory listing, you should see the following:

1s
data/ htdocs/ include/ templates/

13

14

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

Note You will need sufficient permissions to create this directory structure. You may instead prefer to
keep the code for this book in your home directory. | chose to use /var/www since it is a commonly used
area on web servers to hold web sites, and it is short and easy to refer back to when required. (On a typical
Windows setup, you won’t need any special permissions to create the required directories.)

Installing the Zend Framework

The Zend Framework is an open-source library of PHP 5 components that can be used to
solve tasks that commonly arise in everyday web development. It is actively contributed to
by a large number of developers, and it is backed by Zend (the company that writes the Zend
Engine, which has powered PHP since PHP 4). We will be using this framework in our applica-
tion, as it allows us to focus on developing a Web 2.0 application, rather than getting bogged
down in the details of building an entire application infrastructure.

These are some of the components we will be using:

* Zend_Auth and Zend_Acl: Used to authenticate users when they try to log in and to check
their permissions (see Chapter 3)

e Zend_Controller: Used to handle client requests and direct the requests to the appro-
priate classes (see later this chapter)

e Zend_Db: Used to interact with the application MySQL database

* Zend_Mail: Used to send e-mails to users

* Zend Validate and Zend_Filter: Used to check and sanitize user-submitted data in forms
» Zend_Search: Used for full-text searching

We will use more components, but, as you can see, we will be making heavy use of the
framework.

Download the Zend Framework from http://framework.zend. com. In this book, I used
version 1.0.2, but you should use the most up-to-date version available. Use these commands
to extract the library to the include directory:

cd /var/www/phpweb20

wget http://framework.zend.com/releases/ZendFramework-1.0.2/
ZendFramework-1.0.2.tar.gz

tar -zxf ZendFramework-1.0.2.tar.gz

mv ZendFramework-1.0.2/1library/Zend include

The last command moves the actual library files from the extracted archive into the appli-
cation directory. The additional files in the archive include documentation and unit testing
and are not really required. You may wish to remove the downloaded files once you have
installed the framework, as they are no longer needed.

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

Configuring the Web Server

A typical development setup is to use your normal computer (such as your Windows or Mac OS
machine) to write your code, while running the web server on another server. In such a case, you
need to access the web server over a network. For example, I use a Windows machine for my
day-to-day work, while my web server is a FreeBSD machine elsewhere in the office.

Tip 1aim to keep my development web server configured identically to my production server, as this
helps to eliminate any unforeseeable issues that may arise when deploying my code (such as different
versions of linked libraries).

For the purposes of this book, I assume the web application is accessible using the web
address http://phpweb20. In order to access my web server using this hostname, I make a fake
DNS entry in my Windows host file so my browser will resolve the phpweb20 hostname to
192.168.0.80. This is the entry I add in my Windows hostname file (c: \windows\system32\
drivers\etc\hosts in Windows XP):

192.168.0.80 phpweb20

Note Setting up a host as described here is not related to the development of the web application, but
rather allows you to access it in your web browser. Creating fake hostnames is a simple trick for develop-
ment purposes, eliminating the need for a DNS server or a real domain. Once you deploy your application
live, you will need to use a real hostname so other people can access your web site.

If you have control over a real DNS server, you may instead prefer to create your own
hostname. (Just keep in mind that I continually refer to phpweb20 throughout this book.)

Note You could use IP-based hosting, which would allow you to simply access http://192.168.0. 80.
Since name-based hosting in Apache is arguably the most common setup, I've chosen instead to use the
method described previously (that is, setting up a fake hostname). Obviously, using a real hostname is better,
but I've tried to simplify matters by not requiring it for this book.

Creating a Virtual Host in Linux

To configure the web server, we must first create the <VirtualHost> entry for Apache. I like to
store this configuration data in its own file within my application directory, and then use the
Include directive from the main Apache httpd. conf file. This means changes can be made to
the local configuration, and the main configuration will pick up the changes automatically
when the server is restarted. Listing 2-1 shows the contents of the /var/www/phpweb20/
httpd.conf file.

15

16 CHAPTER 2 ©' SETTING UP THE APPLICATION FRAMEWORK

Listing 2-1. Virtual Host Configuration for Apache on Linux (httpd.conf)

<VirtualHost 192.168.0.80>
ServerName phpweb20
DocumentRoot /var/www/phpweb20/htdocs

<Directory /var/www/phpweb20/htdocs>
AllowOverride All
Options All

</Directory>

php_value include path .:/var/www/phpweb20/include:/usr/local/lib/pear
php_value magic quotes gpc off
php_value register globals off

</VirtualHost>

In your main httpd. conf file (commonly found in /usr/local/apache2/conf/httpd.conf
for a default Linux install), you would add the following line:

Include /var/www/phpweb20/httpd.conf

Note For this virtualHost directive to work, you must have previously included the NameVirtualHost
192.168.0.80 in your main web server configuration before loading this virtual host.

There may be other directives you wish to add to your configuration, but this is a pretty
standard configuration. It allows you to override configuration per directory as required with a
.htaccess file (because of the AllowOverride directive), and it tells the PHP module where to
look for included files. In this example, it will first look in the current directory, then in the
/var/www/phpweb20/include directory, then finally in the PEAR library. Note that the specific
location of PEAR may change depending on your Linux distribution or operating system.

Note As a general rule, the PHP register globals setting should be set to off. If this setting is on, the
form, URL, session, and cookie variables will be made into global variables, which is generally a bad thing.
The problem is that for many years the default was to have this setting enabled, so some web servers will
have it enabled while others won’t. All code in this book will work with register globals turned off, just
as all code you develop should (unless there’s a particular reason to do otherwise). The same applies to the
magic_quotes_gpc setting, which is used to automatically escape submitted data. While it is not necessar-
ily a bad thing in general, all the code we develop will escape data as required; this setting should not be
relied upon and is therefore disabled.

CHAPTER 2 " SETTING UP THE APPLICATION FRAMEWORK

Creating a Virtual Host in Windows

Creating a virtual host in Windows is similar to the process in the previous section, except that
the paths must be adjusted. Note also that the PHP include path directive uses a semicolon as
the separator rather than a colon, since a colon is used to indicate a drive label.

Listing 2-2 shows the Windows equivalent of Listing 2-1. Once again, you will need to
include it in the main web server configuration file, typically found in C: \Program Files\Apache
Software Foundation\Apache2.2\conf\httpd.conf on Windows.

Listing 2-2. Web Server Configuration for Apache on Windows (httpd.conf)

<VirtualHost *:80>
ServerName phpweb20
DocumentRoot "c:/www/phpweb20/htdocs™”

<Directory "c:/www/phpweb20/htdocs">
AllowOverride None
Options All

</Directory>

php_value include path ".;c:/www/phpweb20/include;c:/program files/php/pear"
php_value magic_quotes gpc off
php_value register globals off

</VirtualHost>

Restarting Your Web Server

After making changes to your web server configuration, you must restart your web server. In
Linux, the typical way to do this is with the following command:

apachectl restart

In Windows, you can restart Apache by going to Control Panel » Administrative Tools »
Services and selecting restart on the Apache2 service.

Once your server has been restarted, you should be able to access http://phpweb20
directly in your browser (or by entering the server IP address directly, although if you're using
aname-based virtual host system as described previously, this will not show files from the
application directory).

Setting Up the Database

The next thing we need to do is create the MySQL database that we will be using in the web
application. We will call this database phpweb20, and we will create a user called phpweb20 to
access this database.

17

18

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

To create the database, load the MySQL client program (mysql) and issue the CREATE
DATABASE command as shown here:

mysql -u root

Welcome to the MySQL monitor. Commands end with ; or \g.
Your MySQL connection id is 1 to server version: 5.0.27-standard

mysql> CREATE DATABASE phpweb20;
Query OK, 1 row affected (0.00 sec)

mysql> use phpweb20
Database changed
Next, we must create the phpweb20 user and assign a password to the account:

mysql> grant all on phpweb20.* to phpweb20@localhost identified by 'myPassword’;
Query OK, 0 rows affected (0.01 sec)

Warning I use the password myPasswoxrd for this book, but if you plan on deploying this application and
using it as a real-world site, it is essential that you use a different password than the one created here, as
anybody who has read this book will be able to access your database if you don’t.

To ensure that the database and user have been correctly created, try exiting from the
MySQL client and connecting using the new details. To do so, type the following command
and then enter your password when prompted:

mysql -u phpweb20 -p phpweb20

We will next take a quick look at handling client requests, and then we will return to our
MySQL database and look at the PHP code for accessing the database.

Using the Model-View-Controller Pattern

The Model-View-Controller (MVC) design pattern is a commonly used method of designing
web applications. In simple terms, it separates the presentation of the application from the
underlying application logic.

The three parts of the pattern work as follows:

e Model: This represents the application logic. It performs the “hard work” of the applica-
tion, such as interacting with the database, processing credit card transactions, or
sending e-mails to users.

» View: The view represents the user interface. In the case of our application, this will
typically be HTML code. We will be using the Smarty Template Engine to manage the
view aspect of our application.

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

e Controller: The controller joins the view to the model. That is, it responds to events
(such as when a user submits a web form), potentially updating the state of the applica-
tion by interacting with the model.

Figure 2-1 shows how the three parts of MVC fit together in a typical web application.

Model [Controller | View
[PHP classes * Create HTML or XML data to
and functions » Read user input from HTTP send bfc:; :a user u|sm|? data
{such as for | . | generated from controller
- equest (such as form data) <
2 - - HTI
reading from or « Use classes and functions in the Browser renders HTML (or
writing 1o the del XML, or whatever type of data
dalatiace or for l . g:n:rata data to be used in the s faquired)
Database processing ¢ + Browser allows user to submit
forms) view for request response

data back to the controller
using HTML forms

Figure 2-1. How the Model-View-Controller design pattern fits together in our application

We will be using the Zend Controller class to handle the controller aspect of MVC. All
user requests will be handled by this class, which will then result either in a new web page
being displayed to the user (using Smarty), or in some update to the application (such as a
new blog post being written to the database).

Separating Application Logic from Presentation Logic

To better demonstrate how MVC works, let’s use the example of a simple news-article publish-
ing system both using MVC and not using it.

The most basic way to retrieve a series of news articles from a database and display them
would be to create a PHP script that connects to a database, queries the database, then loops
over the results and outputs some HTML for each article. The following code shows what such
a script might look like.

<?php
mysql connect(...);
$result = mysql query('select * from news order by article date desc');
>
<html>
<body>
<h1>News Articles</h1>

<?php while ($row = mysql fetch object($result)) { ?>
<h2><?php echo $row->headline ?></h2>

<p>
<?php echo $row->body ?>
</p>
<?php } >
</body>
</html>

19

20

CHAPTER 2 ©' SETTING UP THE APPLICATION FRAMEWORK

In the preceding script, the application logic is the code that connects to the database
server and retrieves the rows from the news table. The presentation logic is the HTML code
that outputs the articles.

The problem with a script like this is that it can be hard to maintain, especially if you
change the way the news system works (for instance, if you wanted to rename the table to
news_articles). While it appears that you only need to change the code in place, consider
what would happen if you wanted to display your news articles on other pages also. You would
need to duplicate this code and then maintain it accordingly.

Now consider using the MVC pattern to implement this code. There are essentially two
key changes that would be made. The first would be to move the code that retrieves articles
from the database into a reusable component (either a PHP class or function). We would then
call this new function to retrieve the articles so they could be output using HTML. In MVC
terms, this new class or function is the model.

The second change would be to separate the call to retrieve the articles from the actual
HTML. While this change isn't quite as important as the first change, it is still important as it
allows you to change your HTML code without having to worry about how the data used in the
HTML is generated. In MVC terms, this is separating the controller from the view.

Figure 2-2 shows how the previous code would be structured to use MVC.

Model (Controller | View
‘ get_articles()
reads news . - %
articles from the | ¢—08 | :;fi':"e::h: n'}:::agf:fhbe’; «—— | Loops over the news articles in the
| database and o gg e Ui 8 renHar b | $articles array and generales
relurns them to Skl v'ewl = e HTML code for each article
the calling code " articles.tpl template ™ |
‘ Database

Figure 2-2. The news article example represented in MVC

In the MVC version, you would effectively have three files. The model:

<?php

function get articles()

{
mysql connect(...);
$result = mysql query('select * from news order by article date desc');
$articles = array();
while ($row = mysql fetch objects($result)) {

$articles[] = $row;

}
return $articles;

}

>

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

The controller:
<?php

$articles = get articles();

display template('articles.tpl');
2>

Note display template() is a fictional function that represents some mechanism used to render
templates.

And the view:

<html>
<body>
<h1>News Articles</h1>

<?php foreach ($articles as $row) { ?>
<h2><?php echo $row->headline ?></h2>

<p>
<?php echo $row->body ?>
</p>
<php } >
</body>
</html>

While this example is fairly trivial, considering how the news articles are maintained
(that is, inserted, edited, or deleted) will highlight the advantages of MVC. It is a nightmare to
maintain code that mixes SQL insert statements directly within the HTML output for the cor-
responding page.

Directing All Requests to index.php

To implement our application using MVC, we will use the Zend_Controller class. First, though,
we must alter our web server configuration to direct all page requests to Zend _Controller,
even if the requested location is not a real file on the filesystem. All requests to files that do
exist on the filesystem (such as our images and CSS files) will be handled normally by Apache;
however, all other requests will be handled by the application bootstrap file (which will be
located in /var/www/phpweb20/htdocs/index.php).

The directives in Listing 2-3 should be placed in a file called .htaccess inside . /htdocs. Note
that these could be placed in the httpd. conf file we created earlier, but doing it here allows us to
make changes without restarting the web server. The RewriteRule directive in Listing 2-3 routes
any request that doesn't correspond to an actual file or directory through index. php.

21

22

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

Note The AllowOverride directive in the Apache configuration we created earlier allows us to change
the configuration within a .htaccess file.

Listing 2-3. Routing All Web Site Requests Through the index.php File (.htaccess)

RewriteEngine on

RewriteCond %{SCRIPT FILENAME} !-f
RewriteCond %{SCRIPT FILENAME} !-d
RewriteRule ~(.*)$ index.php/$1

The firstline in Listing 2-3 enables mod_rewrite for the directory in which .htaccess is
located (including subdirectories).

The second and third lines set up conditions for rewriting the request to index.php. The
second line says “if the requested file doesn’t correspond to a file relative to the web root then
use the rewrite rule,” while the third line says the same thing but for nonexistent directories.

The final line is then executed if either of the conditions is satisfied. The requested filename
is made available to index.php by adding it to the request string.

Introduction to the Zend_Controller Class

Let’s now begin with the Zend_Controller class. Since we have already installed the Zend
Framework, we can access this class easily. You will learn how to use this class in this section.

First, we will create the index.php file in the . /htdocs directory (to which requests are
routed using mod_rewrite). This file will drive our entire web site. Every single user request
will be handled by this file (aside from requests for files such as images or CSS). This file is the
bootstrap file.

Note From here onwards in the book, when | use the filesystem path . / | am referring to /var/www/
phpweb20. For example, the path /var/www/phpweb20/htdocs/index.php will now be referred to as
./htdocs/index.php.

All this bootstrap file needs to do is load and initialize the Zend_Controller Front class,
then call the dispatch() method, which will call the necessary code to handle the request.
Note that Zend_Controller Front is a singleton class, meaning that only one instance of the
class may exist. This is why the getInstance() method is used to instantiate it. Listing 2-4
shows the contents of the index. php file.

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

Listing 2-4. Handling Client Requests Using Zend_Controller (index.php)

<?php
require once('Zend/Loader.php');
Zend Loader::registerAutoload();

$controller = Zend Controller Front::getInstance();
$controller->setControllerDirectory('../include/Controllers"');
$controller->dispatch();

>

We will use the registerAutoload() method from Zend Loader to automatically load Zend
Framework classes. Doing this means you don't have to use require_once for any of the Zend
Framework classes you use (apart from Zend_Loader).

Note If you decide to use Zend Framework in any other apps that already use PHP’s class autoloading,
you will either have to modify your autoloader or manually include the Zend Framework library files. The file-
names correspond to classes simply by replacing underscores in the class name with a slash and appending
.php. For instance, Zend_Controller Front can be included using require once('Zend/Controller/
Front.php").

How Requests Work with Zend_Controller

If you were to run the code in Listing 2-4 (by visiting http://phpweb20), nothing useful would
happen—an error would be shown. At this point, we need to look at how requests work with
Zend Controller.

Note Depending on your PHP configuration, errors may in fact be logged to the filesystem rather than
displayed on screen, so be sure to look for a log file if you encounter unexpected behavior but no error mes-
sages. We will deal with error handling (such as “404 File Not Found”) in Chapter 14.

In Listing 2-4 we called the setControllerDirectory() method. This is used to specify the
directory that holds our web application’s controllers—that is, classes that are used to handle
requests to the application.

For example, you might have a controller called news, used for displaying both a summary
of all news articles on your site, and for displaying individual articles. To create this controller,
you would create a class called NewsController and save it in the Controllers directory
(./include/Controllers/NewsController.php).

23

24 CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

When Zend Controller routes a user request, it automatically looks in the controller
directory for a file called NameController.php, where Name corresponds to the controller name
specified. The name is automatically capitalized, meaning a controller named news corre-
sponds to a file called NewsController.php.

Note The typical naming convention in PHP (including in the Zend Framework) is to capitalize each word
in a class name (regardless of whether each word is separated by an underscore). Conversely, class meth-
ods use camel caps, meaning all words in the method name begin with an uppercase letter except for the
first word. As an extra caveat, | prefer to capitalize all words for static class methods. This lets me know
instantly that the method is static without needing to understand the function.

Other conventions include using two underscores for PHP’s magic method (these names are built into
PHP, suchas get(), set(), _unset(),and _ isset()), while method names beginning with one
underscore indicate private or protected methods (which can only be called with the class or package
respectively).

To then access this controller in your application, you would visit http://phpweb20/news.
To view a specific news article, you might create an action called display, which would be
accessed at http://phpweb20/news/display. To create this action, you would define a method
called displayAction() inside of NewsController. Figure 2-3 shows how the URL is broken down
to correspond to a controller class name and an action handler function within that class.

e e e e e

http://phpweb20/news/display

lcontroller! action :

| name !\ name |
I 4

A 4
class NewsController extends Zend_Controller_Action
{
public function displayAction()
{

e
}

Figure 2-3. Breaking down a URL into the controller and action

The following code demonstrates this. We won't be using this particular class in our appli-
cation, but we will be creating similar classes.

<?php
class NewsController extends Zend_Controller Action

{

public function indexAction()

{
}

echo 'News article index';

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

public function displayAction()
{

echo 'News article details’;

}

>

Note In addition to displaying the string echoed in the preceding function, an error message would also
be displayed due to the way Zend_Controller automatically displays templates. We will look at this more
closely later in the “Automatic View Rendering with Zend_Controller” section of this chapter.

If we were to include this controller in our application (by saving it to . /include/
Controllers/NewsController.php), we would visit http://phpweb20/news/display to display
the “New article details” text. In this URL, news is the controller, and display is the action.

The default controller and action are both index. Here are some examples:

* http://phpweb20 is equivalent to http://phpweb20/index, as is
http://phpweb20/index/index

* http://phpweb20/news is equivalent to http://phpweb20/news/index

Creating the IndexController

At this point in our application development, we must create a controller for the root of the
site. That is, a controller called index that defines an action called index. Listing 2-5 shows the
contents of IndexController.php, which we will save to the ./include/Controllers directory.

Note As mentioned previously, Zend_Controller looks for the controller file by capitalizing the first let-
ter of the controller name and appending Controller.php to it. So in this case, the index controller code
belongs inside a file called IndexController.php.

Listing 2-5. The Index Controller, Which Is Used for the Web Application Home Page
(IndexController.php)

<?ph
i Elass IndexController extends Zend Controller Action
{
public function indexAction()
{
echo 'Web site home';
}
}

>

25

26

CHAPTER 2 ©' SETTING UP THE APPLICATION FRAMEWORK

While this particular controller doesn't yet do anything useful, we will be adding to it, as
well as creating new controllers as we move on in this book. In fact, not only will we extend this
controller, but we will add functionality that will extend to all controllers. To allow for this, we
will extend the Zend Controller Action classin a new class called CustomControllerAction.
Listing 2-6 shows the contents of CustomControllerAction.php, which should be stored in the
./include directory.

Listing 2-6. The Controller Action That All of Our Application Controllers Will Extend from
(CustomControllerAction.php)

<?php
class CustomControllerAction extends Zend_Controller Action
{
public $db;
public function init()
{
$this->db = Zend Registry::get('db");
}
}
7>

At this stage, we have only defined the init() function, which is automatically called by
Zend Controller Front when a controller is loaded. Currently it simply fetches the database
handle from the application registry and stores it in the db property. This allows us to refer
to $this->db from any of our controllers. If we want an init() function in any of the child
classes, we must also call parent::init() from that class so that the init() function in Listing
2-6is also called.

Note Listing 2-6 relies on the application database connection being in the variable registry that we will
use Zend Registry to manage. We create the database connection and look at the Zend Registry com-
ponent in the “Connecting to the Database” section.

We now need to modify our IndexController class to extend CustomControllerAction
instead of Zend_Controller Action. Listing 2-7 shows the updated code for
IndexController.php.

Listing 2-7. Modifying the Index Controller to Use the New Controller Action
(IndexController.php)

<?php
class IndexController extends CustomControllerAction

{

public function indexAction()

{

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

echo 'Web site home';

>

Defining Application Settings
Before we go any further in developing our application code, we're going to define some appli-

cation settings. We will store these settings in a file called settings.ini, and we will use the
Zend Config Ini class to access them.

Note zend Config also allows storage of settings in an XML file instead of an Ini file. The Zend
Config XML class would be used instead of Zend_Config_Ini. If you prefer, you can use the XML solution
instead, since it makes no real difference to the functionality of the application.

The initial settings we will be storing are the database connection details and application
path settings. We will not be implementing any mechanism to update these settings—if you
want to change application settings, you will need to edit the values in this file. We will add
further settings to this file as required.

Listing 2-8 shows the initial application settings we will be using (/var/www/phpweb20/
settings.ini). Update any of these values as you require.

Listing 2-8. The Initial Application Settings (settings.ini)

[development]
database.type = pdo_mysql
database.hostname = localhost

database.username = phpweb20
database.password myPassword
database.database phpweb20

paths.base /var/www/phpweb20
paths.data /var/www/phpweb20/data
paths.templates = /var/www/phpweb20/templates

logging.file = /var/www/phpweb20/data/logs/debug.log

The first line of this file defines a section in the file. It is possible to have multiple configura-
tions in the same file, and I have specified a section called development. You might also define
sections called staging and production in the same file, allowing you to use different database
details or a different path without having to edit the file when you deploy the application.

Initially the logging file will not exist, but assuming the write permissions are correctly set
on the logs directory, debug.log will automatically be created when required.

27

28

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

Note You must define at least one section in a configuration file when using Zend Config, as the section
to load must be specified when the file is loaded.

Once settings.iniis set up, we need to load it in the index.php file using the Zend _
Config Ini class. Listing 2-9 shows an updated version of index.php, now including both the
request handling code, as well as the code to load the configuration.

Listing 2-9. Using the Zend_Config_Ini Class to Load the Application Settings (index.php)

<?php
require_once('Zend/Loader.php');
Zend_Loader::registerAutoload();

$config = new Zend_Config Ini('../settings.ini', 'development');
Zend_Registry::set('config', $config);

$controller = Zend Controller Front::getInstance();
$controller->setControllerDirectory($config->paths->base .
'/include/Controllers');
$controller->dispatch();
>

Tip In Chapter 14 we will implement error handling in this code to deal with fatal errors (such as being
unable to connect to the database server). In the meantime, Zend _Controller will suppress these errors,
making potential debugging difficult. You may wish to add $controller->throwExceptions(true) to
index. php after $controller has been created (and before the request is dispatched) to make identifying
any potential errors easier.

Asyou can see, the Zend_Config_Ini class is instantiated, passing the settings filename as
the first argument and the settings section as the second argument.

Following this, we use the Zend_Registry class. This allows us to store the $config object
in a global registry so we can easily access this object again throughout the script’s execution
without needing to reinstantiate Zend_Config_Ini.This is a technique we will also use with the
database connection.

Now, to access any of our configuration variables, we can simply use $config->key. For
instance, to access the database.password setting, we would use $config->database->password
in our code. Note that we have also updated the setControllerDirectory() call to use the path
we set in the config to find the controller classes for Zend_Controller.

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

Connecting to the Database

Now that we have all of our database settings stored in the $config variable, we can easily cre-
ate our database connection. For this, we use the Zend Db class. We must first build an array
with the database connection settings, and then call Zend Db: : factory() to find the appropri-
ate database handler.

What does this mean, exactly? In our configuration, we specified the database type as
pdo_mysql, and the factory() method will find the appropriate handler for this database type.
If you wanted to use PostgreSQL instead, you could simply update the database.type value in
settings.inito pdo_pgsql, and if you had this driver installed with your PHP installation, it
would use that one instead.

The following example code will connect to a database using the pdo_mysql driver:

<?php
require once('Zend/Loader.php');
Zend_Loader::registerAutoload();

$params = array('host' => 'localhost’,
'username’ => 'phpweb20’,
'password' => 'myPassword',
"dbname’ => 'phpweb20');

$db = Zend Db::factory('pdo mysql', $params);
?>

Note that I have hard-coded the connection settings in this example; the code in our applica-
tion will call the appropriate settings we defined previously.

Note zend Db doesn't initiate a connection to the database until a query is actually executed, so, techni-
cally speaking, in this example no connection is actually made.

Our next step is to include the database connection code in our index.php file—there
are two key additions we must make. The first is to fetch the connection values from $config
instead of hard-coding them. The second is to write the $db object to the Zend Registry so we
can use it throughout our application.

Listing 2-10 shows the updated index.php file, this time connecting to the database and
writing the $db object to the registry.

Listing 2-10. The index.php File, Now Connecting to the Application Database (index.php)

<?php
require once('Zend/Loader.php');
Zend Loader: :registerAutoload();

29

CHAPTER 2 ©' SETTING UP THE APPLICATION FRAMEWORK

// load the application configuration
$config = new Zend Config Ini('../settings.ini', 'development');
Zend Registry::set('config', $config);

// connect to the database

$params = array('host' => $config->database->hostname,
'username’ => $config->database->username,
'password’ => $config->database->password,
'dbname’ => $config->database->database);

$db = Zend_Db::factory($config->database->type, $params);
Zend_Registry::set('db', $db);

// handle the user request
$controller = Zend Controller Front::getInstance();
$controller->setControllerDirectory($config->paths->base .
'/include/Controllers"');
$controller->dispatch();
>

Testing the Database Connection

Now that we have written the database connection code, it is best to ensure that the connection
actually works. As mentioned previously, a connection is not actually made to the database
server until a query is executed, so to test the connection we need to execute a basic SQL query.
Add an extra line of code after creating the $db object in index. php as follows:

$db->query('select 1');

If you visit http://phpweb20 now, an error will be shown if the connection to the database
could not be made (such as Zend Db_Adapter Exception: SQLSTATE..). Remember to remove
this test query from your code afterwards.

Note In Chapter 14 we will add code to handle application errors such as invalid database connections.

The Smarty Template Engine

Smarty is a template engine written for PHP that allows you to easily separate your application
output and presentation logic from your application logic. We looked at what this means ear-
lier in this chapter when covering the Model-View-Controller design pattern, but what does it
actually mean in terms of using Smarty?

Basically, anything we want to show to the user (that is, the HTML output) will be stored
in a template file (which we will denote with a file extension of . tpl). After a user request has

CHAPTER 2 " SETTING UP THE APPLICATION FRAMEWORK

been processed, whether that means processing a form or fetching a list of news articles to
display, we will use Smarty to output that template file.

A template file contains a series of placeholders used to dynamically output content. So
in the case of displaying a list of news articles, the template file would loop over the articles
and provide HTML code for each one. In addition, prior to displaying the template, we must
tell the template about any data we want to be able to show in it. So in the case of news arti-
cles, we must assign the articles to the template prior to displaying the template.

To demonstrate this, I will return to the NewsController example we looked at above in
the “How Requests Work with Zend _Controller” section. The following example shows the
basic algorithm used to assign data to a template and then display that template. For this code
to work, we must set template_dir and compile dir accordingly. These settings indicate the
filesystem paths where templates are stored and where compiled templates should be written,
respectively. This is covered in more detail in the “Downloading and Installing Smarty” section
later in the chapter.

<?php
class NewsController extends Zend Controller Action

{

public function indexAction()

{

require once('Smarty/Smarty.class.php');

$articles = array('News Article 1',
"Another News Article',
"Even More News');

$smarty = new Smarty();

$smarty->template dir = '/var/www/phpweb20/templates’;
$smarty->compile dir = '/var/www/phpweb20/data/tmp/templates c';
$smarty->assign('news', $articles);
$smarty->display('news/index.tpl');

2>

The first thing to do is define some data to assign to the template. In this case, I've created
a simple array called $articles, which contains some fake news headlines. After instantiating
and configuring the $smarty object, I assign the $articles array to $smarty, and finally output
the news/index. tpl file. Based on the specified template dir, the full path of this template
would be . /templates/news/index.tpl.

Now let’s see what the news/index.tpl template might look like. There’s a lot going on in
this template.

<h1>News</h1>

{if $news|@count == 0}
<p>

No news found!
</p>

31

32

CHAPTER 2 ©' SETTING UP THE APPLICATION FRAMEWORK

{else}

{foreach from=$news item=article}
{$article|escape}</1i>
{/foreach}

{/if}

The first thing to note is that [haven't included all of the normal HTML tags (such as the
document type and <html> and <body> tags). Typically we would include these tags, but I have
tried to keep the clutter out of this template.

Next is an if/else statement. Note that it is wrapped in curly braces. These are the default
delimiters for Smarty template code. Note also that if expressions in Smarty are not wrapped
in parentheses as they would be in PHP.

Note also that in this template, I use $news to refer to the article data. In the previous news
example, I assigned the $articles variables to the template using the name news.

When processing the data, I first check whether the $news array is empty by using the PHP
count () function. In fact, what I am doing is using a Smarty modifier. Modifiers are applied
using a vertical pipe. Essentially, the variable is passed to the modifier as its first argument.
Smarty comes with several built-in modifiers, but you can also use any PHP function as a
modifier. Because PHP’s count () accepts an array as an argument, I put the @ character before
count. If T didn’t, Smarty would loop over the array and pass each array element to count(),
rather than the array as a whole.

It is also possible to pass arguments to modifiers. For instance, if you wanted to retrieve
the first three characters of a string using substr (), you could do so using $myStr|substr:0:3,
which is equivalent to calling substr($myStr, 0, 3) in PHP To output a variable, simply wrap
the variable in curly braces. So to output the first three characters of a string in the template,
you would use {$myStr|substr:0:3} in the template.

Note You can also chain several modifiers together. In the preceding example, you could change the
output to display the first three characters of a string in uppercase by also applying strtoupper() as a
modifier. To do this, you would use {$myStr|substr:0:3|strtoupper}. Modifiers are applied in order
from left to right.

In the template, I next use the {foreach} tag to loop over the $news array. This behaves
almost identically to foreach() in PHP. The array is passed in using the from argument, and
the current element of the array is assigned to variable specified in the item argument. So in
the preceding example, the PHP equivalent of {foreach from=$news item=article} is foreach
($news as $article).IfIalso wanted the array key, I would specify the key argument:
{foreach from=$news item=article key=k} would be equivalent to foreach ($news as $k =>
$article) in PHP.

Now I output each element of the array inside of the foreach loop. I could simply use
{$article}, but I have improved this slightly by using the escape modifier (this is a Smarty
modifier, not a PHP function). This modifier should be frequently used when outputting data

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

inside of HTML documents, as it will escape HTML entities to make the document valid. In
other words, it will turn > into 8gt;, < into &1t;, and & into &, among others.

Finally, I close the foreach loop using {/foreach}. Note how this is similar to how HTML
tags work. Similarly, the {if} clause is closed using {/if}.

Why Not Use a Different Template Engine?

Smarty is certainly not the only choice as far as template engines go. Most PHP developers will
have a different opinion as to which template engine to use. The concerns with Smarty gener-
ally consist of the following:

e The Smarty code is large (approximately 150KB of code for Smarty.class.php and
Smarty Compiler.class.php combined) and expensive (in terms of processing power)
to use for every request on your web site.

* Why use a metalanguage to output content when PHP is designed to do exactly this?

Certainly, these are both valid concerns. We'll take a quick look at each of these and prac-
tical ways to deal with them.

Improving Smarty Performance

First, let me say that in real terms, unless you have a high-traffic web site, and/or a slow web
server, the overhead caused by using Smarty will typically not be noticeable. Regardless, it is
always good to look at ways of improving the performance of your web applications.

Smarty compiles templates into native PHP code whenever they are changed. When a
web site is in production, templates will generally not be modified and therefore not be
recompiled. This means that the Smarty Compiler.class.php class is notloaded, effectively
reducing the amount of code to be parsed by about 90KB.

Next, you can always use code accelerators (such APC or PHP Accelerator) to decrease the
overhead of loading the Smarty library. Additionally, you can cache the output from any or all
of your web pages (using Smarty’s caching functionality, or using something like Zend Cache).

Note The Alternative PHP Cache (APC) is free to download and can easily be installed using the PECL
installer. It is used for caching and optimizing PHP code on the web server, thereby improving server per-
formance. If you're using Linux, you can simply type pecl install apc from the command line, add
extension="apc.so" to your php.ini, and then restart your web server. Check the output from
phpinfo() to confirm that it is correctly installed.

Using a Metalanguage for Templates

While using PHP code directly for templates is a perfectly viable solution, it can be very useful
to use a metalanguage for templates instead. Here are some of the advantages of using Smarty
templates over native PHP code:

¢ The code is shorter and more easily readable. For example, using {$foo} to output the
$foo variable provides less clutter than <?php echo $foo ?> or<?= $foo ?>.

33

34 CHAPTER 2 © SETTING UP THE APPLICATION FRAMEWORK

e Smarty provides built-in security features, which when activated will control what can
be done in a template. That is, it heavily restricts access to normal PHP functions. Tech-
nically speaking, using native PHP for templates could result in unrelated operations
taking place in a template (such as writing to a file or sending an e-mail). Take, for
example, a content management system (CMS). In addition to being able to update
web site content, a CMS will typically allow users to modify the web site templates.
Enforcing control over what can and can’'t be contained in a template has huge benefits
in this type of situation, where user-submitted data is used.

e It can be less daunting for non-programmers to create templates. For example, if you
employ somebody to convert a web design into HTML and CSS, it will be simpler for
them to use Smarty than PHP.

* Smarty can be extended in so many ways that some really powerful effects can be
achieved. The most obvious example is in the use of modifiers. Another powerful (but
often overlooked) feature is creating custom blocks. For example, you could make a
custom Smarty block called roundedbox, which you could use to output content inside
a box with rounded corners. Although Firefox can provide this in CSS (using the
-moz-border-radius selector), it is not available in Internet Explorer (border-radius is
included in CSS3, not yet implemented in major browsers). You could then use tem-
plate code as follows in your template: {roundedbox} some content {/roundedbox}.
Since drawing rounded boxes without a native CSS solution requires the use of HTML
tables or nested divs, you can hide the implementation details away in the roundedbox
block handler.

Of course, it would be unfair to ignore the disadvantages of using a metalanguage for
templates. Here are some of the disadvantages of using Smarty templates over native PHP
code:

e There is extra overhead in parsing and compiling the templates in PHP code. Note,
however, that this is only ever done when a template is changed, and therefore the
overhead is almost zero in the long term.

e Users must learn an extra language, and while Smarty is really good at some things,
there are some drawbacks. For example, if you want to output an array into a three-
column table, you will generally end up with a clutter of {assign}, {math}, and
{section} tags. However, you can also extend to create built-in functions or include
a separate template to hide this clutter.

The Zend Framework does, in fact, provide a templating solution that uses native PHP files.
While we looked at the Zend_Controller component earlier in this chapter (the controller part of
MVCQ), there is also the Zend View component (the view part of MVC). This component works
similarly to Smarty, except that the templates it uses are written in native PHP code. If you prefer
to use this instead of Smarty, you will need to adapt the templates we create accordingly.

Downloading and Installing Smarty

You can download the Smarty code from the Smarty web site (http://smarty.php.net). The
latest version at the time of writing is 2.6.18, but you should use the most current version. The

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

following commands can be used in Linux to download Smarty and move it to the application
include directory (./include).

cd /var/www/phpweb20

wget http://smarty.php.net/do_download.php?download file=Smarty-2.6.18.tar.gz
tar -zxf Smarty-2.6.18.tar.gz

cd Smarty-2.6.18

mv 1libs ../include/Smarty

cd ../include/Smarty

R

The contents of the directory should look like this:

1s
Config File.class.php Smarty Compiler.class.php internals/
Smarty.class.php debug.tpl plugins/

Note You may wish to remove the downloaded and extracted files that are left over after installing
Smarty, as they are no longer required.

In order to use Smarty, we need to configure the template _dir and compile dir properties
of each instantiated Smarty object.

* template_dir is the location where all of our application templates are stored. We
earlier specified this when creating our directory structure and settings file to be
/var/www/phpweb20/templates.

* compile dir isa directory where Smarty saves compiled templates. Since Smarty tem-
plates use their own metalanguage, Smarty compiles each template to native PHP code
in order to speed subsequent execution. Whenever a template file is modified, Smarty
automatically recompiles that template and saves it to the compile directory.

The compile_dir directory needs to be writable by the web server. We will be using the
/var/www/phpweb/data/tmp/templates_c directory for this (it is convention to use templates c
as the directory name for compiled Smarty templates). We eatlier created the ./data/tmp
directory, but we must now create the templates c directory and give write permissions to it.
The following commands can be issued to do so:

cd /var/www/phpweb20/data/tmp/
mkdir templates c
chmod 777 templates c/

In order to render a template with Smarty, we would now use code similar to the follow-
ing. Note that the foo.tpl template doesn'’t really exist (but if it did its full path would be
/var/www/phpweb20/templates/foo.tpl).

<?php
require once('Smarty/Smarty.class.php');

35

36

CHAPTER 2 ©' SETTING UP THE APPLICATION FRAMEWORK

$smarty = new Smarty();
$smarty->template dir = '/var/www/phpweb20/templates’;
$smarty->compile dir = '/var/www/phpweb20/data/tmp/templates c';
$smarty->display('foo.tpl');

>

We shouldn't be hard-coding these paths—we have them stored in our configuration file,
so we should use them. Let’s look at the same code using the paths from settings.ini. (Note
that I am assuming that the $settings variable has already been created and set up as in our
index.php bootstrap file.)

<?php
// assume that $config is already defined
require once('Smarty/Smarty.class.php');

$smarty = new Smarty();
$smarty->template_dir = $config->paths->templates;
$smarty->compile_dir = $config->paths->data . '/tmp/templates_c';
$smarty->display('foo.tpl');

>

Automatic View Rendering with Zend_Controller

When using Zend Controller, a plug-in called ViewRenderer is automatically loaded, and it
displays a view script (that is, a template) based on the names of the requested controller and
action. This means that when we use Smarty we don't have to instantiate the Smarty class or
call the display() method to output templates; ViewRenderer will do all of this for us.

In order for this to work, we must extend the Zend View Abstract class to interact with the
Smarty class. We will create a class called Templater, and we must then tell Zend Controller
about this class in the index. php bootstrap file.

We will store this class in the application . /include directory in a file called Templater.php.
Additionally, we will create the ./include/Templater/plugins directory, in which we will store
any custom Smarty plug-ins that we write throughout this book. By storing all of our own exten-
sions in a separate directory, we can easily upgrade to the latest version of Smarty without
having to track which of our files need moving.

To create the required directories, use the following commands:

cd /var/www/phpweb20/include/
mkdir -p Templater/plugins

Tip The -p argument to mkdir results in intermediate directories being created as required. That s, if the
Templater directory doesn’t exist, it will be created before creating the plugins directory.

We can now create the Templater class, in which we specify template dir and compile dir.
Additionally, we must tell Smarty to look in the Templater/plugins/ directory for plug-ins (in
addition to Smarty’s own plugins directory).

CHAPTER 2 " SETTING UP THE APPLICATION FRAMEWORK

To implement this class, we must implement several key methods so that ViewRenderer
can interact with Smarty. The most important of these methods are as follows:

e getEngine(): This must return an instance of Smarty. Since this may be called multiple
times, we should cache the Smarty instance so it is only created once. We do this by cre-
ating the Smarty object in the constructor.

__set(): This assigns a variable to the template. Essentially this means we can replace
$smarty->assign('foo', 'bar') with $this->view->foo = 'bar' in any controller

action.

__get(): This returns a variable that has previously been assigned to a template.

render(): This method renders a template. This is effectively the same as calling
$smarty->display(), except that this method should return the output (not display it
directly), so we must use fetch() instead of display() on the Smarty object.

Listing 2-11 shows the code for Templater.php, which in keeping with Zend Framework’s
class naming structure means we must store this class in the . /include directory.

Listing 2-11. Extending Smarty for Use with Our Web Application (Templater.php)

<?php

class Templater extends Zend View Abstract

{

protected $ path;
protected $ engine;

public function _ construct()

{
$config = Zend Registry::get('config');

require once('Smarty/Smarty.class.php');

$this-> engine = new Smarty();

$this-> engine->template dir = $config->paths->templates;
$this-> engine->compile dir = sprintf('%s/tmp/templates c',

$config->paths->data);

$this-> engine->plugins dir = array($config->paths->base .

'/include/Templater/plugins’,

"plugins');
}

public function getEngine()
{

return $this-> engine;

}

37

38 CHAPTER 2 © SETTING UP THE APPLICATION FRAMEWORK

public function _ set($key, $val)

{

$this-> engine->assign($key, $val);
}
public function _ get($key)
{

return $this-> engine->get template vars($key);
}
public function _ isset($key)
{

return $this-> engine->get template vars($key) !== null;
}
public function _ unset($key)
{

$this-> engine->clear assign($key);
}
public function assign($spec, $value = null)
{

if (is_array($spec)) {

$this-> engine->assign($spec);
return;

}

$this-> engine->assign($spec, $value);
}
public function clearVars()
{

$this-> engine->clear all assign();
}
public function render($name)
{

return $this-> engine->fetch(strtolower($name));
}

public function run()

{1}

>

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

Integrating Smarty with the Web Site Controllers

Finally, we need to make Zend Controller use the Templater class instead of its default
Zend_View class. To do this, we must use the following code, which we will shortly add to the
application bootstrap file:

$vr = new Zend Controller Action Helper ViewRenderer();
$vr->setView(new Templater());
$vr->setViewSuffix('tpl');

Zend Controller Action HelperBroker::addHelper($vr);

Note that we must call setViewSuffix() to indicate that templates finish with a file exten-
sion of . tpl. By default, Zend_View will use the extension .phtml. Listing 2-12 shows how the
controller part of index. php looks once this code has been added.

Listing 2-12. Telling Zend_Controller to Use Smarty Instead of its Default View Renderer
(index.php)

<?php
// ... other code

// handle the user request

$controller = Zend Controller Front::getInstance();

$controller->setControllerDirectory($config->paths->base .
'/include/Controllers"');

// setup the view renderer

$vr = new Zend_Controller Action_Helper ViewRenderer();
$vr->setView(new Templater());
$vr->setViewSuffix('tpl');

Zend_Controller Action_HelperBroker::addHelper($vr);

$controller->dispatch();
>

Note Viewing the web site now will still display the “Web site home” message. However, a Smarty error
will occur, since we haven’t yet created the corresponding template file for the index action of the index
controller.

Now, whenever a controller action is executed, Zend Controller will automatically look
for a template based on the controller and action name. Let’s use the index action of the index
controller as an example, as shown in Listing 2-13.

39

40

CHAPTER 2 © SETTING UP THE APPLICATION FRAMEWORK

Listing 2-13. Our New Index Controller, Now Outputting the index.tpl File (IndexController.php)

<?php
class IndexController extends CustomControllerAction
{
public function indexAction()
{
}
}
?>

When you open http://phpweb20 in your browser, the action in Listing 2-13 will now be
executed, and the Templater class we just created will automatically render the template in
./templates/index/index.tpl.

Since the index.tpl template doesn’t yet exist, however, we must now create it. Again, we
will simply output the “Web site home” message, but we will also create header (header.tpl)
and footer (footer.tpl) templates that will be included in all web site templates. This allows
us to make modifications to the web site in one place and have them carry over to all pages in
the site.

To include the header.tpl and footer.tpl templates in index.tpl, we use Smarty’s
{include} tag. Listing 2-14 shows the contents of index.tpl, which can be found in
./templates/index/index.tpl.

Listing 2-14. The Template for the Index Action of the Index Controller (index.tpl)
{include file="header.tpl'}

Web site home

{include file='footer.tpl'}

If you try to view this page in your browser without creating the header.tpl and
footer.tpl files, an error will occur, so let’s now create these templates. Listing 2-15 shows the
contents of header.tpl, while Listing 2-16 shows footer.tpl. These files are both stored in the
./templates directory (not within a subdirectory, as they don't belong to a specific controller).

Listing 2-15. The HTML Header File, Which Indicates a Document Type of XHTML 1.0 Strict
(header.tpl)

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Title</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<body>
<div>

CHAPTER 2 " SETTING UP THE APPLICATION FRAMEWORK

Listing 2-16. The HTML Footer File, Which Simply Closes Off Tags Opened in the Header
(footer.tpl)

</div>
</body>
</html>

Asyou can see, the header and footer are straightforward at this stage. We will develop
them further as we move along, such as by adding style sheets, JavaScript code, and relevant
page titles. The Content-Type <meta> tag was included here because the document will not val-
idate correctly without it (using the W3C validator at http://validator.w3.org). You may need
to specify a different character set than iso-8859-1, depending on your locale.

Note that I have specified a document type of XHTML 1.0 Strict. All HTML developed in
this book will conform to that standard. We can achieve this by correct use of cascading style
sheets, inclusion of JavaScript, and correctly escaping user-submitted data in the HTML (an
example of this is the Smarty escape modifier we looked at earlier in this chapter).

If you now load the http://phpweb20 address in your web browser, you will see the simple
“Web site home” message. If you view the source of this document, you will see that message
nested between the <div> open tag from header.tpl, and the </div> close tag from footer.tpl.
Note that the <div> is included as it violates the standard to have text directly inside the
<body> tag.

Adding Logging Capabilities

The final thing we will look at in this chapter is adding logging capabilities to our application.
To do this, we will use the Zend_Log component of the Zend Framework, which we will use in
various places in our application. For example, we will record an entry in the log every time a
failed login occurs in the members section.

Although it is possible to do some pretty fancy things with logging (such as writing entries
to a database, or sending e-mails to a site administrator), all we will do now is create a single
log file to hold log entries. This file can then be used to debug any possible problems that arise
not only during development of the web application, but also in its day-to-day operation.

We will store the log file in the /var/www/phpweb20/data/logs directory that we created
earlier. This directory must be writable by the web server:

cd /var/www/phpweb20/data/
chmod 777 logs

The procedure for using Zend_Log is to firstly instantiate the Zend_Log class, and then add
a writer to it. A writer is a class that does something with the log messages, such as writing
them to a database or sending them straight to the browser. We will be using the Zend Log
Writer Streamwriter to write log messages to the file specified in our settings.ini file (the
logging.file value).

The following code shows this procedure. First, a filesystem writer is created, which is
then passed as the only argument to the constructor of the Zend Log class:

<?php
$writer = new Zend Log Writer Stream('/path/to/log');
$logger = new Zend Log($writer);

>

41

42

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

We can now add this code to our index.php bootstrap file. We want to create the Zend Log
object as soon as possible in the application, so we can record any problems that occur in the
application. Since we rely on the logging.file value from settings.ini, we can create our
logger as soon as this configuration file has been loaded

Note It is possible to have multiple writers for a single logger. For example, you might use Zend_Log
Writer Stream to write all log messages to the filesystem and use a custom e-mail writer to send log
messages of a critical nature to the system administrator. In Chapter 14 we will implement this specific
functionality.

Listing 2-17 shows the new version of index. php, which now creates $logger, an instance
of Zend_Log. The path of the log file is found in the $config->logging->file variable. Addition-
ally, it is written to the registry so it can be accessed elsewhere in the application.

Listing 2-17. The Updated Version of the Application Bootstrap File, Now with Logging
(index.php)

<?php
require once('Zend/Loader.php');
Zend_Loader::registerAutoload();

// load the application configuration
$config = new Zend _Config Ini('../settings.ini', 'development');
Zend Registry::set('config', $config);

// create the application logger
$logger = new Zend_Log(new Zend_Log Writer Stream($config->logging->file));
Zend_Registry::set('logger', $logger);

// connect to the database

$params = array('host' => $config->database->hostname,
'username' => $config->database->username,
'password' => $config->database->password,
'doname’ => $config->database->database);

$db = Zend Db::factory($config->database->type, $params);
Zend Registry::set('db', $db);

// handle the user request
$controller = Zend Controller Front::getInstance();

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

$controller->setControllerDirectory($config->paths->base .
'/include/Controllers');

// setup the view renderer

$vr = new Zend Controller Action Helper ViewRenderer();
$vr->setView(new Templater());
$vr->setViewSuffix("tpl');

Zend _Controller Action HelperBroker::addHelper($vr);

$controller->dispatch();
>

Writing to the Log File

To write to the log file, we call the 1og() method on the $1logger object. The first argument is
the message we want to log, and the second argument is the priority level of the message.
The following is a list of the built-in log priorities (from the Zend Framework manual):

e Zend_Log: :EMERG (Emergency: system is unusable)

e Zend_Log: :ALERT (Alert: action must be taken immediately)
e Zend_Log: :CRIT (Critical: critical conditions)

e Zend_Log::ERR (Error: error conditions)

e Zend Log: :WARN (Warning: warning conditions)

e Zend Log::NOTICE (Notice: normal but significant condition)
e Zend_Log: :INFO (Informational: informational messages)

e Zend_Log: :DEBUG (Debug: debug messages)

Note It is also possible to create your own logging priorities, but for development in this book we will only
use these built-in priorities.

So, if you wanted to write a debug message, you might use $1logger->log('Test"',
Zend_Log: :DEBUG). Alternatively, you could use the priority name as the method on $logger,
which is essentially just a simple shortcut. Using this method, you could use $logger-
>debug('Test") instead.

As a test, you can add that line to your index.php file after you instantiate Zend_Log, as
follows:

<?php
// ... other bootstrap code

// create the application logger

43

44

CHAPTER 2 = SETTING UP THE APPLICATION FRAMEWORK

$logger = new Zend Log(new Zend Log Writer Stream($config->logging->file));
Zend Registry::set('logger', $logger);
$logger->debug('Test');

// ... other bootstrap code
>

Now, load http://phpweb20 in your browser and then check the contents of debug. log. You
will see something like this:

cat debug.log
2007-04-23T01:19:27+09:00 DEBUG (7): Test

Asyou can see, the message has been written to the file, showing the timestamp of when
it occurred, as well as the priority (DEBUG, which internally has a code of 7). Remember to
remove the line of code from index. php after trying this!

Note It is possible to change the formatting of the log messages using a Zend_Log formatter. By default,
the Zend_Log_Formatter Simple formatter is used. Zend Framework also comes with a formatter that
will output log messages in XML. Not all writers can have their formatting changed (such as if you write log
messages to a database—each event item is written to a separate column).

At this stage, we won't be doing anything further with our application logger. However, as
mentioned, we will use it to record various events as we continue with development, such as
recording failed logins.

Summary

In this chapter we've begun to build our web application. After setting up the development
environment, we set up the application framework, which includes structuring the files in our
web application, configuring application settings, connecting to the database, handling client
requests, outputting web pages with Smarty, and writing diagnostic information to a log file.

In the next chapter, we will begin to implement the user management and administration
aspects of our web application. We will be making heavy use of the Zend Auth and Zend Acl
components of the Zend Framework.

CHAPTER 3

User Authentication,
Authorization, and Management

In Chapter 2 we looked at the Model-View-Controller design pattern, which allowed us to
easily separate our application logic from the display logic, and we implemented it using
Zend Controller Front.We will now extend our application controller to deal with user
authentication, user authorization, and user management.

At this stage, you may be wondering what the difference between authentication and
authorization is.

¢ Authentication: Determines whether a user is in fact who they claim to be. This is typi-
cally performed using a unique username (their identity) and a password (their
credentials).

¢ Authorization: Determines whether a user is allowed to access a particular resource,
given that we now know who they are from the authentication process. Authorization
also determines what an unauthenticated user is allowed to do. In our application, a
resource is essentially a particular action or page, such as the action of submitting
anew blog post.

In this chapter, we will set up user authentication in our application using the Zend_Auth
component of the Zend Framework. This includes setting up database tables to store user
details. We will then use the Zend_Acl component to manage which resources in the applica-
tion each user has access to. Additionally, we must tie in our permissions system to work with
Zend_Controller Front.

Creating the User Database Table

Since our application will hold user accounts for multiple users, we need to track each of these
user accounts. To do so, we will create a database table called users. This table will contain
one record for each user, and it will hold their username and password, as well as other impor-
tant details.

There will be three classes of users that access our web application: guests, members, and
administrators. A user visiting the application will be automatically classed as a guest until
they log in as a member. In order to distinguish members from administrators, the users table
will include a column that denotes the role of each user. We will use this column when imple-
menting the access control lists with Zend_Acl.

45

46

CHAPTER 3 " USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

Note In a more complex system, you might assign multiple roles to users; however, for the sake of sim-
plicity we will allow only one role per user. Any user classed as an administrator will also be able to perform
all functions that a member can. Additionally, you could also use another table to store user types, but once
again, for the sake of simplicity we will forego this and keep a static list of user types in our code.

The core data we will store for each user in the users table will be as follows:
* user_ id: Aninternal integer used to represent the user.

e username: A unique string used to log in. In effect, this will be a public identifier for the
user. We will display the username on blog posts and other publicly available content,
rather than their real name, which many users prefer to keep anonymous.

* password: A string used to authenticate the user. We will store passwords as a hash using
the md5 () function. Note that this means passwords cannot be retrieved; instead they
must be reset. We will implement all code required to do this.

* user_type: A string used to classify the user (either admin or member, although you will
easily be able to add extra user types in the future based on what you learn in this
book).

e ts created: A timestamp indicating when the user account was created.

e ts last login: A timestamp indicating when the user last logged in. We will allow this
field to have a null value, since the user won't have yet logged in when the record is
created.

Listing 3-1 shows the SQL commands required to create the users table in MySQL. All SQL
schema definitions are stored in the schema-mysql.sql file in the main application directory. If
you're using PostgreSQL, you can find the corresponding schema in schema-pgsql.sql instead.

Note How you choose to store the database schema for your own web applications is entirely up to you.
I've simply structured it this way so you can easily refer to it as required (and so you have easy access to it
when downloading the code for this book).

Listing 3-1. SQL Used to Create the Users Table in MySQL (schema-mysql.sql)

create table users (

user_id serial not null,
username varchar(255) not null,
password varchar(32) not null,
user type varchar(20) not null,

ts_created datetime not null,

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

ts_last login datetime,

primary key (user id),
unique (username)
) type = InnoDB;

The user_id column is defined as type serial, which is the same as using bigint unsigned
not null auto_increment. I personally prefer using serial, as it is shorter and simpler to type,
and it also works in PostgreSQL.

The username column can be up to 255 characters in length, although we will put a restric-
tion on this length in the code. The password will be stored as an MD5 encrypted string, so
this column only needs to be 32 characters long.

Next is the user_type column. The length of this column isn’t too important, although any
new user types you add will be limited to 20 characters (this is only an internal name, so it
doesn’t need to be overly descriptive). This string is used when performing ACL checks.

Finally, there are the two timestamp columns. MySQL does in fact have a data type called
timestamp, butI chose to use the datetime type instead, as MySQL will automatically update
columns that use the timestamp type. In PostgreSQL, you need to use the timestamptz data
type instead (see the schema-pgsql.sql file for the table definition). The following “Time-
stamps” section provides more details about how timestamps work in PHP.

Tip Listing 3-1 instructs MySQL to use the InnoDB table type when creating a table, thereby providing us
with SQL transaction capability and enforcing foreign key constraints. The default table type used otherwise
iS MyISAM.

You must now create this table in your database. There are two ways to do this. First, you
can pipe the entire schema-mysql.sql file into your database using the following command:

mysql -u phpweb20 -p phpweb20 < schema-mysql.sqgl

When you type this command you will be prompted to enter your password. This will create
the entire database from scratch.

Alternatively, you can connect directly to the database, and copy and paste the table
schema using the following command:

mysql -u phpweb20 -p phpweb20

Since we will be building on the database as we go, I recommend the second method for
simply adding each new table as required.

Timestamps

The way dates and times are handled in PHP, MySQL, and PostgreSQL is often misunderstood.
Before we go any further, I will quickly cover some important points to be aware of when using
dates and times in MySQL.

47

48

CHAPTER 3 " USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

MySQL does not store time zone information with its date and time data. This means that
your MySQL server must be set to use the same time zone as PHP; otherwise you may notice
odd behavior with timestamps. For example, if you want to use the PHP date() function to
format a timestamp from a MySQL table, be cautious—if you use the MySQL unix_timestamp()
function when retrieving that timestamp, the incorrect date will be retrieved if the time zones
do not match up.

There are three major drawbacks to using the date field types in MySQL:

¢ If you need to move your database to another server (let’s say you change web hosts),
the moved data will be incorrect if the server uses a different time zone. The server con-
figuration would need to be modified, which most web hosts will not do for you.

* Various issues can arise concerning when daylight savings starts and finishes (assum-
ing your location uses daylight savings).

e Itis difficult to store timestamps from different time zones. You must convert all time-
stamps to the server time zone before inserting them.

If you think these aren’t problems that will occur often, you are probably right, although
here’s a practical example. A web application I wrote stored the complete schedule for a sports
league (among other things). Week to week, all games took place in different cities, and there-
fore in different time zones. For accurate scheduling data to be output on the web application
(for instance, “3 hours until game time”), the time zone data needed to be accurate.

PostgreSQL does not have the datetime data type. Instead, I prefer to use the timestamptz
column, which stores a date, time, and time zone. If you don'’t specify the time zone when
inserting a value into this column, it uses the server’s time zone (for instance, both 2007-04-18
23:32:00 and 2007-04-18 23:32:00+09:30 are valid; the former will use the server’s time zone
and the latter will use +09:30).

In the sports schedule example, I used PostgreSQL, which allowed me to easily store the
time zone of the game. PostgreSQLs equivalent of unix_timestamp(ts_column) is extract(epoch
from ts_column). Using timestamptz, this returns an accurate value that can be used in PHP’s
date() function. It also seamlessly deals with daylight savings.

User Profiles

You may have noticed that the users table (Listing 3-1) didn’t store any useful information
about the user, such as their name or e-mail address. To store this data, we will create an extra
table called users_profile.

By using an extra table to store this information, we can easily store an arbitrary amount
of information about the user without modifying the users table at all. For instance, we can
store their name, e-mail address, phone number, location, favorite food, or anything else.
Additionally, we can use this table to store preferences for each user.

Each record in the users_profile table corresponds to a single user profile value. That
is, one record will correspond to a user’s e-mail address, while another record will hold their
name. There is slightly more overhead in retrieving this data at runtime, but the added flexibil-
ity makes it well worth it. All that is required in this table is three columns:

e user_id: This column links the profile value to a record in users.

» profile key: This is the name of the profile value. For instance, we would use the value
email here if the record holds an e-mail address.

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

e profile value: This is the actual profile value. If the profile key value is email, this
column would hold the actual e-mail address.

Tip We use the text field type for profile value because this allows us to store a large amount of
data if required. There is no difference in performance between the varchar and text types in MySQL and
PostgreSQL. In fact, MySQL internally creates a varchar field as the smallest possible text field based on
the specified precision.

Listing 3-2 shows the MySQL table definition for users_profile. We will implement code
to manage user profiles later in this chapter.

Listing 3-2. SQL Used to Create the users_profile Table in MySQL (schema-mysql.sql)

create table users profile (

user_ id bigint unsigned not null,
profile key varchar(255) not null,
profile value text not null,

primary key (user_ id, profile key),
foreign key (user_id) references users (user id)
) type = InnoDB;

As mentioned previously, the serial column type (used for the user_id column in Listing 3-1)
is an alias for an auto-incrementing unsigned bigint column. Since the user _id column in this
table refers back to the users table, we manually use the bigint unsigned type because we don't
want this column to auto-increment.

We use the user_id and profile key columns as the primary key for the users_profile
table, as no profile values can be repeated for each user. However, a user can have several dif-
ferent profile values.

Note If you're using PostgreSQL, the int data type is used for user_id, as this is what the PostgreSQL
serial type uses. Once again, the PostgreSQL version of the table can be found in schema-pgsgl.sql.

Introduction to Zend Auth

Now that we've created the users table, we have something to authenticate against using
Zend_Auth. Before we get to that, though, we must understand exactly how Zend_Auth works.

First, we must understand the terminology Zend_Auth uses. The unique information that
identifies a user is referred to as their identity. After a user successfully authenticates, we store
their identity in a PHP session so we can identify them in subsequent page requests.

49

50

CHAPTER 3 " USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

Note It is possible to write custom storage methods, but the most common storage method will arguably
be in a PHP session. Zend_Auth provides the Zend_Auth_Storage Session class for this. This class, in
turn, uses the Zend_Session component, which is essentially a wrapper to PHP’s $_SESSION variable
(although it does provide greater functionality). To create some other storage method, you simply implement
the Zend Auth Storage Interface interface. For example, if you wanted to “remember a user” in
between sessions, you could create a storage class that writes identity data to a cookie. You would then
create an adapter (discussed shortly) to authenticate against cookie data. Be careful with this though, as it
could potentially be dangerous if done incorrectly, since cookie data can be forged. One safeguard against
this could be to give them a restricted role until they provide their credentials again, as Amazon.com does: it
will remember your identity but not allow you to make any changes to your account unless you re-enter your
password. Another example of using custom session storage is in a load-balanced environment (where mul-
tiple web servers are used for a single site). Disk-based sessions will not typically be available across all
servers, so a subsequent user request may be handled on a different server than the previous request.
Storing session data in the database alleviates this problem.

In order to authenticate a user, they must provide credentials. In the case of the applica-
tion we are writing, we will use the password column from the users table as the user’s
credentials.

We use an adapter to check the given identity and credentials against our database.
Adapters in Zend_Auth implement the Zend_Auth_Adapter_Interface interface. Thankfully, the
Zend Framework comes with an adapter that we can use to check our MySQL database. If we
wanted to authenticate users against a different storage method (such as LDAP or a password
file generated by Apache’s htpasswd), we would need to write a new adapter.

We will be using the Zend Auth_Adapter DbTable adapter, which is designed to work with
the Zend_Db component. If you choose instead to write your own adapter, the only method you
need to implement is the authenticate() method, which returns a Zend_Auth Result object.
This object contains information about whether authentication was successful, as well as
diagnostic messages (such as whether the provided credentials were incorrect, or authentica-
tion failed because the identity wasn’t found or for some other reason).

By default, Zend Auth Adapter DbTable returns only the submitted username in the
Zend_Auth Result object. However, we need to store additional information about the user
(such as their name and, more importantly, their user type). When we look at processing user
logins with Zend_Auth, we will deal with this.

Instantiating Zend_Auth

Zend_Auth is a singleton class, which means only one instance of it can exist (like the Zend _
Controller Front class we used in Chapter 2). As such, we can use the static getInstance()
method to retrieve that instance. We must then set the storage class (remember, we are using
sessions) using the setStorage() method. If you use multiple storage methods, you will need
to call this every time you want to access identity data in each storage location. Typically
though, you will only need to call this once: at the start of each request.

The following code is used to set up the Zend_Auth instance. As you can see, it is fairly
straightforward in its initial usage:

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

<?php
$auth = Zend Auth::getInstance();
$auth->setStorage(new Zend Auth_Storage Session());
>

We will be using the $auth object in several places in our web application. First, it will be
used when we check user permissions with Zend Acl (in the “Introduction to Zend_Acl” sec-
tion later in this chapter). It will also be used in application login and logout methods, as we
need to store and then clear the identity data for each of these methods.

As we did with our application configuration and database connection, we will store the
$auth object in the application registry using Zend Registry. Listing 3-3 shows the index.php
bootstrap file as it stands with Zend_Auth.

Listing 3-3. The Application Bootstrap File, Now Using Zend_Auth (index.php)

<?php
require once('Zend/Loader.php');
Zend_Loader::registerAutoload();

// load the application configuration
$config = new Zend Config Ini('../settings.ini', 'development');
Zend Registry::set('config', $config);

// create the application logger
$logger = new Zend_Log(new Zend_Log Writer Stream($config->logging->file));
Zend_Registry::set('logger', $logger);

// connect to the database

$params = array('host' => $config->database->hostname,
'username' => $config->database->username,
"password’ => $config->database->password,
"dbname' => $config->database->database);

$db = Zend Db::factory($config->database->type, $params);
Zend Registry::set('db', $db);

// setup application authentication
$auth = Zend_Auth::getInstance();
$auth->setStorage(new Zend_Auth_Storage_Session());

// handle the user request

$controller = Zend Controller Front::getInstance();

$controller->setControllerDirectory($config->paths->base .
'/include/Controllers"');

$controller->registerPlugin(new CustomControllerAclManager($auth));

51

52 CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

// setup the view renderer

$vr = new Zend Controller Action Helper ViewRenderer();
$vr->setView(new Templater());
$vr->setViewSuffix("tpl');

Zend _Controller Action HelperBroker::addHelper($vr);

$controller->dispatch();
>

Authenticating with Zend_Auth

In Chapter 4 we will be implementing the login and logout forms for our web application, but
before we get to that we will take a look at how the login and logout process actually work. As
mentioned previously, we will be using the Zend_Auth_Adapter DbTable authentication
adapter. Prior to using this adapter, you must already have a valid Zend Db object.

Because Zend_Auth_Adapter DbTable is flexible and is designed to work with any database
configuration, you must tell it how your storage is set up. Thus, you must include the following
when instantiating it:

¢ The name of the database table being used (our table is called users).

* The column that holds the user identity (we are using the username column in the users
table).

e The column that holds the user credentials (we are using the password column).

¢ And finally, the treatment used on the credentials. This is essentially a function that (if
specified) wraps around the credentials. Remember that we are storing an MD5 hash of
the password in the password column. Therefore, we pass md5(?) as this final argument.
The question mark tells Zend Db where to substitute in the password value.

Once Zend Auth Adapter DbTable is instantiated (we will use the variable name $adapter),
we can set the identity (username) and credentials (password). To do this, we use setIdentity()
and setCredential().

Next, we will call the authenticate() method on the $auth object (the instance of
Zend_Auth). The single argument passed to authenticate() is the adapter ($adapter). An
instance of Zend Auth Result is then returned. We can call isValid() on this object to see
whether the user successfully authenticated. If they didn't, we can either call getMessages ()
on the result to determine why, or we can generate our own error message based on the result
from getCode().

Note Aithough Zend Auth_Result allows us to easily distinguish between an invalid username and an
invalid password, this typically isn’t information you should present to the user. Doing so can implicitly let
them know when a username exists or not, which can aid malicious users in gaining unauthorized access to
your application. The example in Listing 3-4 differentiates between these errors purely to demonstrate how
you can detect them. The code we add to our application will not inform users whether it was their user-
name or their password that was incorrect.

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

Listing 3-4 shows the code used to instantiate Zend Auth_Adapter DbTable and to authen-
ticate against the users table. At this stage, we are simply providing a fake username and
password, as we haven't yet populated the users table. As you can see, we also handle
authentication errors and output a message indicating the reason for failure.

Listing 3-4. Authenticating Against a Database Table Using Zend_Auth and Zend_Db
(listing-3-4.php)

<?php
require once('Zend/Loader.php');
Zend Loader: :registerAutoload();

// connect to the database

$params = array('host' => 'localhost’,
'username’ => 'phpweb20’,
'password' => 'myPassword',
"doname’ => 'phpweb20');

$db = Zend_Db::factory('pdo_mysql', $params);

// setup application authentication
$auth = Zend Auth::getInstance();
$auth->setStorage(new Zend Auth Storage Session());

$adapter = new Zend Auth Adapter DbTable($db,
'users’',
'username’,
'password’,
'md5(?)");

// try and login the "fakeUsername" user
$adapter->setIdentity('fakeUsername');

$adapter->setCredential (' fakePassword');
$result = $auth->authenticate($adapter);

if ($result->isvalid()) {

// user successfully authenticated
¥
else {

// user not authenticated

switch ($result->getCode()) {
case Zend_Auth_Result::FAILURE_IDENTITY_NOT_FOUND:
echo 'Identity not found';
break;
case Zend Auth Result::FAILURE_IDENTITY AMBIGUOUS:
echo 'Multiple users found with this identity!';

53

54

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

break;
case Zend_Auth Result::FAILURE_CREDENTIAL INVALID:
echo 'Invalid password';
break;
default:
var_dump($result->getMessages());

>

You can also check whether or not a user is authenticated using the $auth object. The
hasIdentity() method indicates whether or not a user is authenticated. Then, to determine
which user that is, you can use the getIdentity() method.

Similarly, you can use the clearIdentity() method to log a user out. If you are using
sessions as the storage method, this effectively unsets the identity from the session.

As mentioned previously, when $auth->authenticate() succeeds using
Zend_Auth_Adapter_DbTable, only the username is stored for the identity data. In Chapter 4,
when we implement the user login form, we will alter the identity data to include other user
details, such as the user type.

Introduction to Zend Acl

Zend_Acl is a component of the Zend Framework that provides access control list (ACL) func-
tionality. While it doesn’t fundamentally require the use of Zend_Auth, we will combine these
two components to control what users can and cannot do in our web application.

Essentially what Zend_Acl does is determine whether a role has sufficient privileges to
access a resource.

* Resource: Some object (not an object in the OOP sense, just some “thing”) in a web
application to which access can be controlled. An example of a resource is an action in
a web application, such as approving the content of an article before it is published, or
deleting a user from the system. Additionally, you can provide finer-grained control
over privileges to resources. So, in the example of approving an article, the resource
would be the article-management system (or a particular article, depending on how
you look at it), while the privilege would be the approve action.

* Role: Some object that requests access to resources. In our web application, a role
refers to a user of certain privileges.

Although this language might be somewhat confusing, each user in our application (that
is, each record in the users table) has a particular user type. We refer to this as a user’s role.

Note It is possible to make a role or a resource inherit from another role or resource, respectively. For
example, let’s say you assign certain privileges to Role A. If you make Role B inherit from Role A, it will get
all of the privileges that Role A has, in addition to any extra privileges you add to Role B. This can make your
permissions system confusing (especially when inheriting from more than one other role or resource), so we
will try to keep it as simple as possible in our application.

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

We will control access to particular resources (such as publishing a blog post or resetting
a password) based on a user’s role. As mentioned when creating the users table, the three
types of users (the three user roles) will be guest, member, and administrator.

The typical flow for using Zend_Acl in a web application is as follows:

1. Instantiate the Zend_Acl class (let’s call this object $acl).
2. Add one or more roles to $acl using the addRole() method.
3. Add resources to $acl using the add() method.

4. Add the full list of privileges for each role (that is, use allow() or deny() to indicate
which resources roles have access to).

5. Use the isAllowed() method on $acl to determine whether a particular role has access
to a particular resource/privilege combination.

6. Repeat step 5 as often as necessary while the script executes.

A Zend_Acl Example

Let’s take a look at actually using the Zend_Acl class. In this example, I will use the role names
we will be using in our application. The privileges I set up here should give you an idea of
exactly what we will be doing when we integrate Zend Acl into our application.

The first thing I need to do to manage and check permissions is to instantiate the Zend_
Acl class. The constructor takes no arguments:

$acl = new Zend Acl();

Next, I create each of the roles that I'm checking permissions for. As mentioned previ-
ously, we will be using three different roles: guest, member, and administrator.

$acl->addRole(new Zend Acl Role('guest'));
$acl->addRole(new Zend Acl Role('member'));
$acl->addRole(new Zend Acl Role('administrator'));

After creating the roles, I can create the resources. In fact, I could swap the order; the key
thing is that both roles and resources must be added before defining or checking permissions.

For this example, I will only add account and admin as the resources that will be granted
permissions. There will be other resources in our application, but only items that will be
granted permissions need to be added here, because when checking permissions, we check
for the existence of the requested resource. It’s up to you as the developer how you handle a
permissions check for a nonexistent resource. In this case, I will simply allow access to a
requested resource if it hasn’'t been added to $acl.

$acl->add(new Zend Acl Resource('account'));
$acl->add(new Zend Acl Resource('admin'));

The next step is to define the different permissions required in the application. This is
achieved by making a series of calls to allow() and deny() on the Zend Acl instance. The first
argument to this function is the role, and the second is the resource. You can add finer-grained
control by specifying the third parameter (the permission name).

55

56

CHAPTER 3 " USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

In the permissions system for our application, the name of the controller (in the context
of Zend_Controller) is the resource, while the controller action is the permission name. As in
the following example, we can allow or deny access to an entire controller (as we will do for
guest in the admin controller), or we can open up one or two specific actions within a con-
troller (as we will do for the login and fetchpassword actions for guest).

$acl->allow('guest'); // allow guests everywhere ...
$acl->deny('guest', 'admin'); // ... except in the admin section ...
$acl->deny('guest’, 'account'); // ... and the account management section

$acl->allow('guest', 'account', // ... although let them log in
array('login', 'fetchpassword'));

In addition to defining what guests can do, I also want to define what members are
allowed to do. Members are privileged users, so I allow them more access than guests:

$acl->allow('member"); // members can go everywhere ...
$acl->deny('member', 'admin'); // ... except for the site admin section

Next I define the permissions for administrators, who are even more privileged than
members:

$acl->allow('administrator'); // administrators can go everywhere!

Once all the permissions have been defined, they can be queried to determine what can
and can’t be accessed. Here are some examples:

// check permissions
$acl->isAllowed('guest', 'account'); // returns false
$acl->isAllowed('guest', 'account', 'login'); // true

$acl->isAllowed('member', 'account'); // true
$acl->isAllowed('member', ‘account', 'login'); // true
$acl->isAllowed('member', 'admin'); // false
$acl->isAllowed('administrator', 'admin'); // true

Note that in our application the role names will be dynamically determined based on the user
that is logged in, and the resource and permission names will be determined by the requested
controller and action.

Realistically, the call to isAllowed() will be in an if statement, such as this:

<?php
if ($acl->isAllowed('member', 'account")) {
// display member account area

}

>

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

Tip If you try to check the permissions of an undefined resource, an exception will be thrown. It is up to
you how you want to handle this. For example, you may choose to automatically deny the request, or you
may choose to automatically allow it. Another option could be to fall back to a different resource if the given
resource is not found; the has () function is used to check the existence of a resource. The same principle
applies to roles. In our application, a user will fall back to guest if their role is not found (this would result
from a bogus value in the user_type column of the usexrs table).

Our actual permissions system will be almost identical to this example, in that members
can access the account resource, while guests cannot, and administrators can access all areas.

Note The code uses both the term admin and administrator. The user type (that is, the role) is called
administrator, while the controller (that is, the resource) is called admin. In other words, only users of
type administrator will be able to access the http://phpweb20/admin URL.

Combining Zend_Auth, Zend_Acl, and Zend_
Controller_Front

The next step in developing our web application is to integrate the Zend_Auth and Zend_Acl
components. In this section, we will change the behavior of the application controller (that is,
the instance of Zend_Controller Front), to check permissions using Zend_Acl prior to dis-
patching a user’s request. When checking permissions, we will use the identity stored with
Zend_Auth to determine the role of the current user.

To control permissions, we will treat each controller as a resource, and treat the action
handlers in these controllers as the permissions associated with the resource. For instance,
later in this chapter we will create the AccountController.php file, which is used to control
everything relating to user accounts (such as logging in, logging out, fetching passwords, and
updating user details). The AccountController controller will be the resource for Zend Acl,
while the privileges associated with this resource are the actions just mentioned (login, logout,
fetch password, update details).

Note There are many ways to structure a permissions system. In this application, we will simply control
access to action handlers in controller files. This is relatively straightforward, as we can automate all ACL
checks dynamically based on the action and controller name in a user request.

57

58

CHAPTER 3 " USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

The way we achieve this setup of using controller and action names to dictate permis-
sions is to write a plug-in for Zend_Controller (by extending the Zend_Controller Plugin_
Abstract class). This plug-in defines the preDispatch() method, which receives a user request
before the front controller dispatches the request to the respective action. Effectively, we are
intercepting the request and checking whether the current user has sufficient privileges to
execute that action.

To register a plug-in with Zend_Controller, we call the registerPlugin() method on our
Zend_Controller Front instance. Before we do that, let’s create the plug-in, which we will call
CustomControllerAclManager. We will create all roles and resources for Zend_Acl in this class,
as well as checking permissions.

Listing 3-5 shows the contents of the CustomControllerAclManager.php file, which we will
store in the /var/www/phpweb20/include directory.

Listing 3-5. The CustomControllerAcIManager Plug-in, Which Checks Permissions Prior to
Dispatching User Requests (CustomControllerAcIManager.php)

<?php
class CustomControllerAcIManager extends Zend_Controller Plugin_Abstract
{
// default user role if not logged or (or invalid role found)
private $ defaultRole = 'guest';

// the action to dispatch if a user doesn't have sufficient privileges
private $_authController = array('controller' => "account’,
"action’ => 'login');

public function _ construct(Zend Auth $auth)
{

$this->auth = $auth;

$this->acl = new Zend Acl();

// add the different user roles

$this->acl->addRole(new Zend Acl Role($this-> defaultRole));
$this->acl->addRole(new Zend Acl Role('member'));
$this->acl->addRole(new Zend Acl Role('administrator'), 'member');

// add the resources we want to have control over
$this->acl->add(new Zend Acl Resource('account'));
$this->acl->add(new Zend Acl Resource('admin'));

// allow access to everything for all users by default

// except for the account management and administration areas
$this->acl->allow();

$this->acl->deny(null, 'account');

$this->acl->deny(null, ‘admin');

// add an exception so guests can log in or register
// in order to gain privilege

/

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

$this->acl->allow('guest’, 'account', array('login',
'fetchpassword',
'register’,
'registercomplete'));

// allow members access to the account management area
$this->acl->allow('member', 'account');

// allows administrators access to the admin area
$this->acl->allow('administrator', 'admin');

*x

preDispatch

*
*
* Before an action is dispatched, check if the current user
* has sufficient privileges. If not, dispatch the default

* action instead

*

*

@param Zend Controller Request Abstract $request
*/

public function preDispatch(Zend Controller Request Abstract $request)

{

// check if a user is logged in and has a valid role,
// otherwise, assign them the default role (guest)
if ($this->auth->hasIdentity())

$role = $this->auth->getIdentity()->user type;
else

$role = $this-> defaultRole;

if (!$this->acl->hasRole($role))
$role = $this-> defaultRole;

// the ACL resource is the requested controller name
$resource = $request->controller;

// the ACL privilege is the requested action name
$privilege = $request->action;

// if we haven't explicitly added the resource, check
// the default global permissions
if (!$this->acl->has($resource))

$resource = null;

// access denied - reroute the request to the default action handler
if (1$this->acl->isAllowed($role, $resource, $privilege)) {
$request->setControllerName($this-> authController['controller']);

59

60

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

$request->setActionName($this-> authController['action']);

>

The class constructor is where we define roles, resources, and permissions. In Listing 3-5
we first make the administrator role inherit from the member role. This means that any permis-
sion given to members is also given to administrators. Additionally, we can then give the
administrator role privileges on its own to access the admin area.

Next, we set up the default permissions (that is, permissions that apply to all roles). These
allow access to everything except for the account and admin resources. Obviously, a guest
needs the chance to authenticate themselves and become a privileged user, so we must open
up access to the login and fetchpassword privileges. Additionally, if they are not yet registered,
we need to grant them access to register and registercomplete (a helper action used to con-
firm registration to a user).

Once a guest becomes authenticated (thereby becoming either a member or an adminis-
trator), they need to be able to access the account resource. Since the administrator role
inherits from the member role, permitting members access to the account resource also gives
access to administrators.

Finally, we open up the admin areas to administrators only. In other words, guests and
members cannot access this area.

Now, let’s take a look at the preDispatch() method, which takes the user request as an
argument. First, we set up the role and resource so the ACL check will work correctly. If the
resource is not found, we set the $resource variable to null, which means the default permis-
sion will be used for the given role. Based on the way we have set this up (that is, allowing
access to everything), this effectively means the ACL check will return true. If the role is not
found, we use the guest role instead.

Note We are accessing the user type property of the identity stored with Zend Auth. We haven't yet
looked at storing this property with the identity when performing a login, but we will cover this in Chapter 4,
when we implement the login action to our account controller.

Finally, we call isAllowed() to determine whether the $role role has access to the
$privilege privilege of resource $resource. If this returns true, we do nothing and let the
front controller dispatch loop continue. If this returns false, we reroute the dispatcher to
execute the login action of the account controller. In other words, when an unprivileged
user tries to do something they are not allowed to do, they will be redirected to a login screen.

Note One side effect of this behavior is that if a member tries to access the admin area, they will be
shown a login screen, even though they are already logged in. You could modify the code to show the login
screen if no identity is found in $auth, but show a different screen if the user is logged in but has insuffi-
cient privileges.

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

Managing User Records with DatabaseObject

DatabaseObject is a class I developed several years ago that I make heavy use of in nearly all of
my PHP development tasks. It acts as an extra layer on top of a database connection, which
makes reading, writing, and deleting rows from a database very simple. You can find the full
DatabaseObject.php file in the . /include directory of the downloadable source code.

Essentially, I extend the abstract DatabaseObject class for each major table in an applica-
tion. So to manage records in the users table of our web application, we will create a class
called DatabaseObject_User. Once we instantiate this class, we can then call the load()
method to fetch a record from the database, use the save() method to either insert or update
data in the database (depending on whether or not a record has already been loaded), and call
delete() to delete a loaded record.

Note When | first wrote DatabaseObject, neither PHP 5 nor the Zend Framework were out yet, but |
have since updated this class to use PHP 5 and to work with the Zend_Db component. If you are not using
Zend_Db, you will have to make appropriate changes.

Instead of looking at the implementation details, we will take a look at the available func-
tions and exactly how DatabaseObject can be used:

 load(): Loads a record by performing a select query. Returns true if the record is
loaded.

 isSaved(): Returns true if a record has previously been loaded with load().

* save(): Saves the current data to the database. If the record wasn't previously loaded, an
insert statement is used; otherwise the loaded record is updated with an SQL update.

e delete(): If a record has been loaded, this function performs an SQL delete query.
¢ getId(): Retrieves the database ID of a saved record.

There are also a number of callbacks you can define, which are automatically called as
required. The callbacks that can be defined are as follows:

* postload(): Called after a record is successfully loaded. It could be used to load data
from other tables as required.

e prelnsert(): Called prior to inserting a new record (note that in this case save() distin-
guishes inserts from updates). It could be used to set values dynamically (such as a
timestamp recording the date of insert).

¢ postInsert(): Called after a new record is saved. In the case of our users table, we will
use this to send an e-mail to the new user.

e preUpdate(): Called prior to an existing record being updated. It could be used to set
values dynamically (such as a timestamp recording the date of update).

¢ postUpdate(): Called after an existing record is updated.

61

62 CHAPTER 3 " USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

e preDelete(): Called prior to an existing record being deleted. If other tables depend on
this data, you would delete the data from those tables here, before the data is deleted
from this table.

e postDelete(): Called after a record has been deleted. It could be used to delete a file on
the filesystem that relates to this record.

All callbacks (except for postLoad()) must return either true or false. If false is returned,
the entire transaction is rolled back. For example, if you return false from postDelete(), the
record is not deleted, and any queries you perform in preDelete() are also rolled back. It is
important to remember to define the return value if you implement any of these functions.

Note Because of the way DatabaseObject works, all tables that use it must follow a similar structure.
That is, the table must have a single primary key field, with an auto-incrementing sequence. The users
table we created earlier in this chapter follows this structure by defining the user_id field as a serial.
This wasn’t the case for users_profile, and we will be managing data in this table slightly differently.

The DatabaseObject_User Class

Now that we've looked at how DatabaseObject works, we will create a child class to manage
records in the users table. Once we have created this class, we will look at how to actually use it.

To create this class, all we really need to do is define the name of the database table and
the name of its primary key field, and then define the list of columns in the table. If required,
you can also set the types of the columns, which makes DatabaseObject treat the data accord-
ingly. At this stage, all we will be using is the DatabaseObject: :TYPE_TIMESTAMP type.

Listing 3-6 shows the contents of User . php, which should be stored in the DatabaseObject
directory (so the full path is /var/www/phpweb20/include/DatabaseObject). Note that naming it
in this manner means the Zend Framework autoloader will automatically include this code
when required.

Listing 3-6. The Initial Version of the DatabaseObject_User Class (User.php)

<?php
class DatabaseObject User extends DatabaseObject
{
public function construct($db)
{
parent:: construct($db, 'users', 'user id');
$this->add('username');
$this->add('password');
$this->add('user type', 'member');
$this->add('ts_created', time(), self::TYPE TIMESTAMP);
$this->add('ts last login', null, self::TYPE TIMESTAMP);
}
}

>

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

In Listing 3-6, we first call the parent constructor. This method accepts the database con-
nection as the first argument (an instance of Zend Db_Adapter), the database table name as the
second argument, and the column name of the primary key as the third argument.

Next, we add the list of fields using add(). The first argument is the name of the field, the
second argument if specified is its default value, and the third argument is the type. If no type
is specified, the value is simply treated as is.

In the listing, you can see that the ts_created and ts_last login fields are both time-
stamps. We set the ts_created field to be the current time, and we set ts_last login to null,
as the user has not yet logged in.

Note We could alternatively set the default value of ts_created to null, and then dynamically set the
value in the preInsert() callback instead. There’s no real difference, unless there is a huge time difference
between instantiating the object and calling its save () method.

The other thing we have done is set the default value of the user_type field to member. Ear-
lier in this chapter we covered the three types of users: guests, members, and administrators.
By definition, a guest is somebody who doesn’'t have a user account (and therefore has no row
in the users table), so we set the default value to member.

Now is a good time to define the user types in this code. Our code should allow us to add
more user types in the future and to only ever have to change this one list (disregarding the
fact that we would likely need to change the ACL permissions). We could alternatively store
the list of user types in a database table, but for the sake of simplicity we will store them in a
static array in the DatabaseObject_User class.

Additionally, we can extend the __set() method to intercept the value being set so we can
ensure that the value is valid.

Note PHP 5 allows the use of a magic __set () method, which is automatically called (if defined) when
code tries to modify a nonexistent property in an object. DatabaseObject uses this method to set values to
be saved in the database table. We can also define this in the DatabaseObject User child class in order to
alter a value before calling _ set() in the parent class. PHP 5 also allows a similar __get () method, which
is automatically called if a nonexistent property is read. DatabaseObject also uses this method.

Before we look at the code that does this, there is one further value we must intercept and
alter before it is written to the database: the password. We mentioned earlier that we are sav-
ing passwords as MD5 hashes of their original value. As such, we must call md5() on the
password value prior to saving it to the database.

Note You can use either the PHP version of mds () or you can call it in the SQL query. For the sake of sim-
plicity and cross-database compatibility, we will use the PHP function.

63

64

CHAPTER 3 " USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

Listing 3-7 shows the new version of User. php, which now defines the list of user types, as
well as ensuring that a valid user type is set. It also changes the password value, when it is set,
to be an MD5 hash.

Listing 3-7. The New Version of DatabaseObject_User, Now Setting the Password and User Type
Correctly (User.php)

<?php
class DatabaseObject User extends DatabaseObject
{
static $userTypes = array('member’ => 'Member’,
'administrator' => 'Administrator');
public function _ construct($db)
{
parent:: construct($db, 'users', 'user id');
$this->add('username');
$this->add('password');
$this->add('user type', 'member');
$this->add('ts _created', time(), self::TYPE TIMESTAMP);
$this->add('ts last login', null, self::TYPE TIMESTAMP);
}
public function __set($name, $value)
{
switch ($name) {
case 'password':
$value = md5($value);
break;
case 'user_type':
if (larray_key exists($value, self::$userTypes))
$value = "'member’;
break;
}
return parent::__set($name, $value);
}
}
>

Using DatabaseObject_User

Now that we have created the DatabaseObject User class, let’s look at how to use it. Listing 3-8
shows the typical usage of a DatabaseObject child class: we first set some properties and then
call the save() method (which will perform an SQL insert). Next we modify some properties

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

on the same object and then call save() again (this time an SQL update will be performed).
Finally, we try to load an existing record and then delete it from the database table.

Listing 3-8. Sample Usage of the DatabaseObject_User Class (listing-3-8.php)

<?php
require once('Zend/Loader.php');
Zend Loader::registerAutoload();

// connect to the database

$params = array('host' => 'localhost’,
'username’ => 'phpweb20',
'password’' => 'myPassword",
"dbname’ => 'phpweb20');

$db = Zend Db::factory('pdo mysql', $params);

// Create a new user

$user = new DatabaseObject User($db);
$user->username = 'someUser’;
$user->password = 'myPassword';
$user->save();

// Now update that user and save new details
$user->user type = 'admin';
$user->ts last login = time();
$user->save();

// Find a user with user id of 5 and delete them
$user2 = new DatabaseObject User($db);
if ($user2->load(s)) {

$user2->delete();

}

>

If we were to look at the users table after running this script, it might look something like
this:

mysql> select user_id, username, password from users;

dommmm - Fmmmmmmmm o o e +
| user id | username | password |
e Frmmmmmm e o e +
| 7 | someUser | deb1536f480475f7d593219aalafd74c |
e Frmmmmmm e o e +

65

66

CHAPTER 3 " USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

Managing User Profiles

When we created the users table earlier in this chapter, we also created a table called users_
profile, which we use to hold user profile data. The way this table is structured, we can add
any number of values to correspond with each user account. This may include personal
details, such as the user’s name or e-mail address, or it may include other settings, such as
whether or not the user wants to receive a monthly newsletter.

Because I use a system like this for most web applications I work on, I have developed a
generic class called Profile to manage data of this nature. Profile is an abstract class that
must be extended for each table you want to write to. We will create a class called
Profile_User to extend Profile.

The profile is typically used as follows:

1. Create a new instance of Profile User. One instance is responsible for the profile data
of one user.

2. Set the user ID and load the existing profile data for that user.
3. Set new values, update existing values, or delete existing values as required.
4. Save the profile data.

In order to autoload the classes with Zend Loader, we can store the Profile.php file in
the ./include directory, while we store User.php (which holds the Profile_User class) in
./include/Profile.

No methods need to be implemented in the Profile User class—all we need to do is
specify the database table used to store profile data. Additionally, we need to add a single
utility method to set the user ID.

Since we are storing profile data for all users in a single table, we need to add a filter to the
parent Profile class so it correctly reads and writes the profile data.

Listing 3-9 shows the contents of User.php, which defines the Profile User child class.

Listing 3-9. The Profile_User Child Class, Used to Initialize Profile Management for Users
(User.php)

<?php
class Profile User extends Profile
{
public function _ construct($db, $user id = null)
{
parent:: construct($db, 'users profile');
if ($user _id > 0)
$this->setUserId($user id);
}

public function setUserId($user id)

{
$filters = array('user id' => (int) $user id);
$this-> filters = $filters;

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

2>

To instantiate Profile User, the database connection is passed, as well as an optional
user ID. If you don’t specify a user ID, you can call the setUserId() method. Once the user ID
has been set, you can call the 1load() method to load existing profile data from the database.

Note You must make a call to setUserId() before calling load() or save(); otherwise the data may
be saved incorrectly or an error will occur.

Using Profile_User

Now that we have looked at the code for Profile User, let’s take a look at an example of how to
use the class. For this example, let’s assume a user has already been created in the users table
with an ID of 1234 (remember from our schema that the user_id field in users_profileis a
foreign key to users, so the corresponding record must exist).

The first thing we must do is instantiate the class and load the data:

<?php
$profile = new Profile User($db, 1234);
$profile->load();

>

Alternatively, we can call setUserId() instead of passing the ID in the constructor. We will
be using this method when we integrate Profile User with DatabaseObject User.

$profile = new Profile User($db);
$profile->setUserId(1234);
$profile->load();

Now we can set a new profile value (or update an existing one) just by accessing the
object property, like so:

$profile->email = 'user@example.com';

We can delete a profile value by calling unset ():
unset($profile->email);

And we can check whether a profile value exists by calling isset():

if (isset($profile->email)) {
// do something
}

Finally, we must save any changes that we make to the database by calling the save()
method:

$profile->save();

67

68

CHAPTER 3 " USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

Listing 3-10 shows a more complete example of using Profile User, this time including
the database creation code.

Listing 3-10. A Complete Example of Setting Profile Data and Displaying a Simple Message
(listing-3-10.php)

<?php
require once('Zend/Loader.php');
Zend Loader::registerAutoload();

// connect to the database

$params = array('host' => 'localhost’,
'username’ => 'phpweb20',
'password’' => 'myPassword',
"dbname’ => 'phpweb20');

$db = Zend Db::factory('pdo mysql', $params);

$profile = new Profile User($db);
$profile->setUserId(1234);
$profile->load();

$profile->email = 'user@example.com';
$profile->country = 'Australia’;
$profile->save();

if (isset($profile->country))
echo sprintf('Your country is %s', $profile->country);
2>

If you were to check the data in the users_profile table after running this example, it
would look something like the following:

mysql> select * from users profile where user id = 1234;

fommmmmmm- Hommmm oo R +
| user_id | profile key | profile_value |
Hmmmmm e Hmmmm e Hmmmmm e +
| 1234 | country | Australia |
| 1234 | email | user@example.com |
Hmmmmm e Hmmmm e o mm e +

2 rows in set (0.00 sec)

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

Integrating Profile_User with DatabaseObject_User

Now that we have a way of managing user profiles, we must integrate this into our
DatabaseObject User class so that all user data can easily be managed in a single place.
Essentially what we must do is as follows:

e Instantiate the Profile User class within DatabaseObject User.

* Load the profile data automatically when a user is loaded.

¢ Save the profile data automatically when the user record is saved.

* Delete the profile data automatically when the user record is deleted.

Additionally, we must deal with the fact that the user ID is not known when creating a
new user record with DatabaseObject User. As such, we must correctly use the callbacks that
DatabaseObject makes available. We will use them as follows:

e In the load callback (postLoad()), we will set the user ID and load the profile data.

¢ Before an insert occurs (preInsert()), we will generate a password for the user. For
now, we will use the PHP unigid() function to generate a password, but we will improve
on this in Chapter 4 when we need to send an e-mail out to new users.

¢ After an insert occurs (postInsert()), we will set the user ID and save the profile data.

 After an update occurs (postUpdate()), we will save the profile data (the user ID is
known at this point).

 Before a delete occurs (preDelete()), we will delete all profile data. Note that this must
occur before the user is deleted (as opposed to being done in postDelete()), because a
foreign key constraint violation will occur if we do it the other way around (that is,
users_profile depends on users, so data can’'t be removed from users that is referenced
inusers_profile).

Listing 3-11 shows the new version of DatabaseObject User, which defines each of these
callbacks. Importantly, the postInsert() and postUpdate() callbacks also return true, which is
required for the database transaction to complete.

Listing 3-11. DatabaseObject_User with Profile Management Functionality Built in (User.php)

<?php
class DatabaseObject User extends DatabaseObject
{

static $userTypes = array('member’ => "Member’,
"administrator' => 'Administrator');

public $profile = null;
public function construct($db)

{

parent:: construct($db, 'users', 'user id');

69

70 CHAPTER 3 " USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

$this->add('username');
$this->add('password');
$this->add('user_type', 'member');
$this->add('ts_created', time(), self::TYPE TIMESTAMP);
$this->add('ts_last login', null, self::TYPE TIMESTAMP);

$this->profile = new Profile User($db);

}

protected function preInsert()

{
$this-s>password = uniqid();
return true;

}

protected function postLoad()

{
$this->profile->setUserId($this->getId());
$this->profile->load();

}

protected function postInsert()

{
$this->profile->setUserId($this->getId());
$this->profile->save(false);
return true;

}

protected function postUpdate()

{
$this->profile->save(false);
return true;

}

protected function preDelete()

{
$this-s>profile->delete();
return true;

}

public function _ set($name, $value)
{
switch ($name) {
case 'password':
$value = md5($value);
break;

CHAPTER 3 © USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

case 'user type':
if (larray_key exists($value, self::$userTypes))
$value = 'member’;
break;

}

return parent:: set($name, $value);

>

In addition to the callbacks defined in this code, Profile User is instantiated in the
constructor. Note that because we have used the PHP 5 __set() and _ get() overloaders in
DatabaseObject, we must also define the $profile property in the class definition.

Important When calling the save() method on the profile, we pass false as an argument, which
prevents Profile from using a database transaction to save the data. We want to prevent this because
DatabaseObject has already initiated a transaction, so the saving of profile data falls within this transac-
tion. In other words, if we were to return false from postUpdate(), the transaction would be rolled back,
meaning the changes to the user table wouldn’t be saved, and the profile data would remain unchanged in
the database.

With these new features added to DatabaseObject User, we can now easily manipulate all
user data as required. Listing 3-12 shows an example of creating a new user and setting the
profile data all in one step.

Listing 3-12. Creating a New User and Setting the Profile Data All in One Step (listing-3-12.php)

<?php
require once('Zend/Loader.php');
Zend Loader: :registerAutoload();

// connect to the database

$params = array('host' => 'localhost’,
'username’ => 'phpweb20',
'password' => 'myPassword',
"dbname’ => 'phpweb20");

$db = Zend Db::factory('pdo mysql', $params);

// Create a new user

$user = new DatabaseObject User($db);
$user->username = 'someUser';
$user->password = 'myPassword';

71

72 CHAPTER 3 " USER AUTHENTICATION, AUTHORIZATION, AND MANAGEMENT

// Set their profile data
$user->profile->email = 'user@example.com';
$user->profile->country = 'Australia’;

// Save the user and their profile
$user->save();

// Load some other user and delete them
$user2 = new DatabaseObject User($db);
if ($user2->load(1234))
$user2->delete();
?>

Summary

In this chapter we created the infrastructure for managing users in our web application. First,
we looked at the Zend_Auth and Zend_Acl components from the Zend Framework. We discov-
ered the differences between authentication and authorization, and how they apply to our
application.

Next, we integrated both of these components with Zend Controller Front, restricting
access to our application based on the requested controller and action. We then looked at how
database data can easily be managed using the DatabaseObject and Profile classes, which we
extended in order to manage user data.

In the next chapter, we will continue the process of building the application’s user system
by allowing users to create new accounts, log in, and update their profiles using the code we
have developed in this chapter.

CHAPTER 4

User Registration, Login,
and Logout

In Chapter 3 we looked closely at the user authentication and authorization aspects of the
web application. We learned that authentication is when a user proves they are who they say
they are, while authorization determines what that user is and isn’t allowed to do. We created
the necessary database tables to hold user details as well as the code to manage the database
records. We then used the Zend_Auth and Zend_Acl components of the Zend Framework to
control which areas of the web site users can access.

In this chapter we will build on the code from Chapter 3 by implementing a user registra-
tion system. Once registered, users will be able to log in and update their details. This chapter
covers everything related to creating user accounts and authenticating (that is, logging in).
This includes the use of CAPTCHA images as well as allowing users to reset their forgotten
passwords.

Adding User Registration to the Application

Implementing a user registration system is a fairly involved process, not only because there’s a
lot to do in setting up a user account, but also because it’s the first real interaction between
the web application and the end-user that we've looked at in this book.

The process of accepting user registrations will involve the following:

* Adding navigation so the user can find the registration form
* Displaying the registration form to the user, including a CAPTCHA image

* Accepting and validating the submitted details, including checking availability of user-
names

» Displaying errors back to the user if something goes wrong

 Saving the database record, e-mailing the user, and displaying a confirmation page if all
went well

We won't do all of this in exactly this order, but we will build up the registration system until it
incorporates all of these features.

73

74 CHAPTER 4 © USER REGISTRATION, LOGIN, AND LOGOUT

The fields users will be filling in for registration are as follows:

¢ Ausername. This value must be unique and contain only alphanumeric characters
(letters and numbers).

e Their name. We will split this up into first name and last name.

 Their e-mail address. We require this so we have a valid point of contact for the user. To
ensure that we have a real e-mail address, the account password is automatically gener-
ated and sent to this address. This is a simple but effective way of preventing false
e-mail addresses from being entered.

Creating the Form Processor for User Registration

In order to keep the code that is responsible for processing the user registration form

separate from other parts of the application (such as the account controller that displays

the registration form), we will create a class called FormProcessor UserRegistration. This class
will extend from FormProcessor, another utility class (available in the book’s code base in
./include/FormProcessor.php) that I wrote to aid in my own web application development.

The FormProcessor class is fairly simple and doesn't do anything aside from hold the form values
you tell it to, and hold form error messages that you can display.

The Initial FormProcessor_UserRegistration Class

To extend FormProcessor, all we need to do is implement the abstract function process(),
which accepts a Zend_Controller Request Abstract object as an argument and returns true
if the form was successfully processed or false if an error occurred. The instance of Zend
Controller Request Abstract isan object generated by Zend Controller Front, which holds
all data relating to the current request, such as get and post data.

Note In actual fact, the instance of Zend_Controller Request Abstract is an instance of Zend
Controller Request Http that we will eventually pass to process().The Zend Controller Request
Http class extends from Zend _Controller Request Abstract.

As mentioned above, FormProcessor also provides methods for storing error messages:

* addError($name, $message): Sets a new error message with the given name. If the error
message already exists, that error name is assigned an array with multiple messages.

* hasError($name): Checks whether an error message with the specified name has been
set. By omitting the $name parameter, this method can also be used to check whether
any errors have been set at all.

e getError($name): Retrieves the error message for the given name. If no corresponding
error message has been set, null is returned.

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

Additionally, there is a function called sanitize() that is used to strip HTML tags from
the string and trim whitespace from the start and end of the string. This is achieved primarily
using Zend_Filter, a Zend Framework component that can manipulate strings with filters (we
will look briefly at Zend_Filter in Chapter 7).

Note The FormProcessor.php file is available from the downloadable source code for this book. It
belongs in the . /include directory so it can be automatically loaded as required.

Let’s now take a look at the FormProcessor_UserRegistration class. Listing 4-1 shows
the beginnings of this class—we will add to it throughout this section. This file is located in
./include/FormProcessor/UserRegistration.php.

Listing 4-1. The Beginnings of the User Registration Form Processor (UserRegistration.php)

<?php
class FormProcessor UserRegistration extends FormProcessor
{
protected $db = null;
public $user = null;
public function _ construct($db)
{
parent:: construct();
$this->db = $db;
$this->user = new DatabaseObject User($db);
$this->user->type = "member’;
}
public function process(Zend Controller Request Abstract $request)
{
// validate the username
// validate first and last name
// validate the e-mail address
// validate CAPTCHA phrase
// save database record if no errors
// return true if no errors have occurred
return !$this->hasError();
}
}

>

75

76

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

The first thing this code does is define the constructor, in which the database connection
is accepted and an instance of DatabaseObject User is created. This object will remain
unsaved until the form is successfully processed and $this->user->save() is called.

Next the abstract method process() is implemented. This method returns true if the form
was processed correctly and false if an error occurred. As such, we can use the hastError()
method to determine the return value.

To implement the process() method, we must fetch the submitted values from the
$request object and process them accordingly. First, we must check the username by doing
the following:

1. Check that a username was entered. If one wasn’t, we need to notify the user that the
username is a required field.

2. If ausername was entered, check that it is in a valid format. Our usernames will consist
of only alphanumeric characters (that is, only letters and numbers). If an invalid user-
name was entered, we should create an appropriate error message.

3. If the username is valid, check whether or not somebody else has already registered
with this username.

In order to check these conditions, we will implement two new functions in DatabaseObject
User: usernameExists() and IsValidUsername(), as shown in Listing 4-2.

Listing 4-2. New Functions Added to DatabaseObject_User (User.php)

<?php
class DatabaseObject User extends DatabaseObject
{
// ... other code
public function usernameExists($username)
{
$query = sprintf('select count(*) as num from %s where username = ?',
$this->_table);
$result = $this->_db->fetchOne($query, $username);
return $result['num'] > 0;
}
static public function IsValidUsername($username)
{
$validator = new Zend_Validate_Alnum();
return $validator->isValid($username);
}
}
?>

Let’s take a look at each of these changes before returning to the FormProcessor UserReg-
istration class.

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

The usernameExists() Method

We call this method to determine whether or not the passed-in username already exists. If the
username is in use, then true is returned; otherwise false is returned.

The IsValidUsername() Method

This method simply checks whether or not a username is valid, returning true if it is and
false if not. To check the validity of the username, we use the Zend Validate component of
the Zend Framework. We are only checking for alphanumeric characters, so we can use the
Zend_Validate Alnum class.

Obviously, we could write a simple regular expression (such as /*[a-z0-9]+$/1) to check
this, but Zend Validate allows us to easily chain different validators together, meaning that in
the future you could easily change the method for validating a username. Additionally, using
Zend_Validate is a good practice to get into, as we will be using it throughout this book when
validating form data (we will see it again shortly when we check users’ e-mail addresses).

This method is static, as it does not rely on an instance of DatabaseObject User.

Adding Username Validation to FormProcessor_UserRegistration

Since we have the new username-related methods available in DatabaseObject User, we can now
proceed to validate and set a username according to the rules outlined previously. Listing 4-3
shows the new version of process(), which now takes the submitted username from the request
post data (using the getPost () method on $request) and validates it.

Listing 4-3. Validating the Submitted Username (UserRegistration.php)

<?php
class FormProcessor UserRegistration extends FormProcessor

{
// ... other code

public function process(Zend Controller Request Abstract $request)
{

// validate the username

$this->username = trim($request->getPost('username’));

if (strlen($this->username) == 0)
$this->addError('username', 'Please enter a username');
else if (!DatabaseObject User::IsValidUsername($this->username))
$this->addErroxr('username’, 'Please enter a valid username');
else if ($this-suser->usernameExists($this-susername))
$this->addErroxr('username’, 'The selected username already exists');
else
$this->user-s>username = $this->username;

// return true if no errors have occurred
return !$this->hasError();

>

77

78

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

As you can see in this code, we first check that the username isn't an empty string, then we
check that it’s a valid username, and then we make sure that it doesn’t already exist. If we deter-
mine the username is valid, we accept the value and update the DatabaseObject User instance.

Note The IsvalidUsername() method will return false if the string is empty, thereby making the first
check somewhat redundant. However, checking for an empty string separately allows us to generate a dif-
ferent error message.

Validating the User’s Name

As mentioned earlier, we will require users to enter both a first name and last name (in sepa-
rate fields) when registering. To keep things simple, we won't do any validation on this data
other than making sure theyre not empty strings. You may want to add further validation to
this data yourself. We will also call the sanitize() method to ensure any HTML tags are
stripped out.

Listing 4-4 shows a stripped-down version of FormProcessor_UserRegistration, which
retrieves, validates, and sets the first and last name of the user.

Listing 4-4. Validating the User’s First and Last Name (UserRegistration.php)

<?php
class FormProcessor UserRegistration extends FormProcessor

{
// ... other code

public function process(Zend Controller Request Abstract $request)

{

// validate first and last name

$this->first_name = $this->sanitize($request->getPost('first_name'));
if (strlen($this->first_name) == 0)

$this->addErrox('first_name', 'Please enter your first name');
else

$this->user-s>profile->first_name = $this->first_name;

$this->last_name = $this->sanitize($request->getPost('last_name'));
if (strlen($this->last_name) == 0)

$this->addError('last_name', 'Please enter your last name');
else

$this->user->profile->last_name = $this->last_name;

// return true if no errors have occurred
return !$this->hasError();

>

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

Validating the User’s E-mail Address

The final submitted item we must validate is the user’s e-mail address. We do this by first
checking that an e-mail address was submitted, and then by checking that it is in the correct
format for an e-mail address.

To check this second condition, we will use the Zend_Validate EmailAddress class. This
class is a part of the Zend_Validate component and will tell us whether or not an e-mail
address is valid.

Note zend validate EmailAddress can even go one step further than checking for a valid e-mail
format: it can also check that the given hostname in the e-mail address has valid DNS MX records. We won’t
be using this feature, though, as it’s the user’s problem if they want to fool the system—they simply won’t
receive their password if they enter a false address.

Listing 4-5 shows the code for FormProcessor_UserRegistration, which validates the
e-mail address using Zend Validate EmailAddress. Note once again that we first check for
an empty string so we can generate a different error message.

Listing 4-5. Using Zend_Validate_EmailAddress to Check the Validity of a Submitted E-mail
Address (UserRegistration.php)

<?php
class FormProcessor UserRegistration extends FormProcessor

{
// ... other code

public function process(Zend Controller Request Abstract $request)

{

// validate the e-mail address

$this->email = $this->sanitize($request->getPost('email’));
$validator = new Zend Validate_EmailAddress();

if (strlen($this->email) == 0)

$this->addError('email’', 'Please enter your e-mail address');
else if (!$validator-»>isValid($this->email))

$this->addError('email’, 'Please enter a valid e-mail address');
else

$this->user->profile->email = $this->email;

// return true if no errors have occurred
return !$this->hasError();

>

79

80

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

The Complete FormProcessor_UserRegistration Class

We have now covered all of the validation tasks required for our FormProcessor UserRegistration
class. The final section of code we must insert is a call to $this->user->save() to save the record
into the users table. We will first check whether or not an error has occurred before saving the
record. If there is an error, no record will be saved and the user will be shown the error messages
(that is, once we have created the registration form template).

Listing 4-6 shows the entire FormProcessor UserRegistration class. In the next section we
will write the code responsible for using this class.

Listing 4-6. The Complete FormProcessor_UserRegistration Class (UserRegistration.php)

<?php
class FormProcessor UserRegistration extends FormProcessor

{
protected $db = null;

public $user = null;

public function _ construct($db)

{
parent:: construct();
$this->db = $db;
$this->user = new DatabaseObject User($db);
$this->user->type = 'member’;
}

public function process(Zend Controller Request Abstract $request)
{

// validate the username

$this->username = trim($request->getPost('username'));

if (strlen($this->username) == 0)
$this->addError('username', 'Please enter a username');
else if (!DatabaseObject User::IsValidUsername($this->username))
$this->addError('username', 'Please enter a valid username');
else if ($this->user->usernameExists($this->username))
$this->addError('username’, 'The selected username already exists');
else
$this->user->username = $this->username;

// validate the user's name

$this->first name = $this->sanitize($request->getPost('first name'));
if (strlen($this->first name) == 0)

$this->addError('first name', 'Please enter your first name');
else

$this->user->profile->first name = $this->first name;

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

$this->last name = $this->sanitize($request->getPost('last name'));
if (strlen($this->last name) == 0)

$this->addError('last name', 'Please enter your last name');
else

$this->user->profile->last name = $this->last name;

// validate the e-mail address
$this->email = $this->sanitize($request->getPost('email'));
$validator = new Zend Validate EmailAddress();

if (strlen($this->email) == 0)

$this->addError('email', 'Please enter your e-mail address');
else if (!$validator->isvalid($this->email))

$this->addError('email', 'Please enter a valid e-mail address');
else

$this->user->profile->email = $this->email;

// if no errors have occurred, save the user
if (!$this->hasError()) {
$this->user->save();

}

// return true if no errors have occurred
return !$this->hasError();

>

Displaying the Registration Form and Processing Registrations

The next step in creating the registration form is to create the account controller as well as the
register action inside of it. In Chapter 3 we set up the access control lists so that only regis-
tered members could access the account section. That permission refers specifically to this
controller (in other words, if a user tries to access http://phpweb20/account, they can only
access the actions in the specified controller if they have the necessary permissions).

The other permissions we defined were exemptions so that unregistered users (guests)
would be able to access the register, registercomplete, login, and fetchpassword actions.
There’s nothing special we need to put in the controller to deal with these permissions—it has
already been done in the CustomControllerAclManager class.

The Initial AccountController Class

Listing 4-7 shows the beginnings of the AccountController class, which extends
CustomControllerAction. At this stage we will only define the registerAction() method—as
we continue with development, we will add more actions to this controller (such as the index
action, which will be executed when users successfully authenticate). The AccountController
class is stored in the AccountController.php file, which belongs in the ./include/Controllers
directory.

81

82

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

Listing 4-7. Creating the Account Controller and Defining the Register Action
(AccountController.php)

<?php
class AccountController extends CustomControllerAction
{
public function registerAction()
{
$fp = new FormProcessor UserRegistration($this->db);
$this->view->fp = $fp;
}
}
7>

Note Since we haven't yet created the register.tpl template, loading http: //phpweb20/account/
register in your browser will result in a Smarty error.

In the registerAction() method, we first instantiate the FormProcessor_UserRegistration
class. We then assign it to the displayed template. This template (register.tpl) will show the
HTML form to the user trying to register.

The reason we assign the form processor to this template is so that any errors can be
displayed to the user. The template can then read the errors in the form processor using the
hasError() and getError() methods.

Additionally, when displaying errors in a form, you should prepopulate the fields the user
has already entered. The form processor provides access to these values easily via the magic
__get() method. For instance, to retrieve the username value, you would use $fp->username in
the template.

Developing the Templates

Before we go any further, let’s quickly add some navigation to the header.tpl template we cre-
ated in Chapter 2, so we can navigate to the registration page. Listing 4-8 shows the contents
of ./templates/header.tpl with some basic navigation. We will improve on this later in the
book, but for now this will suffice.

Listing 4-8. Including Basic Navigation on the Header Template (header.tpl)

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Title</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<body>
<div>

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

Home
| Register

<hr />

We can now start building the register.tpl template. There are some fundamental things
we need to include in a form template:

A clearly labeled form so the user knows what the form is for.
Alabel for each field in the form.

The HTML form element with any submitted values prepopulating the field. Addition-
ally, since this contains user-submitted data, we must escape the HTML entities
accordingly (as we saw in Chapter 2).

Any errors that have occurred.

A clearly labeled submit button.

The easiest way to lay out a form is to use HTML tables; however, these are not necessarily
the best thing to use for accessibility and for good CSS practice. Instead, we are going to use
the fieldset, legend, and label HTML tags to aid with layout. Additionally, each form element
is wrapped in a div so it can be positioned properly.

Figure 4-1 shows what this form looks like after the user has submitted it yet omitted
some fields. At this stage, the page looks somewhat bland, but we will not concern ourselves
with the CSS until Chapter 6 (eventually, errors will be highlighted and the form fields will be
spaced so they can be more easily understood).

| Titse

Usernmmne:

Last Name:

Hogtor

==

Hiome | Register

Create an Accou
An ervor has eccurred in the form below. Please check the baghbshted felds and re-submni b form

Please emer a usermname

Emal Address:

Planse snter your emad address
Farst Name:

Please citer yous st name

Phease exter your last name

Al

- & T | gt pbpweh20accountivegister e

a

[X-]

Figure 4-1. The registration form displaying some data-entry errors

83

84

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

Listing 4-9 shows the contents of register.tpl, which is stored in the . /templates/account
directory (you will need to create this directory if you have not already done so).

Listing 4-9. The HTML Template for User Registration (register.tpl)
{include file='header.tpl'}

<form method="post" action="/account/register">

<fieldset>
<legend>Create an Account</legend>

<div class="error"{if !$fp->hasError()} style="display: none"{/if}>
An error has occurred in the form below. Please check
the highlighted fields and resubmit the form.

</div>

<div class="row" id="form_username_container">
<label for="form username">Username:</label>
<input type="text" id="form username"
name="username" value="{$fp->username|escape}" />
{include file='lib/error.tpl' error=$fp->getError('username')}
</div>

<div class="row" id="form email container">
<label for="form email">E-mail Address:</label>
<input type="text" id="form email"
name="email" value="{$fp->email |escape}" />
{include file='lib/error.tpl' error=$fp->getError('email')}
</div>

<div class="row" id="form first name container">
<label for="form first name">First Name:</label>
<input type="text" id="form first name"
name="first name" value="{$fp->first name|escape}" />
{include file='lib/error.tpl' error=$fp->getError('first name')}
</div>

<div class="row" id="form last name container">
<label for="form last name">Last Name:</label>
<input type="text" id="form last name"
name="last name" value="{$fp->last name|escape}" />
{include file='lib/error.tpl' error=$fp->getError('last name')}
</div>

<div class="submit">
<input type="submit" value="Register" />
</div>

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

</fieldset>
</form>

{include file='footer.tpl'}

Note You will still need to create the error.tpl template in Listing 4-10 before register.tpl can be
viewed without any PHP or Smarty errors.

In Listing 4-9, the entire form is wrapped in a <fieldset> tag, which is useful for splitting
a form into separate parts. This form only contains a small number of fields though, so it only
uses one part.

For each element in the form, we essentially use the same markup: a named <div> con-
taining a label for the element, as well as the form element. Finally the error.tpl template is
included, which we use to output any errors for the respective element. We also include a
global form error message at the top of the form. This is especially useful for long forms, where
an individual error may go unnoticed.

Listing 4-10 shows the contents of error.tpl, which we will store in . /templates/1ib.
There is no great significance to the name of this directory (1ib), but as a general habit I like to
store reusable templates that don't directly correspond to a specific controller action inside a
separate directory.

Note If you were to create a controller called 1ib, you would need to use a different directory for these
helper templates.

Listing 4-10. A Basic Template Used to Display Form Errors (error.tpl)

{if $error|@is array || $error|strlen > 0}
{assign var=hasError value=true}
{else}
{assign var=hasError value=false}
{/if}
<div class="error"{if !$hasError} style="display:none"{/if}>
{if $error|@is _array}

{foreach from=$error item=str}
{$str|escape}</1i>
{/foreach}

{else}
{$error|escape}
{/if}
</div>

85

86

CHAPTER 4 © USER REGISTRATION, LOGIN, AND LOGOUT

The way we determine whether an error has occurred is to check the $error variable
passed to this template (when called in register.tpl). If it is an empty string, there are no
errors. Otherwise FormProcessor: :getError() will return a single error as a nonempty string,
and multiple error messages with the same name will be returned as an array.

The other significant thing to notice in this template is that we still generate the HTML
div even if there is no error. We do this to create a placeholder for error messages we might
generate on the client side using JavaScript. Later in this book we will add some client-side
validation to this form (such as checking the availability of a username in real time), so we
will write error messages to this error container.

Handling the Form Submission

At this stage in the development of the registration form, if you were to click the submit button,
nothing would happen other than the empty form being redisplayed. When the page reloads,
the register action handler should process the request by either using the FormProcessor
UserRegistration class to check the form and save the user data, or to simply display the form.

Note If an error occurs while processing the form (such as the user entering a username already in use),
the code is designed to fall through to displaying the form again. On this subsequent rendering of the form,
the submitted values will be available to redisplay in the template, along with any generated error messages.

We'll accomplish this by first checking for a post request (using $request->isPost()),
and then calling process () accordingly. Once the form has been successfully processed, the
browser is redirected to the registercomplete action. This redirection to a new action prevents
the user from refreshing the page (and therefore resubmitting their registration data, which
would fail at this point since the username now exists).

In order to show the user a custom thank-you message (that is, one that includes some
part of their registration details), we need to first write the ID (this is the user _id column of
the users table, which has a data type of serial) of the new user to the session before redirect-
ing them to registercompleteAction(). Inside the registercomplete action, we look for a
stored user ID, and if one exists we display a message. If a valid user ID is not found in the
session, we simply forward their request back to the register page.

Listing 4-11 shows the account controller with the call to process(), as well as the redirec-
tion to the registercomplete action once a valid registration occurs. We use the redirect()
method provided by Zend _Controller Front, as this performs an HTTP redirect (as opposed to
_forward(), which forwards the request internally). The lines you need to add to your existing
version of registerAction() are displayed in bold.

Listing 4-11. Completing the Processing of a User’s Registration (AccountController.php)

<?php
class AccountController extends CustomControllerAction

{

public function registerAction()

{

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

$request = $this->getRequest();
$fp = new FormProcessor UserRegistration($this->db);

if ($request-»>isPost()) {
if ($fp->process($request)) {
$session = new Zend_Session_Namespace('registration');
$session->user_id = $fp->user->getId();
$this->_redirect('/account/registercomplete’);

}

$this->view->fp = $fp;
}

public function registercompleteAction()

{

// retrieve the same session namespace used in register
$session = new Zend_Session_Namespace('registration');

// load the user record based on the stored user ID
$user = new DatabaseObject_User($this->db);
if (!$user->load($session->user_id)) {
$this->_forward('register');
return;

}

$this->view->user = $user;

>

In the registerAction() method, we call $this->getRequest() to retrieve the request
object from Zend Controller Front, which contains all the data related to the user’s request,
such as get and post data. This is the object we pass to FormProcessor UserRegistration when
calling process().

Note that since process() will return false if an error occurs, the code will simply fall
right through to displaying the register.tpl template again, which means the errors that
occurred will be displayed. On the other hand, if the call to process() returns true, we can
assume a new user was created in the database. As such, we can write the user’s ID to the
session and redirect the browser to /account/registercomplete.

Note We could write directly to the $_SESSTON superglobal; however, Zend_Session provides a better
way of managing session data. It allows fairly straightforward management of session namespaces, mean-
ing the session is organized in a way that won’t cause data conflicts. Additionally, we are already using
Zend_Session to store user authentication data (that is, their identity).

87

88

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

In the registercompleteAction() method, we check for a stored user ID and then try to
load a new DatabaseObject User object accordingly. If the record isn’t found, we forward the
request back to the registerAction(). This would happen if a user requested the /account/
registercomplete URL directly without completing the registration.

Note After calling the forward() method in this case, we return from the registercompleteAction()
method. If we didn’t, the remainder of registercompleteAction() would be executed, since the new action
would only be dispatched after the current one was complete. The first argument to _forward() is the action,
and the second is the controller. If the second argument is omitted (as in this case), the current controller
is used.

Finally, we must create the registercomplete.tpl template (which also belongs in the
./templates/account directory). We will use this template to show a basic “thank you for regis-
tering” message. Listing 4-12 shows this template, which makes mention of a password being
sent to the user. We will add this e-mail functionality in the “Adding E-mail Functionality”
section of this chapter.

Listing 4-12. The Message Displayed to Users Upon Successful Registration (registercomplete.tpl)
{include file="header.tpl'}

<p>
Thank you {$user->profile->first name|escape},
your registration is now complete.

</p>

<p>

Your password has been e-mailed to you at {$user->profile->email|escape}.
</p>

{include file='footer.tpl'}

Adding CAPTCHA to the User Registration Form

Now that we have the core functionality of the user registration system working, we can
improve it slightly by adding a simple yet effective security measure to ensure that registra-
tions come only from real people and not computer programs. This security measure is called
CAPTCHA, which stands for Completely Automated Public Turing test to tell Computers and
Humans Apart. There are many different types of CAPTCHA tests available, but we will be
using what is probably the most common one. This is where a series of characters are shown
as an image, and the user is required to identify these characters by typing them in as part of
the form they are submitting.

We will be using the Text CAPTCHA component from PEAR (the PHP Extension and Appli-
cation Repository) to generate our CAPTCHA images. Note that we will be using a CAPTCHA
test for several forms in our web application, not just the registration form.

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT 89

An example of a CAPTCHA image that Text CAPTCHA generates is shown in Figure 4-2. The
random lines and shapes help to fool optical character recognition (OCR) software that may
try to automatically decipher the CAPTCHA.

File Edit View History Bookmarks Tools Help

& ' < i Bl http://phpweb20/ utility/ captcha

Bl captcha (PNG Image, 120x60 pix... [

Figure 4-2. A sample CAPTCHA image generated by PEAR’s Text_CAPTCHA

Circumventing CAPTCHA

Although the point of the CAPTCHA test is to tell computers and humans apart, it is techni-
cally possible to write a program that can solve a CAPTCHA automatically. In the case of the
text CAPTCHA we will be using, OCR software could be used to determine the characters in
the image.

Because of this, we try to distort the images to a point where using OCR software is not
possible, but not too far so that humans cannot determine which characters are being dis-
played. This means avoiding characters such as zero and the letter O completely, which can
easily be confused.

CAPTCHA and Accessibility

Another important consideration when implementing a CAPTCHA test in your web applications
is accessibility. If somebody is unable to pass the test, they will be unable to complete the form
protected by the CAPTCHA test. As such, it is important to have alternative methods available.

One possible solution is to implement an audio CAPTCHA in addition to the text CAPTCHA.
This would involve generating an audio file that reads back letters, numbers, or words, which the
user must then type in.

90

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

Another alternative is to have a manual registration system, where the user can e-mail
their details to the site administrator who can then save their details on their behalf. In Chap-
ter 14 we will discuss the implementation of an administration area in our web application.
Part of this administration area will be a user management section where an administrator
could manually create new users.

PEAR’s Text_CAPTCHA

To generate CAPTCHA images, we will be using the Text CAPTCHA component from PEAR.
Text CAPTCHA will generate the series of characters to appear in the image and then create an
image with those characters appearing at a random angles in random locations. It will also
add some random noise to prevent OCR software from reading the letters. This noise is a
series of lines and shapes that will be placed randomly on the image.

Before you can use Text_CAPTCHA, you must install it. It is available for download from
http://pear.php.net/package/Text CAPTCHA, or you can use the PEAR installer to simplify
installation.

Text CAPTCHA also relies on the Text Password and Image Text components, so you must
also install them. To install these packages using the PEAR installer, use the following com-
mands:

pear install -f Text CAPTCHA
pear install -f Image Text

Because neither of these packages have a stable release at time of writing, I used the -
argument, which forces installation of a non-stable version. The first command should auto-
matically install Text Password, but if it doesn’t, use the following command:

pear install Text Password

Text_CAPTCHA also needs a TrueType font available in order to write letters to the
CAPTCHA image. Any font will do for this, as long as its characters are easy to read. The font
file I use in this book is the bold version of Vera (VeraBD.ttf), available from the Gnome web
site (http://www.gnome.org/fonts/). I chose this font because its license terms allow it to be
freely distributed. The font should be stored in the application data directory (/var/www/
phpweb20/data/VeraBD.ttf).

Generating a CAPTCHA Image

In order to add CAPTCHA capabilities to our application, we need to create a new controller
action that will be responsible for outputting the image. The CAPTCHA is not specific to user
registration, so we will call this controller utility, as there may be other utility actions we
want to add later.

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

Listing 4-13 shows the contents of UtilityController.php, which we will store in
./include/Controllers. Presently there is just one action, which is responsible for generating
and outputting the image.

Listing 4-13. Generating a CAPTCHA Image Using Text_CAPTCHA (UtilityController.php)

<?php
class UtilityController extends CustomControllerAction

{
public function captchaAction()

{
$captcha = Text CAPTCHA::factory('Image');
$opts = array('font size' => 20,
"font_path' => Zend Registry::get('config')->paths->data,
"font_file' => 'VeraBd.ttf');
$captcha->init(120, 60, null, $opts);

// disable auto-rendering since we're outputting an image
$this-> helper->viewRenderer->setNoRender();

header('Content-type: image/png');
echo $captcha->getCAPTCHAASPNg();

>

Important In Listing 4-13, we must disable the autorendering of templates that Zend_Controller
Front will do. If we don’t include the call to setNoRender (), captchaAction() will try to render a tem-
plate belonging in . /templates/utility/captcha.tpl. Since the captchaAction() method outputs the
generated CAPTCHA image, there is no such template.

In order to use Text CAPTCHA, we first call the factory() method to use the Image driver.
We then create an array of options to specify properties of the font that will be used. As men-
tioned previously, the TrueType font is stored in the application data directory, so we use the
application config to tell Text CAPTCHA about this directory.

Next we call the init() method, which specifies the height, width, and CAPTCHA phrase,
as well as the font options. In this code we pass null as the third parameter, which means the
phrase will be randomly generated by Text_Password.

91

92

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

Tip You may prefer to store some of the “magic values” in Listing 4-13 (such as font name and size) in
the application settings (. /settings.ini).

Finally, we send the image to the browser using the getCAPTCHAAsPng () method. We must
also send the correct Content-type header to the browser, so it knows to interpret the data as
an image.

As it stands, we cannot yet use this code in our registration form because
FormProcessor_UserRegistration needs to know the CAPTCHA phrase in order to determine
whether or not the user entered it correctly. We must modify captchaAction() so that it gener-
ates a new phrase and writes it to the session. On subsequent requests to captchaAction(), we
then check for the existence of the phrase in the session. If the value exists, we use that for the
image rather than generating a new one.

Note The way we are implementing CAPTCHA images is so that if a user enters the phrase incorrectly,
they are shown the same CAPTCHA image again. An alternative is to generate a new phrase every time they
get it wrong. The important thing to remember in this implementation is to clear the phrase once it has been
successfully entered. We will cover this shortly.

Listing 4-14 shows a modified version of captchaAction(), which now checks for an exist-
ing phrase, and then writes the phrase that was used in the image back to the session.

Listing 4-14. Storing CAPTCHA Phrases in the Session for Reuse (UtilityController.php)

<?php
class UtilityController extends CustomControllerAction

{
public function captchaAction()

{

$session = new Zend_Session_Namespace('captcha');

// check for existing phrase in session

$phrase = null;

if (isset($session->phrase) && strlen($session->phrase) > 0)
$phrase = $session->phrase;

// generate CAPTCHA
$captcha = Text CAPTCHA::factory('Image');

$opts = array('font size' => 20,
"font_path' => Zend Registry::get('config')->paths->data,
"font_file' => 'VeraBd.ttf');

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

$captcha->init(120, 60, $phrase, $opts);

// write the phrase to session
$session->phrase = $captcha->getPhrase();

// disable auto-rendering since we're outputting an image
$this-> helper->viewRenderer->setNoRender();

header('Content-type: image/png');
echo $captcha->getCAPTCHAASPng();

>

You can now view the generated CAPTCHA image directly in your browser by visiting
http://phpweb20/utility/captcha. (This is how I generated Figure 4-2.) Unlike all of the previ-
ous controller actions we have implemented so far, which returned HTML code, this action
returns image data (along with the corresponding headers so browsers knows how to display
the data).

Adding the CAPTCHA Image to the Registration Form

The next step in integrating the CAPTCHA test is to display the image on the registration form.
To do this, we simply use an HTML tag to show the image, and we add a text input so the
user can enter the phrase.

Listing 4-15 shows the relevant HTML code we need to add to the register.tpl form cre-
ated earlier in this chapter (located in . /templates/account). The convention with CAPTCHA
images is to add them at the end of the form, above the submit button.

Listing 4-15. Displaying the CAPTCHA Image on the Registration Form (register.tpl)
{include file="header.tpl'}

<form method="post" action="/account/register">

<fieldset>
<legend>Create an Account</legend>

<!--
// other form fields
-->

<div class="captcha">

</div>

<div class="row" id="form_captcha_container">
<label for="form_captcha">Enter Above Phrase:</label>

93

94

CHAPTER 4 © USER REGISTRATION, LOGIN, AND LOGOUT

<input type="text" id="form_captcha"
name="captcha" value="{$fp->captcha|escape}" />
{include file='lib/error.tpl' error=$fp->getError('captcha’)}

</div>

<div class="submit">
<input type="submit" value="Register" />
</div>
</fieldset>

</form>

{include file='footer.tpl'}

One thing to notice in this code is that we still prepopulate the captcha field in this form.
This is so the user only has to enter it successfully once. For example, if they enter an invalid
e-mail address but a valid CAPTCHA phrase, they shouldn't have to enter the CAPTCHA
phrase again after fixing their e-mail address. Figure 4-3 shows the registration form with the
CAPTCHA image and the corresponding text input field.

L Tithe [*]

Home | Regrater
Create an Acconnt
Usermname:

Emai Address:
Fast Name:
Last Name:

Weay /

Enter Above Phrase:
Regisier

Lﬁ Dene o

Figure 4-3. The registration form with a CAPTCHA image and text input field to receive the
phrase from the user

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

Validating the CAPTCHA Phrase

Finally, we must check that the submitted CAPTCHA phrase matches the one stored in the ses-
sion data. To do this, we need to add a new check to the process() method in FormProcessor
UserRegistration. We also need to clear the saved phrase once the form is completed. This is so
anew phrase is generated the next time the user tries to do anything that requires CAPTCHA
authentication.

Listing 4-16 shows the additions to FormProcessor UserRegistration that check for a valid
phrase and clear out the phrase upon completion.

Listing 4-16. Validating the Submitted CAPTCHA Phrase (UserRegistration.php)

<?php
class FormProcessor UserRegistration extends FormProcessor
{
// ... other code
public function process(Zend Controller Request Abstract $request)
{
// validate CAPTCHA phrase
$session = new Zend_Session_Namespace('captcha');
$this->captcha = $this->sanitize($request->getPost('captcha'));
if ($this->captcha != $session->phrase)
$this->addError('captcha’, 'Please enter the correct phrase');
// if no errors have occurred, save the user
if (!$this->hasError()) {
$this->user->save();
unset($session->phrase);
}
// return true if no errors have occurred
return !$this->hasError();
}
}
>

Adding E-mail Functionality

The final function we must add to the user registration system is one that sends the newly reg-
istered user a confirmation of their account, as well as their randomly generated password so
they can log in. Sending them their password by e-mail is an easy way to validate their e-mail
address.

95

96

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

To send e-mail from our application, we will use the Zend Mail component of the Zend
Framework. We could instead use the PHP mail() function, but by using a class such as this
(or even PEAR’s Mail Mime), we can do a whole lot more, such as attaching files (including
images) and sending HTML e-mail. We won'’t be doing either in this book, but if you ever
wanted to add such functionality, the key code would already be in place.

Listing 4-17 shows a basic example of using Zend_Mail. This script sends a single e-mail to
the address specified with the call to addTo(). You can use this script to ensure that your e-mail
server is correctly sending e-mail (remember to update the recipient address to your own).

Listing 4-17. Example Usage of Zend_Mail to Send an E-mail (listing-4-17.php)

<?php
require once('Zend/Loader.php');
Zend Loader::registerAutoload();

$mail = new Zend Mail();
$mail->setBodyText('E-mail body');
$mail->setFrom(' from@example.com');
$mail->addTo('to@example.com');
$mail->setSubject('E-mail Subject');
$mail->send();

>

Before we can make our user registration system send out an e-mail, we must first add
functionality to DatabaseObject User for sending e-mail to users—this will allow us to easily
send other e-mail messages to users as well (such as instructions for resetting a forgotten
password).

We will use Smarty for e-mail templates, just as we do for outputting the web site HTML.
Our e-mail templates will be structured so the first line of the template is the e-mail subject,
while the rest of the file constitutes the e-mail body.

Listing 4-18 shows the sendEmail() function, which we will add to the DatabaseObject
User class. It takes the filename of a template as the argument, and feeds it through Smarty
before using Zend Mail to send the resulting e-mail body to the user.

Listing 4-18. A Helper Function Used to Send E-mail to Users (User.php)

<?php
class DatabaseObject User extends DatabaseObject

{
// ... other code

public function sendEmail($tpl)

{
$templater = new Templater();
$templater-suser = $this;

// fetch the e-mail body
$body = $templater->render('email/' . $tpl);

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

// extract the subject from the first line
list($subject, $body) = preg_split('/\r|\n/', $body, 2);

// now set up and send the e-mail
$mail = new Zend_Mail();

// set the to address and the user's full name in the 'to' line
$mail->addTo($this->profile->email,
trim($this->profile->first_name . " ' .
$this->profile->last_name));

// get the admin 'from' details from the config
$mail->setFrom(Zend_Registry::get('config')->email->from->email,
Zend_Registry::get('config')->email->from->name);

// set the subject and body and send the mail
$mail->setSubject(trim($subject));
$mail->setBodyText(trim($body));
$mail->send();

}

// ... other code

>

In this code, we first instantiate the Templater class and assign to it $this, so we can
access all user details (including the profile) from within the e-mail template passed in via the
$tpl argument.

Next, we use the render () method to retrieve the template output. In this function, we
want the string returned, so we can extract the subject and then send it via e-mail. Addition-
ally, this code forces all e-mail templates to be within the e-mail directory inside the template
directory (./templates/email).

The call to preg_split() is what we use to extract the subject. The regular expression used
simply finds a newline (\n) or a carriage return (\r) to split on. The third argument (the num-
ber 2) splits the string into a maximum of two items.

The other important thing to notice in this code is how we set the from e-mail address
and name: we add two new values in the application settings file (settings.ini). Listing 4-19
shows the updated version of settings.ini. The values here are somewhat generic; you can
set them to reflect your own needs.

Listing 4-19. The Updated Application Settings with System Administrator Contact Details
(settings.ini)

[development]

database.type pdo_mysql
database.hostname = localhost

97

98

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

database.username phpweb20
database.password myPassword
database.database = phpweb20

paths.base /var/www/phpweb20
paths.data = /var/www/phpweb20/data
paths.templates = /var/www/phpweb20/templates

logging.file = /var/www/phpweb20/data/logs/debug.log

email.from.name = "System Administrator"
email.from.email = "noreply@localhost"

Now we can update the postInsert() method in DatabaseObject User to send the user a
welcome e-mail. As you may recall from Chapter 3, this callback method is executed after a new
record has successfully been inserted into the database using DatabaseObject’s save() method.
Listing 4-20 shows the updated version of postInsert (), which will send an e-mail using
user-register.tpl once the user’s profile has been saved.

Listing 4-20. Adding an Automated Call to sendEmail() when a New User is Added (User.php)

<?php
class DatabaseObject User extends DatabaseObject
{
// ... other code
protected function postInsert()
{
$this->profile->setUserId($this->getId());
$this->profile->save(false);
$this->sendEmail('user-register.tpl');
return true;
}
// ... other code
}
?>

All that remains now is to create the e-mail template and make the new password avail-
able from within that template. When we initially created DatabaseObject User, we used the
unigid() function generate a random password. We will now update this to use the PEAR
Text_Password class we installed for our CAPTCHA implementation to generate a better pass-
word. Additionally, since passwords are stored in the database using MD5, we must record the
password before it is encrypted so we can include it in the e-mail template.

We will do this by storing the generated password as a property in the current
DatabaseObject User object so it is available from the template. We will also need to initialize
this property at the top of the class. Listing 4-21 shows the changes to the preInsert() callback

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

of DatabaseObject User, and the new initialization of the $_newPassword property. This property
must be public so the template can access its value.

Listing 4-21. Creating a Pronounceable Password with Text_Password (User.php)

<?php
class DatabaseObject User extends DatabaseObject
{
// ... other code
public $ newPassword = null;
// ... other code
protected function prelnsert()
{
$this->_newPassword = Text_Password::create(8);
$this->password = $this->_newPassword;
return true;
}
// ... other code
}
>

Finally, we can create the user-register.tpl template. As mentioned previously, the first
line of this file will be used as the e-mail subject. This is useful, as it allows us to include tem-
plate logic in the e-mail subject as well as in the body. We will include the user’s first name in
the e-mail subject.

Listing 4-22 shows the contents of user-register.tpl, which is stored in . /templates/
email. You may want to customize this template to suit your own requirements.

Listing 4-22. The E-mail Template Used when New Users Register (user-register.tpl)

{$user->profile->first name}, Thank You For Your Registration
Dear {$user->profile->first name},

Thank you for your registration. Your login details are as follows:
Login URL: http://phpweb20/account/login
Username: {$user->username}
Password: {$user-> newPassword}

Sincerely,

Web Site Administrator

99

100 CHAPTER 4 © USER REGISTRATION, LOGIN, AND LOGOUT

Figure 4-4 shows how the e-mail will look when received by the user. Hopefully the user’s
e-mail client will make the login URL clickable. You could choose to use an HTML e-mail
instead, but if the e-mail client can’t automatically highlight links in a text e-mail, it probably
can’t render HTML e-mails either.

| Quentin, Thank You For Your Registration C=aras -

File Edit View Tools Message Help

From: System Administrator

Date: Thursday, 14 June 2007 9:34 PM

To: Quentin Lervaas

Subject: Quentin, Thank You For Your Registration

Dear Quentin,
Thank you for your registration. Your login details are as follows:
Login URL: http://phpweb28/account/login

Username: gquentin
Password: friawrae

Sincerely,

Web Site Administrator

Figure 4-4. An example of the e-mail sent to a user when they register

Implementing Account Login and Logout

Now that users have a way of registering on the system, we must allow them to log in to their
account. We do that by adding a new action to the account controller, which we will call login.
In Chapter 3 we looked at how to authenticate using Zend Auth (see Listing 3-5). We will now
implement this functionality.

The basic algorithm for the login action is as follows:

1. Display the login form.
2. If the user submits the form, try to authenticate them with Zend Auth.

3. If they successfully authenticate, write their identity to the session and redirect them
to their account home page (or to the protected page they originally requested).

4. 1If their authentication attempt was unsuccessful, display the login form again, indicat-
ing that an error occurred.

In addition to this, we also want to make use of our logging capabilities. We will make a
log entry for both successful and unsuccessful login attempts.

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

Creating the Login Template

Before we implement the login action in our account controller, we'll quickly take a look at
the login form. Listing 4-23 shows the login.tpl template, which we will store in. /templates/
account.

Listing 4-23. The Account Login Form (login.tpl)
{include file='header.tpl'}

<form method="post" action="/account/login">

<fieldset>
<input type="hidden" name="redirect" value="{$redirect|escape}" />

<legend>Log In to Your Account</legend>

<div class="row" id="form_username container">
<label for="form username">Username:</label>
<input type="text" id="form_ username"
name="username" value="{$username|escape}" />
{include file='lib/error.tpl' error=$errors.username}
</div>

<div class="row" id="form password container">
<label for="form password">Password:</label>
<input type="password" id="form password"
name="password" value="" />
{include file='lib/error.tpl' error=$errors.password}
</div>

<div class="submit">
<input type="submit" value="Login" />
</div>
</fieldset>

</form>

{include file='footer.tpl'}

This form is very similar in structure to the registration form, except it only contains input
fields for username and password. Additionally, we use the password type for the password
field, instead of the text type. This template also relies on the presence of an array called
$errors, which is generated by the login action.

This form also includes a hidden form variable called redirect. The value of this field
indicates the relative page URL where the user will end up once they successfully log in. This is
necessary because sometimes a user will go directly to a page that requires authentication, but
they will not yet be authenticated. If users were automatically redirected to their account

101

102

CHAPTER 4 © USER REGISTRATION, LOGIN, AND LOGOUT

home, they would then have to navigate back to the page they originally wanted, which they
would find annoying. We will set the value for $redirect in the login action.
Figure 4-5 shows the login form. Again, it is bland, but we will improve on it in Chapter 6.

@; Title - Mozilla Firefox £|@

File Edit Miew History Bookmarks Tools Help
v & (e httpifphpuveb2fac count/lagin v # |G" Google
|| Title 8 -

Home | Remster

—LogInto Your Account

Tsername
Password:
| Login |

|_~ Done o @

Figure 4-5. The user login form

Adding the Account Controller Login Action

Now we need to add the loginAction() method to the account controller. This is the most
complex action handler we've created so far, although all it does is perform the four points
listed at the start of the “Implementing Account Login and Logout” section.

Listing 4-24 shows the code for loginAction(), which belongs in the AccountController.php
file.

Listing 4-24. Processing User Login Attempts (AccountController.php)

<?php
class AccountController extends CustomControllerAction

{
// ... other code

public function loginAction()

{

// if a user's already logged in, send them to their account home page
$auth = Zend_Auth::getInstance();

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

if ($auth->hasIdentity())
$this->_redirect('/account');

$request = $this->getRequest();

// determine the page the user was originally trying to request
$redirect = $request->getPost('redirect');
if (strlen($redirect) == 0)
$redirect = $request->getServer('REQUEST_URI');
if (strlen($redirect) == 0)
$redirect = '/account';

// initialize errors
$errors = array();

// process login if request method is post
if ($request->isPost()) {

// fetch login details from form and validate them
$username = $request->getPost('username’);
$password = $request->getPost(’password’);

if (strlen($username) == 0)

$errors['username'] = 'Required field must not be blank';
if (strlen($password) == 0)

$errors['password'] = 'Required field must not be blank';

if (count($errors) == 0) {

// setup the authentication adapter

$adapter = new Zend_Auth_Adapter DbTable($this->db,
'users’,
'username’,
"password’,
'mds5(?)");

$adapter->setIdentity($username);
$adapter->setCredential($password);

// try and authenticate the user
$result = $auth->authenticate($adapter);

if ($result->isValid()) {

$user = new DatabaseObject_User($this->db);
$user->load($adapter->getResultRowObject()->user_id);

103

104 CHAPTER 4 © USER REGISTRATION, LOGIN, AND LOGOUT

// record login attempt
$user->loginSuccess();

// create identity data and write it to session
$identity = $user->createAuthIdentity();
$auth->getStorage()->write($identity);

// send user to page they originally request
$this-> redirect($redirect);

}

// record failed login attempt

DatabaseObject_User::LoginFailure($username,
$result->getCode());

$errors['username'] = 'Your login details were invalid';

}

$this->view->errors = $errors;
$this->view->redirect = $redirect;

>

The first thing this function does is check whether or not the user has already been
authenticated. If they have, they are redirected back to their account home page.

Next we try to determine the page they were originally trying to access. If they have sub-
mitted the login form, this value will be in the redirect form value. If not, we simply use the
$_SERVER['REQUEST URI'] value to determine where they came from. If we still can’t determine
where they came from, we just use their account home page as the default destination. We
haven't yet created the action to display their account home page; we will do that in the
“Implementing Account Management” section later in this chapter.

Note Because the ACL manager forwarded the request to the login handler (as opposed to using an HTTP
redirect), the server variable REQUEST URT will contain the location originally requested. If a redirect was
used to display the login form, you could use the HTTP_REFERER value instead.

We then define an empty array to hold error messages. This is done here so it can be
assigned to the template whether a login attempt has occurred or not.

Next we check whether or not the login form has been submitted by checking the
$request object’s isPost () method (we also did this earlier when processing user registra-
tions). If it has been submitted, we retrieve the submitted username and password values from
the request data. If either of these is empty, we set corresponding error messages and proceed
to display the login template again.

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

Once we have determined that both a username and password have been submitted, we
try to authenticate the user. This code is very similar to that of Listing 3-4.
If we determine that the login attempt was successful, we perform three actions:

1. Record the successful login attempt. When a user successfully logs in, we want to
make a note of this in the application log file. To do so, we will add a utility function
to DatabaseObject User called loginSuccess(). This function will also update the
ts_last login field in the user table to record the timestamp of the user’s most recent
login. We will look at the loginSuccess () function shortly. This function must be called
after a user record has been loaded in DatabaseObject User.

2. Update the identity data stored in session to include all of the values in the corre-
sponding database row for this user. By default, only the supplied username will be
stored as the identity; however, since we want to display other user details (such as
their name or e-mail address) we need to update the stored identity to include those
other details:

¢ We can retrieve the data we want to save as the identity by using the
createAuthIdentity() method in DatabaseObject User. This function returns
a generic PHP object holding the user’s details.

¢ The storage object returned from Zend_Auth’s getStorage() method has a method
called write(), which we can use to overwrite the existing identity with the data
returned from createAuthIdentity().

3. Redirect the user to their previously requested page. This is achieved simply by call-
ing the redirect() method with the $redirect variable as its only argument.

Alternatively, if the login attempt failed, the code will continue on. At this point, we call
the LoginFailure() method from the DatabaseObject User class to write this failed attempt to
the log file. We will look at this method shortly.

We then write a message to the $errors array and continue on to display the template.
As mentioned in Chapter 3, we can determine the exact reason why the login attempt failed,
and we will record this reason in the log file. However, this isn’t information that should be
provided to the user.

Note Until you add the functions in the next section, a PHP error will occur if you try to log in.

Logging Successful and Failed Login Attempts

To log both successful and unsuccessful login attempts, we will implement two utility func-
tions in DatabaseObject User: loginSuccess() and LoginFailure().

Listing 4-25 shows these functions as they appear within the DatabaseObject User class
(User.php). Note that LoginFailure() is a static method, while loginSuccess() must be called
after a user record has been loaded. I've also included the createAuthIdentity() method as
described in the previous section.

105

106 CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

Listing 4-25. Auditing Login Attempts by Writing Them to the Application Log (User.php)

<?php
class DatabaseObject User extends DatabaseObject

{
// ... other code

public function createAuthIdentity()

{
$identity = new stdClass;
$identity->user id = $this->getId();
$identity->username = $this->username;
$identity->user type = $this->user type;
$identity->first name = $this->profile->first name;
$identity->last name = $this->profile->last name;
$identity->email = $this->profile->email;
return $identity;

}

public function loginSuccess()

{
$this->ts last login = time();
$this->save();
$message = sprintf('Successful login attempt from %s user %s',

$_SERVER['REMOTE_ADDR'],
$this->username);

$logger = Zend Registry::get('logger');
$logger->notice($message);

}

static public function LoginFailure($username, $code = ')

{

switch ($code) {

case Zend_Auth Result::FAILURE_IDENTITY NOT FOUND:
$reason = 'Unknown username';
break;

case Zend_Auth Result::FAILURE_IDENTITY AMBIGUOUS:
$reason = 'Multiple users found with this username';
break;

case Zend_Auth Result::FAILURE_CREDENTIAL INVALID:
$reason = 'Invalid password';
break;

default:
$reason = '';

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

$message = sprintf('Failed login attempt from %s user %s',
$ SERVER['REMOTE_ADDR'],
$username);

if (strlen($reason) > 0)
$message .= sprintf(' (%s)', $reason);

$logger = Zend Registry::get('logger');
$logger->warn($message);

}

// ... other code

>

The first thing we do in LoginSuccess() is update the users table to set the ts_last login
field to the current date and time for the user that has just logged in. It is for this reason
(updating the database) that we pass in the database connection as the first argument.

We then fetch the $1logger object from the application registry so we can write a message
indicating that the given user just logged in. We also include the IP address of the user.

LoginFailure() is essentially the same as loginSuccess(), except we do not make any data-
base updates. Also, the function accepts the error code generated during the login attempt
(retrieved with the getCode () method on the authentication result object in Listing 4-24), which
we use to generate extra information to write to the log. We log this message as a warning, since
it’s of greater importance than a successful login.

Please be aware that if you try to log in now you will be redirected to the account home
page (http://phpweb20/account) which we will be creating shortly.

Tip The reason you want to track failed logins separately from successful logins (using different priority
levels) is that a successful login typically indicates “normal operation,” while a failed login may indicate that
somebody is trying to gain unauthorized access to an account. Being able to filter the log easily by the mes-
sage type helps you easily identify potential problems that have occurred or are occurring. In Chapter 14 we
will look at how to make use of this log file.

Logging Users Out of Their Accounts

It is important to give users the option of logging out of their accounts, as they may want to
ensure that nobody can use their account (maliciously or otherwise) after they are finished
with their session.

It is very straightforward to log a user out when using Zend_Auth. Because the presence of
an identity in the session is what determines whether or not a user is logged in, all we need to
do is clear that identity to log them out.

To do this, we simply use the clearIdentity() method of the instance of Zend_Auth. We
can then redirect the user somewhere else, so they can continue to use the site if they please.
I simply chose to redirect them back to the login page.

107

108

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

Listing 4-26 shows the logoutAction() method which is used to clear user identity data.
Users can log out by visiting http://phpweb20/account/logout.

Listing 4-26. Logging Out a User and Redirecting Them Back to the Login Page
(AccountController.php)

<?php
class AccountController extends CustomControllerAction
{
// ... other code
public function logoutAction()
{
Zend_Auth::getInstance()->clearIdentity();
$this->_redirect('/account/login');
}
}
>

Note You could use forward('login') in Listing 4-26 instead of redirect('/account/login')
if you wanted to. However, if you forwarded the request to the login page, the $redirect variable in
loginAction() would be set to load the logout page (/account/logout) as soon as a user logged in—
they would never be able to log in to their account unless they manually typed in a different URL first!

Dealing with Forgotten Passwords

Now that we have added login functionality, we must also allow users who have forgotten their
passwords to access their accounts. Because we store the user password as an MD5 hash of
the actual password, we cannot send them the old password. Instead, when they complete the
fetch-password form, we will generate a new password and send that to them.

We can't automatically assume that the person who filled out the fetch-password form is
the account holder, so we won't update the actual account password until their identity has
been verified. We do this by providing a link in the sent e-mail that will confirm the password
change. This has the added advantage of allowing them to remember their old password after
filling out the form and before clicking the confirmation link.

The basic algorithm for implementing fetch-password functionality is as follows:

1. Display a form to the user asking for their username.

2. If the supplied username is found, generate a new password and write it to their pro-
file, and then send an e-mail to the address associated with the account informing
them of their new password.

3. If the supplied username is not found, display an error message to the user.

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

So that we don’t have to mess around with application permissions, we will handle three
different actions in the new fetch-password controller action:

1. Display and process the user form.
2. Display the confirmation message.

3. Update the user account when the password-update confirmation link is clicked and
indicate to the user that this has occurred.

Resetting a User’s Password

Before we implement the required application logic for fetch password, let’s create the web
page template we will use. Listing 4-27 shows the contents of fetchpassword.tpl, which we
will store in the account template directory. This template handles each of the three cases out-
lined previously.

Listing 4-27. The Template Used for the Fetch-Password Tool (fetchpassword.tpl)
{include file="header.tpl'}

{if $action == 'confirm'}
{if $errors|@count == 0}
<p>
Your new password has now been activated.
</p>

Log in to your account</1li>

{else}
<p>

Your new password was not confirmed. Please double-check the link
sent to you by e-mail, or try using the
Fetch Password tool again.
</p>
{7if}
{elseif $action == 'complete'}
<p>
A password has been sent to your account e-mail address containing
your new password. You must click the link in this e-mail to activate
the new password.
</p>
{else}
<form method="post" action="/account/fetchpassword">

<fieldset>
<legend>Fetch Your Password</legend>

<div class="row" id="form username container">

109

110 CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

<label for="form username">Username:</label>

<input type="text" id="form_username" name="username" />

{include file='lib/error.tpl' error=$errors.username}
</div>

<div class="submit">
<input type="submit" value="Fetch Password" />
</div>

</fieldset>

</form>
{7if}

{include file='footer.tpl'}

This template is divided into three parts. The first is used when a user tries to confirm
their new password. Within this section is a section for successful confirmation, and another
to display a message if the confirmation URL is invalid.

The next section (for the complete action) is used after the user submits the fetch-pass-
word form with a valid username. The final section is the default part of the template, which is
shown when the user initially visits the fetch-password tool, or if they enter an invalid user-
name.

Now let’s take a look at the new controller action. I called this action handler
fetchpasswordAction(), as you can see in Listing 4-28. This code is to be added to the
AccountController.php filein ./include/Controllers.

Listing 4-28. Handling the Fetch-Password Request (AccountController.php)

<?php
class AccountController extends CustomControllerAction

{
// ... other code

public function fetchpasswordAction()

{

// if a user's already logged in, send them to their account home page
if (Zend Auth::getInstance()->hasIdentity())
$this-> redirect('/account');

$errors = array();

$action = $this->getRequest()->getQuery('action');

if ($this->getRequest()->isPost())
$action = 'submit';

switch ($action) {

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT 11

case 'submit':
$username = trim($this->getRequest()->getPost('username'));
if (strlen($username) == 0) {

$errors['username'] = 'Required field must not be blank';
}
else {
$user = new DatabaseObject User($this->db);
if ($user->load($username, 'username')) {
$user->fetchPassword();
$url = '/account/fetchpassword?action=complete';
$this-> redirect($url);
}
else
$errors['username'] = 'Specified user not found';
}
break;

case 'complete':
// nothing to do
break;

case 'confirm':
$id = $this->getRequest()->getQuery('id");
$key = $this->getRequest()->getQuery('key');

$user = new DatabaseObject User($this->db);
if (!$user->load($id))

$errors['confirm'] = "Error confirming new password';
else if (!$user->confirmNewPassword($key))

$errors['confirm'] = 'Exrror confirming new password';
break;

}

$this->view->errors = $errors;
$this->view->action = $action;

>

In this code, we first redirect the user back to the account home page if they are authenti-
cated. Next we try to determine the action the user is trying to perform. When a user initially
visits the fetch-password page (http://phpweb20/account/fetchpassword), no action will be
set. As such, the entire switch statement will be skipped.

If the request method for the current request is POST, we assume the user submitted the
fetch-password form, so we update the $action variable accordingly. If the form has been
filled out correctly and a valid username has been specified, the DatabaseObject User::

112

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

fetchPassword() method is called. This is a utility function we will define shortly (along with
confirmNewPassword()). Once this has been called, we redirect back to the fetch-password
page, indicating that the action has completed by putting action=complete in the URL. As
you can see in the switch statement, there is nothing to actually do for this action; it is just
included there for completeness.

The other action is the confirm action. This code is executed when the user clicks on the
link we send them in the fetch-password e-mail (which we will look at shortly). We then try to
confirm their new password using the submitted key value.

Functions for Resetting Passwords

There are two functions we need to add to DatabaseObject User to implement the password
resetting. The first is called fetchPassword(), which does the following:

1. Generates a new password using Text Password.
2. Writes the new password to the user profile.

3. Writes the current date and time to the user profile, so we can ensure the new pass-
word can only be confirmed within one day.

4. Generates a key that must be supplied by the user to confirm their new password. We
also write this to the user profile.

5. Saves the profile.

6. Sends an e-mail to the user using the fetch-password.tpl e-mail template (separate
from the fetchpassword.tpl page template created previously).

The second function we will add is called confirmNewPassword(), which confirms the
user’s new password after they click the link in the e-mail sent to them. This function works as
follows:

1. Checks that the new password, timestamp, and confirmation key exist in the profile.

2. Checks that the confirmation is taking place within a day of the stored timestamp.

3. Checks that the supplied key matches the key stored in the user profile.

4. Updates the user record to use the new password.

5. Removes the values from the profile.

6. Saves the user (which will also save the profile).

Listing 4-29 shows these two new functions, which belong in the DatabaseObject User
class (User.php).
Listing 4-29. Utility Functions Used for Resetting a User’s Password (User.php)

<?php
class DatabaseObject User extends DatabaseObject

{
// ... other code

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

public function fetchPassword()

{

}

if (!$this->isSaved())
return false;

// generate new password properties

$this-> newPassword = Text Password::create(8);

$this->profile->new password = md5($this-> newPassword);

$this->profile->new password ts = time();

$this->profile->new password key = md5(uniqid() .
$this->getId() .
$this-> newPassword);

// save new password to profile and send e-mail
$this->profile->save();
$this->sendEmail('user-fetch-password.tpl');

return true;

public function confirmNewPassword($key)

{

// check that valid password reset data is set
if (lisset($this->profile->new password)
|| lisset($this->profile->new_password ts)
|| lisset($this->profile->new_password key)) {

return false;

}

// check if the password is being confirm within a day
if (time() - $this->profile->new_password ts > 86400)
return false;

// check that the key is correct
if ($this->profile->new password key != $key)
return false;

// everything is valid, now update the account to use the new password

// bypass the local setter as new password is already an md5
parent:: set('password', $this->profile->new _password);

unset($this->profile->new password);
unset($this->profile->new password ts);

unset($this->profile->new password key);

// finally, save the updated user record and the updated profile

113

114

CHAPTER 4 © USER REGISTRATION, LOGIN, AND LOGOUT

return $this->save();

}
// ... other code

>

Now we just need to create the e-mail template. In this e-mail, we will generate the
URL that the user needs to click on in order to reset their password. If you refer back to the
fetchpasswordAction() function in AccountController.php (Listing 4-28), you will see that
the arguments required are the action parameter (set to confirm), the id parameter (which
corresponds to the user_id column in the users table), and the key parameter (which is the
new_password key value we generated in DatabaseObject: : fetchPassword()).

Listing 4-30 shows the e-mail template, which we will store in user-fetch-password.tpl in
the ./templates/email directory. Remember that the first line is the e-mail subject.

Listing 4-30. The E-mail Template Used to Send a User Their New Password
(user-fetch-password.tpl)

{$user->profile->first name}, Your Account Password
Dear {$user->profile->first name},

You recently requested a password reset as you had forgotten your password.
Your new password is listed below. To activate this password, click this link:

Activate Password: http://phpweb20/account/fetchpassword? w
action=confirmdid={$user->getId()}8key={$user->profile->new password key}

Username: {$user->username}

New Password: {$user-> newPassword}

If you didn't request a password reset, please ignore this message and your password
will remain unchanged.

Sincerely,

Web Site Administrator

Figure 4-6 shows a sample of the e-mail that is sent when a new password is requested.
Take special note of the URL that is generated, and the different parts in the URL that we use
in fetchpasswordAction().

Note One small potential problem is the length of the URL in the e-mail. Some e-mail clients may wrap
this URL across two lines, resulting in it not being highlighted properly (or if the user manually copies and
pastes the URL, they may miss part of it). You may prefer to generate a shorter key or action name to reduce
its length.

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

File Edit View Tools Message Help

From: System Administrator
Date: Thursday, 14 June 2007 3:52 PM
| To: Quentin Zervaas

Subject: Quentin, Your Account Password

Dear Quentin,

You recently request a password reset as you had forgotten your password.

Your new password is listed below. To activate this password, click this link:
Activate Password: http://phpweb28/account/fetchpassword?

action=confirm&id=66&key=7d5418ebaefff7255b5e6f4c13825hbba

Username: quentin
MNew Password: jaliabou

If you didn't request a password reset, please ignore this message and your password
will remain unchanged.

Sincerely,

Web Site Administrator

Figure 4-6. The fetch password e-mail sent to a user

There’s one more small issue we must now address: if a user requests a new password,
and then logs in with their old password without using the new password, we want to remove
the new password details from their profile. To do this, we update the loginSuccess() method
in DatabaseObject_User to clear this data. Listing 4-31 shows the updated version of this
method as it appears in the User . php file. We place the three calls to unset() before calling the
save() method, so the user record only needs saving once.

Listing 4-31. Clearing the Password Reset Fields if They Are Set (User.php)

<?php
class DatabaseObject User extends DatabaseObject

{
// ... other code

public function loginSuccess()

{
$this->ts last login = time();
unset($this->profile->new_password);
unset($this->profile->new password ts);
unset($this->profile->new password key);
$this->save();

$message = sprintf('Successful login attempt from %s user %s',

115

116 CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

$ SERVER['REMOTE_ADDR'],
$this->username);

$logger = Zend Registry::get('logger');
$logger->notice($message);

}
// ... other code

?>

Finally, as shown in Listing 4-32, we must add a link to the original login form (login.tpl
in ./templates/account) so the user can access the fetch-password tool if required.
Listing 4-32. Linking to the Fetch-Password Tool from the Account Login Page (login.tpl)

<!--// ... other code -->

<fieldset>
<legend>Log In to Your Account</legend>

<!--// ... other code -->
<div>
Forgotten your password?</a»
</div>
</fieldset>
<!--// ... other code -->

Implementing Account Management

Earlier in this chapter we implemented the login and logout system for user accounts. When a
user successfully logged in, the code would redirect them to the page they initially requested. In
many cases, this will be their account home page (which has the URL http://phpweb20/account).
So far, however, we haven't actually implemented this action in the AccountController class.

In this section, we will first create this action (indexAction()), although there isn't terribly
much that this will do right now. Next, we will update the site header template so it has more
useful navigation (even if it is still unstyled). This will include additional menu options for
logged-in users only. Finally, we will allow users to update their account details.

Creating the Account Home Page

After a user logs in, they are allowed to access their account home page by using the

index action in the account controller. Listing 4-33 shows the code for indexAction() in
AccountController.php, which at this stage doesn’t do anything of great interest, other than
display the index.tpl template in . /templates/account.

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

Listing 4-33. The Account Home Page Action Controller (AccountController.php)

<?php
class AccountController extends CustomControllerAction
{
public function indexAction()
{
// nothing to do here, index.tpl will be displayed
}
// ... other code
}
>

Before we look at index.tpl, we will make a small but important change to the
CustomControllerAction.php file. We are going to change it so the logged-in user’s identity
data is automatically assigned to the template, thereby making it available within all site tem-
plates. This is the data we generated in the createAuthIdentity() method in Listing 4-25.

Additionally, we will assign a variable called $authenticated, which is true if identity data
exists. We could use {if isset($identity)} in our templates instead of this variable, but we
would then be making an assumption that the presence of the $identity means the user is
logged in (and vice versa).

To make this change, we need to implement the preDispatch() method, as shown in
Listing 4-34. This method is automatically called by Zend Controller Front at the start of dis-
patching any action. We can make this change to CustomControllerAction, since all controllers
in our application extend from this class.

Listing 4-34. Assigning Identity Data Automatically to Templates (CustomControllerAction.php)

<?ph
' Elass CustomControllerAction extends Zend_Controller Action
{
function init()
{
$this->db = Zend Registry::get('db");
}
public function preDispatch()
{
$auth = Zend_Auth::getInstance();
if ($auth->hasIdentity()) {
$this->view->authenticated = true;
$this-s>view->identity = $auth->getIdentity();
}
else
$this->view->authenticated = false;
}
}

>

117

118

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

Now let’s look at the index.tpl file, which currently displays a simple welcome message.
We can use the first_name property from the identity to personalize the message. Listing 4-35
shows this template, which is stored in . /templates/account.

Listing 4-35. Displaying a Welcome Message After a User Logs In to Their Account Home Page
(index.tpl)

{include file="header.tpl'}
Welcome {$identity->first name}.

{include file='footer.tpl'}

At this point, you can try to log in by visiting http://phpweb20/account and entering your
account details (remember that thanks to the permissions, trying to access this URL will dis-
play the page at http://phpweb20/account/login).

Updating the Web Site Navigation

When we last looked at the navigation in header.tpl, all we had was a home link and a register
link. We are now going to improve this navigation to include a few new items:

e Login to account link
¢ Information about the currently logged in user (if any)
* A member’s-only submenu, including a logout link

To implement the second and third points, we need to check the $authenticated variable
we are now assigning to the template. Additionally, once a user has logged in, the login and
register links are no longer relevant, so we can hide them.

Listing 4-36 shows the updated version of header.tpl, which now includes some basic
template logic for the HTML header. For now we are just using vertical pipes to separate menu
items, but we will use CSS to improve this in Chapter 6.

Listing 4-36. Making the Site Navigation Member-Aware (header.tpl)

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Title</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<body>
<div>
Home

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

{if $authenticated}
| Your Account
| Update Your Details
| Logout
{else}
| Register
| Log In
{/if}

{if $authenticated}
<hr />
<div>
Logged in as
{$identity->first_name|escape} {$identity->last_name|escape}
(logout)
</div>
{/if}

<hr />

Figure 4-7 shows the account home page that users are directed to after logging in. Note
the new navigation elements, as well as the information about the currently logged-in user.

) Tite - Mozilla Fircfox

[i File Edit View History Bookmarks Tools Help
- T E‘J Q | I http://phpweb20/account | M i lﬂ‘_!
L. s - -
Home | Your Account | Update Your Details | Logout
Logged in as Quentin Zervaas (logout)
Welcome Quentin.
[S Done o0 |

Figure 4-7. The account home page with updated navigation and identity display

119

120

CHAPTER 4 = USER REGISTRATION, LOGIN, AND LOGOUT

Allowing Users to Update Their Details

The final thing we need to add to the user account section for now is the ability for users to
update their details. In the new header.tpl shown in Figure 4-7, there is a link labeled Update
Your Details, which will allow users to do this.

Because this code is largely similar to the user registration system, I have not included all
of the repetitive details. The key differences between user registration and updating details are
as follows:

e We are updating an existing user record rather than creating a new one.
e We do not allow the user to update their username.

¢ We allow the user to set a new password.

* We do not need the CAPTCHA test.

* Because the user is already logged in, we must update their Zend_Auth identity
accordingly.

Note While there isn’t anything inherently bad about allowing users to change their own usernames, it is
my own preference to generally not allow users to do so (an exception might be if their e-mail address is used
as their login username). One reason why it is bad to allow the changing of usernames is that other users get
to know a user by their username; in the case of this application, we will be using the username to generate a
unique user home page URL. Changing their username would result in a new URL for their home page.

When allowing users to change their password, we will show them a password field and
a password confirmation field, requiring them to enter the new password twice in order to
change it. Additionally, we will include a note telling them to leave the password field blank if
they do not want to change their password. This is because we cannot prepopulate the pass-
word field with their existing password, since we only store an MD5 hash of it.

To implement the update details function, we must do the following:

* Create a new form processor class called FormProcessor_UserDetails, which is similar
to FormProcessor_UserRegistration. This class will read the submitted form values and
process them to ensure they are valid. If no errors occur when validating the data, the
existing user record is updated.

* Create a new action called detailsAction() in AccountController that instantiates
FormProcessor_UserDetails, and passes to it the ID of the logged-in user. This function
also updates the Zend_Auth identity by calling the createAuthIdentity() function in
DatabaseObject User that we created earlier.

* Create a confirmation page to confirm to the user that their details have been
updated. To do this, we will create a new action handler called detailscompleteAction(),
which simply tells the user that their details have been saved.

Figure 4-8 shows what the form looks like when initially displayed to users. Note the pre-
populated fields, as well as the lack of a username field and the addition of a password field.

CHAPTER 4 " USER REGISTRATION, LOGIN, AND LOGOUT

You may want to display the username as a read-only field, but that is a personal preference. If
the user tries to remove a value and then submit the form, a corresponding error message will
be shown, just as in the registration form.

& Title - Mozila Fircfox

File Edit View History Bookmarks Tools Help

- A %‘Ll Q |_| http://phpweb20/account/details I_'i la“:'

[} Title (%] lEz

Home | Yowr Account | Update Your Details | Logout

Logged in as Quentin Zervaas (logout)

— Update Your Details

To change your account password, enter a new password below. If vou leave this field blank your password will remain
unchanged.

Email Address: quentin@example.com
First Name: Quentin

Last Name: |Zervaas

Password:

Retype Password: |

[Save New Details |

o
6|

ﬁ' Done
Figure 4-8. The update details form as it is initially shown to users

All the code for this section is included with the downloadable application source code.

Summary

In this chapter we implemented a user registration system, which allows users to create a new
account by filling out a web form. This form requires users to enter a CAPTCHA phrase to
prove that they are people (and not computer programs). Once the user’s registration is com-
plete, their details are saved to the database using DatabaseObject User and Profile User,
and the users are then sent an e-mail containing their account details.

We then added code to the application to allow users to log in to their accounts. We
saved their identity to the current session using Zend_Auth so it would be accessible on all
pages they visit.

Additionally, we added logging capabilities to the login system, so both successful and
unsuccessful login attempts would be recorded.

Finally, we created a basic account home page, to which users will be redirected after log-
ging in. We also added code to let them update their account details.

In the next chapter we will move slightly away from the development of the web applica-
tion while we take a look at two JavaScript libraries: Prototype and Scriptaculous. We will be
using these libraries to help give our application a funky interface and make it “Web 2.0.”

121

CHAPTER 5

Introduction to Prototype
and Scriptaculous

In this chapter we will be looking at two JavaScript libraries that are designed to help with
Web 2.0 and Ajax application development.

First, we will look at Prototype, a JavaScript framework developed by Sam Stephenson. Pro-
totype simplifies JavaScript development by providing the means to easily write for different
platforms (browsers). For example, implementing an Ajax subrequest using XMLHttpRequest can
be achieved with the same code in Internet Explorer, Firefox, and Safari.

Next, we will look at Scriptaculous, a JavaScript library used to add special effects and
improve a web site’s user interface. Scriptaculous is built upon Prototype, so knowing how to
use Scriptaculous requires knowledge of how Prototype works. Scriptaculous was created by
Thomas Fuchs.

We will cover the basic functions of Prototype and look at how it can be used in your web
applications. Then we will look at some of the effects that can be achieved with Scriptaculous.
Finally, we will look at an example that makes use of Prototype, Scriptaculous, Ajax, and PHP.

The code covered in this chapter will not form part of our final web application, but in
forthcoming chapters we will use the techniques from this chapter to add various effects and
to help with coding clean and maintainable JavaScript.

Downloading and Installing Prototype

The Prototype JavaScript framework can be downloaded from http://prototypejs.org.

At time of writing, the latest release version of Prototype is 1.5.1.1, and it is a single JavaScript
file that you include in your HTML files. For example, if you store your JavaScript code in the /js
directory on your web site, you would use the following HTML code to include Prototype:

<html>
<head>
<title>lLoading the Prototype library</title>
<script type="text/javascript" src="/js/prototype.js"></script>
</head>
<body>

</body>
</html>

123

124

CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Note At time of writing, Prototype 1.5.1.1 is the latest stable release; however, version 1.6 is close to
being released. This new version will introduce several key features and improvements in the event handling
model of Prototype (as well as many other enhancements).

Prototype Documentation

You can find comprehensive documentation for all the functionality provided by Prototype at
http://prototypejs.org/api. I highly recommend you look through this site, as it will provide
details about Prototype beyond what I can cover in this chapter.

Additionally, you may find value in perusing the Prototype source code. Doing so may
give you a feel not only for how certain functions work but also to see a good example of how
to use various aspects of Prototype.

Selecting Objects in the Document Object Model

There are several functions available in Prototype for selecting elements in the Document
Object Model (DOM). I recommend that you use the Prototype functions wherever possible
instead of methods you may be more used to using (such as document.getElementById()),
since they are simpler, they work across different browsers, and they provide you with extra
functionality (as you will shortly see).

The $() Function

The $() function is used to select an element from the Document Object Model (DOM)—in
other words, it selects an element on your HTML page. This function is extremely useful and
may be one of the most commonly used functions in your JavaScript development.

Essentially, $() is a replacement for using document . getElementById(), except that it will
also do the following:

* Return an array of elements if you pass in multiple arguments (each returned element
corresponds to the argument position; that is, the 0 element corresponds to the first
argument).

» Extend the returned element(s) with extra Prototype functionality (which we will cover
in this chapter).

Because of this second point, you should always use $() (or one of the other Prototype
element selectors we will look at shortly) to select elements in your JavaScript code when you
are using Prototype. This will give you the full range of functionality that Prototype provides.

Listing 5-1 shows several examples of selecting elements with the $() function. Note that
you can pass in an element’s ID or you can pass in the element directly (which effectively will
just add the extra Prototype functionality to the element).

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Listing 5-1. Example Usage of the $() Element Selector (listing-5-1.html)

<html>
<head>
<title>Listing 5-1: Example usage of the $() function</title>
<script type="text/javascript" src="/js/prototype.js"></script>
</head>
<body>
<div id="my-example-div">
<form method="post" action="nowhere.html" name="f">
<input type="text" name="title" value="Example" id="form-title" />
</form>
</div>

<script type="text/javascript">
// select the div and change its color to red
var exampleDiv = $('my-example-div');
exampleDiv.style.backgroundColor = '#f00';

// select the text input and show its value
var exampleInput = $('form-title');
alert(exampleInput.value);

// now select it again using its DOM path and show its value
var exampleInput = $(document.f.elements.title);
alert(exampleInput.value);
</script>
</body>
</html>

The getElementsByClassName() Function

If you have multiple elements on a page, all with the same class, you can use the
getElementsByClassName() function to select all of them. An array will be returned, with
each element corresponding to one element with the given class name.

This can be an expensive function to call, as internally every element is analyzed to see if
it is of the specified class. Because of this, you should also specify a parent element when call-
ing this function. Doing so means only elements within the parent element are checked.

You would typically use this function when you want a make the same update to all ele-
ments of a particular class. For example, suppose you had an HTML page with several boxes
on it, each having the class name .box, contained within a div called #box-container. If you
wanted to add a Hide All or Show All button on your HTML page, you could select all ele-
ments using document.getElementsByClassName('box", 'box-container'), and then loop over
each element and hide or show it accordingly. Listing 5-2 demonstrates this.

125

126 CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Listing 5-2. Sample Usage of getElementsByClassName (listing-5-2.html)

<html>
<head>
<title>
Listing 5-2: Hiding or showing boxes using
document.getElementsByClassName()
</title>

<script type="text/javascript" src="/js/prototype.js"></script>

<style type="text/css">
.box {
width : 300px; text-align : center;
background : #f60; color : #fff;
margin : 10px; font-weight : bold;
}
.box h1 { margin : 0; }
</style>
</head>
<body>

<div>
<input type="button" value="Hide All" onclick="hideAll()" />
<input type="button" value="Show All" onclick="showAll()" />
</div>

<div id="box-container">
<div class="box"»>
<h1>Box 1</h1>
</div>

<div class="box"»
<h1>Box 2</h1>
</div>
</div>

<script type="text/javascript">
function hideAll()
{
// find all 'box' elements
var elts = document.getElementsByClassName('box', 'box-container');

// now loop over them and hide them
for (i = 0; 1 < elts.length; i++)
elts[i].hide();

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

function showAll()
{
// find all 'box' elements
var elts = document.getElementsByClassName('box', 'box-container');

// now loop over them and hide them
for (i = 0; 1 < elts.length; i++)
elts[i].show();
}
</script>
</body>
</html>

In the preceding code, you will see a call to a method called hide() and a call to a method
called show(). These are both functions provided by Prototype, which simply hide or show the
respective element. These are examples of the extra functionality provided when using the
Prototype element selectors. We will cover more of these later in this chapter.

After the code fetches all of the box elements, it loops over them in both the showA11()
and hideAl1() functions to show or hide the element.

There is another way you can shorten this code and easily apply the same code to all
returned elements: you can use either the each() method or the invoke() method. These are
two functions Prototype adds to all arrays. Listing 5-3 shows the methods in Listing 5-2 rewrit-
ten to use each().

Listing 5-3. Using each() to Iterate Over the Returned Elements (listing-5-3.html)

<script type="text/javascript">
function hideAll()
{
// find all 'box' elements and hide them
document.getElementsByClassName('box', 'box-container').each(
function(s) {
s.hide();
}
);
}

function showAll()
{
// find all 'box' elements and show them
document.getElementsByClassName('box', 'box-container').each(
function(s) {
s.show();
}
);
}

</script>

127

128

CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

This code passes a function as the argument to each(). This function is executed once
for each item in the array each() is called on. The argument passed to this function is the
element in question, thereby allowing us to call hide() or show() directly on it.

Note Although I didn’t use it in this case, the second argument passed to the function inside each()
contains the loop number. For example, function(s, idx) { .. } would pass 0 in the idx parameter for
the first element, 1 for the second, and so on.

Alternatively, you can use invoke() instead of each(). This allows you to call a single
method on each element, with an arbitrary number of arguments. This would work perfectly
in this hide/show example, as we are just calling these methods for each box. However, if you
needed to execute multiple lines of code, you would need to go back to using each().

Listing 5-4 shows the hideAl1() and showAl1() functions with a call to invoke(). Note that
the method you want to invoke on each array element is passed as a string.

Listing 5-4. Using invoke() to Call a Single Method on Each Array Element (listing-5-4.html)

<script type="text/javascript">
function hideAll()

{
// find all 'box' elements and hide them

document.getElementsByClassName('box', 'box-container').invoke('hide');

}

function showAll()
{

// find all 'box' elements and show them
document.getElementsByClassName('box', 'box-container').invoke('show');

}

</script>

Tip You can also call getElementsByClassName() directly on an element (rather than passing it as the
first argument). For instance, you could select all .box-container elements as in the previous example by
using $('box"').getElementsByClassName('box-container").

The $$() Function

The $$() function (not to be confused with the $() function discussed previously) is a very
powerful function that allows you to select elements using CSS rules. All returned elements are
extended with extra Prototype functionality, just as $() does. Note, however, that an array is
returned, even if only a single element is found. The ordering of elements in the array is the
order of the elements in the document.

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

A CSS rule is a string used to specify elements in Cascading Style Sheets (CSS) documents,
using a combination of element names (such as div), class names (such as .box), and element
ID names (such as #box-content). For example, in Listing 5-2 we could have used var elts =
$$('#tbox-container .box') instead of using the call to document.getElementsByClassName().

Here are some more examples:

e $$('form"): Selects all forms on a page

e $$('div.box"): Selects all div elements that have the class name box

e $$('divitlogo img'): Selects the img element within the div called #1logo
e $$("input[type=radio]"): Selects all inputs that are radio buttons

So why not just use $$() solely, and forget about $() and getElementsByClassName()? Yes,
$$() can do exactly what the other two functions can do, but it is more expensive to call. That
is, it is less efficient.

If you want to select an element whose ID you know, you should use $('element-id")
instead of $$(' #element-id"), since the former is more efficient (also, using $$() returns an
array, and $() doesn’t in this case). If you want to select all elements with a certain class (such
as class .box inside a div with ID #box-container), you should use $('box-container").
getElementsByClassName('box') instead of $$(' #box-container .box").

One recommendation from the Prototype documentation (found on http://proto-
typejs.org/api), is that if you do use $$(), try to narrow the search down by specifying a
parent element’s ID at the start of the CSS rule. In other words, $$ (' #box-container .box")
would be more efficient than $$(' .box"), as the former would only search within the #box-
container element for elements with class .box, while the latter would search the entire DOM.

If you are familiar with CSS, using $$() will be far easier to read and write, but from a per-
formance point of view you should try to avoid it if there is a more efficient solution. For
simplicity, I will continue to use $$() in the examples.

The getElementsBySelector() Function

It is possible to use the same syntax as in $$() but to only look within a particular element rather
than the whole document. This can be achieved by calling the getElementsBySelector() func-
tion directly on an element.

For example, you can use $('box-container').getElementsBySelector('.box") to find all
elements that have class .box inside the #box-container element.

Prototype’s Hash Object

Prototype provides an object type called Hash, which is essentially a normal JavaScript object

that has been extended. I am covering it here simply because I will be referring to the Hash

object in the future. It could also be referred to as an associative array, but I will call it a hash.
If you are unfamiliar with JavaScript objects, they can be created and used as follows:

<script type="text/javascript">
var person = {
name : 'John Smith',

129

130

CHAPTER 5 ©' INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

age : 30
15
alert('The age of ' + person.name + ' is ' + person.age);
</script>

To extend this object with extra Prototype functionality, the $H() function is used. This
essentially converts the created object into a hash. So the preceding code would be modified
as follows:

<script type="text/javascript">
var person = $H({
name : 'John Smith',
age : 30
D
alert('The age of ' + person.name + ' is ' + person.age);
</script>

Doing this not only allows you to understand what a hash is, but it also provides the
following extra functionality:

e each(): Allows you to loop over each key/value pair, similar to how you would with
arrays in Prototype.

 remove(): Removes a value from the hash based on the specified key (for example,
person.remove('age') will remove the age element from the hash in the previous
example).

e toQueryString(): Serializes the keys and values into a usable query string (so the pre-
ceding person hash would become name=John+Smith&age=30).

Note Sometimes you will need to create a hash but you will not require the extended functionality (such
as when defining options to be passed to Ajax.Request). In this case, you can forego calling $H(), but |
will still refer to it as a hash even though strictly speaking it is a generic JavaScript object.

Other Element Extensions

In the previous section I stated that when using a function such as $() or $$() in Prototype,
the returned elements are extended. That is, they are given extra functionality that is not nor-
mally available when programming in JavaScript. We looked at a couple of these added
functions (namely show() and hide()), but there are many more functions provided. We will
take a brief look at the some of the more useful of these and at how you can use them in your
everyday JavaScript development.

Note that which extensions are added depends on the type of element. That is, some new
functions will be only available for arrays, and others only for strings. Some new functions are
available to all elements.

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Showing and Hiding Elements

As we saw before, the show() method makes a hidden element visible (or does nothing if the
element is already visible), while the hide() method hides a visible element hidden (or does
nothing if the element is already hidden).

In addition, there is a toggle () method. This will hide a visible element or show a hidden
element. You can check whether an element is hidden or not by using the visible() method,
which returns true if the element is visible and false if not.

Additionally, you can remove an element from the DOM completely by calling its
remove () method.

Retrieving Dimensions of Elements

Prototype provides a method called getDimensions(), which returns the width and height of
an element (in the width and height properties). You can retrieve an element’s width by just
using getWidth(), or its height by using getHeight (), but if you need both of these values you
should use a single call to getDimensions (). This is because both getWidth() and getHeight()
will internally make a call to getDimensions(), thereby resulting in an extra unnecessary func-
tion call.

The following example shows a simple function that accepts the ID of an element and
then determines and displays its dimensions in an alert box:

<script type="text/javascript">
function displayDimensions(id)

{
var dims = $(id).getDimensions();
alert('This size of this box is ' + dims.width + 'x' + dims.height);
}
</script>

Managing Classes of Elements

You can easily manipulate an element’s classes with Prototype, which may be of great use for
achieving mouseover effects or to allow the user to mark an item as selected.
The following functions are available to elements:

 addClassName(): Applies a class to an element. This might be useful if you have a high-
light class for a selected element.

 removeClassName(): Removes a class from an element. This would typically be used at
some point after calling addClassName().

¢ toggleClassName(): Adds or removes a class name (if the element doesn’t have the class,
itis added; it is removed if the element already has it).

¢ hasClassName(): Checks whether an element has a particular class.

Let’s now look at a practical example of using these methods. Listing 5-5 is slightly more
complex than previous examples; it highlights a box when your mouse pointer moves over it,
and removes the highlight when the pointer is moved away.

131

132 CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Listing 5-5. Demonstrating addClassName() and removeClassName() (listing-5-5.html)

<html>
<head>
<title>
Listing 5-5: Manipulating element class name with Prototype
</title>

<script type="text/javascript" src="/js/prototype.js"></script>

<style type="text/css">
.box {
width : 300px; text-align : center;
background : #f60; color : #fff;
margin : 10px; font-weight : bold;
}
.box h1 { margin : 0; }
.box.highlight { background : #f00; }
</style>
</head>
<body>
<div id="box-container">
<div class="box">
<h1>Box 1</h1>
</div>

<div class="box">
<h1>Box 2</h1>
</div>
</div>

<script type="text/javascript">
// find all the box elements, then loop over each one and
// add the onmouseover and onmouseout events to it
$$('#box-container .box").each(
function(s)
{
s.onmouseover = function() {
this.addClassName("highlight');
b
s.onmouseout = function() {
this.removeClassName('highlight');
b5
}
)5
</script>
</body>
</html>

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

In this example, there are a series of boxes (with class .box) inside of #box-container, and
various styles are defined for this box. I have also defined a .highlight style, which will make
the box turn red when the mouse is over it.

Note The JavaScript code in this example would be unnecessary if the :hover selector worked across
all browsers. In Firefox, you could simply use CSS like div.box:hover { background : #fo00; },but
this will not work in Internet Explorer (except on links) so the JavaScript solution is required.

Essentially, what I want this code to do is as follows:

1. Retrieve all .box elements.

2. Add an onmouseover event to each element, which adds the .highlight class.

3. Add an onmouseout event to each element, which removes the .highlight class.

I first use $$('#box-container .box") to select all the boxes, and then use each() on the
array of returned elements, as I want to execute several lines of code for each element. (See
Listing 5-3 for more information about using each().)

Next I set the onmouseover and onmouseout events for each element with a call to
addClassName() and removeClassName() respectively. Note that in the event handler, this
refers to the element on which the event occurred.

Caution In order to keep the example somewhat simple, | used a non-preferred way of observing
events in JavaScript. The problem with how | added these events is that if either of the onmouseover or
onmouseout events had previously been defined on the .box elements, | would have overwritten that han-
dler. Conversely, if another script executes after this code, my event handlers may be overwritten. Prototype
provides an event handling class that deals with these issues and allows events to be observed correctly
between all platforms. We will cover this Event class in the “Event Handling in Prototype” section later in
this chapter.

Manipulating Strings with Prototype

All string elements are extended with several methods, including the following:

e truncate(): Shortens a string to a specified length, and optionally appends a string at
the end (such as ..). For example, you could turn “My short string” into “My short..”.

e strip(): Removes whitespace from the beginning and end of a string.
e stripTags(): Removes any HTML tags from a string.

e stripScripts(): Removes any scripts (such as JavaScript) from a string.

133

134 CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

e escapeHTML(): Turns HTML elements into their respective entities (for example, replac-
ing < with &1t;)

e unescapeHTML(): Performs the opposite of escapeHTML() (for example, turning &1t;
into <).

There are several more functions available, but these are among the most useful.

Note Even if you are using functions such as stripTags() and stripScripts() on user-submitted
data, you should still be performing these same operations at the server if the data is submitted, since you
cannot guarantee the data has passed through the JavaScript code when it reaches the server.

Ajax Operations in Prototype

One of the key reasons for choosing to use Prototype in this book was not only the extended
functionality applied to all elements—which in itself is extremely useful—but also for its Ajax
support. Cross-browser Ajax solutions can easily be created by using the Prototype Ajax class.

Typical usage of this class involves first defining a hash of options (such as form data that
should be submitted in the request), and then instantiating one of Ajax.Request,
Ajax.Updater, or Ajax.PeriodicalUpdater:

* Ajax.Request: Generally used for a one-time request. This is the core Ajax method avail-
able, and it is the function you will call directly to initiate most Ajax operations.

* Ajax.Updater: Behaves in the same way as Ajax.Request, except its specific purpose is
to populate an element on your HTML page with the response data from a request. This
can also be achieved by using Ajax.Request, but Ajax.Updater simplifies the process for
this specific operation.

* Ajax.PeriodicalUpdater: Behaves the same way as Ajax.Updater in that it populates an
element with the Ajax response data; however, it will continue to execute with a speci-
fied frequency. For instance, if you need to retrieve fresh data every N seconds, you can
use this method. Another way to look at it is that Ajax.PeriodicalUpdater performs a
request with Ajax.Updater every N seconds.

Ajax Request Options

When initiating an Ajax request with Prototype, the one key thing you need is the URL you are
requesting. In addition to this, you can define a set of options that dictate the behavior of the
request. These options are not required to perform the request (default options are defined
internally); however, it is rare that you wouldn’t need to set various options or callbacks.

The options you will typically need to set are as follows:

* method: The HTTP method used for the request. This is typically get or post (with post
being the default). Note that there are other types of HTTP requests possible, but they
are typically not used and are beyond the scope of this book.

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

* parameters: The form data that is included in the request, regardless of whether itis a
get or post request. Prototype can accept a wide variety of data formats here (such as a
string you have already encoded, or simply a hash). It will convert the data into the
required format to complete the request.

The following is an example of an options hash that can be used for a Prototype Ajax
request:

<script type="text/javascript">
var options = {
method : 'post’,
parameters : 'action=save8id=1234'
1

</script>

And here is an example of getting the value of a text input field from the existing page and
including it in the options hash:

<input type="text" id="my-input" />
<script type="text/javascript">
function createOptions()

{
var options = {
method ¢ 'post’,
parameters : 'action=save8id=1234",
postBody : 'someValue=' + $('my-input').getValue()
1
}
</script>

In this example, the getValue() function retrieves a form element’s value. This is a function
added to form elements by Prototype so their values can be retrieved regardless of their type
(whether textarea, checkbox, radio, or other type).

Ajax Callback Functions

For all Ajax requests you make with Prototype, there are a number of callback functions that
can be defined. Each specified callback function will be called automatically at appropriate
stages of the Ajax request lifecycle.

Note You can perform Ajax requests without specifying any event callbacks; however, it will not be possi-
ble to use the returned result if you don’t define any callbacks. Sometimes you may not care about the
response data, but most of the time you will.

135

136

CHAPTER 5 ©' INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Typically, you will define the callback prior to initiating the Ajax request, and then pass in
the function name with the request options (as discussed in the previous section). Each call-
back receives the XMLHttpRequest object as its first parameter, thereby allowing you to easily
read the response data (including HTTP status code) if it is available.

The following are the main callback functions you will typically need to define when han-
dling an Ajax request:

e onSuccess: This callback is called upon successful completion of a request. A request is
successful if no error occurs and if the HTTP status code is in the 2xx family.

e onFailure: If a request completes successfully but returns an HTTP status code not in
the 2xx family, this callback is invoked.

 onComplete: After a request has completed and all other callbacks have been called, the
onComplete callback is triggered. In reality, you will probably not need this callback in
your requests unless you have some kind of cleanup code that needs to be executed
whether a request succeeds or not.

Note Many Ajax programmers (both in the past and even now) simply check for an exact status code of
200 when trying to determine success. Not all successful HTTP requests will necessarily return this status
code, however, so the onSuccess callback should be used instead. Prototype will automatically deal with
each of these status codes.

Here’s an example of defining the onComplete and onFailure callbacks, combined with the
other options you may need in an Ajax request:

<script type="text/javascript">
var options = {
method : 'post’,
parameters : 'action=save&id=1234',
onSuccess : function(transport)

{
alert('Ajax request succeeded!');
1
onFailure : function(transport)
{
alert('0Oh no - something went wrong!');
}
1
</script>

The callback functions I have defined are somewhat useless, but hopefully they demonstrate
how the Ajax request is set up.

In reality, I much prefer to define the actual function as its own separate block, and then
pass in the function name as the argument in the options hash. An example of this is shown

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

next. Note that technically speaking it is a function pointer that is used as the value in the
options hash—it’s not simply a string with the function name.

<script type="text/javascript">
function handleSuccess(transport)

{
alert('Ajax request succeeded!");

}

function handleFailure(transport)

{
alert('0Oh no - something went wrong!');

}

var options = {
method : 'post’,
parameters : 'action=save8id=1234",
onSuccess : handleSuccess,
onFailure : handleFailure

};

</script>

In addition to the onSuccess and onFailure callbacks (which encompass a large number
of HTTP status codes), Prototype also allows you to easily handle each status code indepen-
dently. To do this, you define an onXYZ callback, where XYZ corresponds to the HTTP status
code you want to handle.

For example, if you wanted a specific function to be called when a 404: File Not Found
error occurred, you would pass the on404 callback to the Ajax request options. The following
example demonstrates this by creating several callbacks, each to handle various error codes:

<script type="text/javascript">
function handleUnauthorized(transport)

{

alert('401 Error - You are not authorized');
}
function handleForbidden(transport)
{

alert('403 Error - You are forbidden');
}
function handleFileNotFound(transport)
{

alert('404 Error - File was not found');
}

var options = {
on401 : handleUnauthorized,
on403 : handleForbidden,

137

138

CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

on404 : handleFileNotFound
};

</script>

The XMLHttpRequest Callback Argument

In all of the preceding examples, I have included an argument called transport in the callback
functions. As I mentioned previously, this argument is the XMLHttpRequest object created as a
result of the call to Ajax.Request.

Note The primary reason for naming this argument transport (and not xhr or something similar) is
simply convention. You can call it what you like, but to be consistent you should just call it transport.

You can use transport in your callback functions to read the response data. The following
properties are available inside the transport variable:

* responseText: The response from the request as a string.

» responseXML: The response from the request as an XMLDocument object. This allows you
to manipulate the response in the same way you would with the normal DOM. I will
demonstrate this shortly, in the “An Ajax.Request Example” section.

* status: The HTTP status code resulting from the request (such as 200 for a successful
request, or 404 for a file-not-found error).

¢ statusText: A textual description for the HTTP status code (such as OK for a status
response of 200).

So you could modify the handleSuccess() callback from the previous example to show the
response data in an alert box using the following code:

<script type="text/javascript">
function handleSuccess(transport)

{
alert(transport.responseText);
}
</script>

JavaScript Object Notation (JSON)

JavaScript Object Notation, or JSON, is a data-exchange format that is very useful in Ajax-
enabled web applications. In essence, JSON is JavaScript code. It is typically used to serialize
JavaScript arrays or objects (what I referred to as hashes earlier) into a simple format that can
be exchanged between client and server.

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Note My own personal preference is to use JSON data as the response to Ajax requests, since it’s much
easier to manipulate the data. However, since we’re covering Ajax, it's good to know how the X in Ajax
works. As such, | will use XML for the main example in this chapter, but in following chapters, when we add
Ajax functionality to our application, we will use JSON and not XML.

JSON is used as an alternative to XML for data exchange in Ajax requests because it results
in a much smaller payload (since there are no opening/closing tags), and it is typically simpler
to access within JavaScript code. For example, the JavaScript code you might use to represent
data for a book may look like this:

var book = {
title : 'Practical PHP Web 2.0 Applications',
author : 'Quentin Zervaas'

};
Now consider the code you would use in PHP to represent this same data:

<?php
$book = array(
"title' => 'Practical PHP Web 2.0 Applications’,
'author' => 'Quentin Zervaas'
)s

>

If I wanted to represent this PHP snippet in JavaScript, I would need to somehow create
JavaScript code like the preceding, which means creating a string of JSON data. PHP provides
a function called json_encode() to do exactly this. The Zend Framework also provides the
Zend_Json class, which is what we’ll be using. Earlier versions of PHP do not have the
json_encode() function, and by using Zend Json we don’t have to worry about that.

Now, if I wanted to represent the preceding PHP code as JavaScript code, I could call
Zend Json::encode() to do so:

<script type="text/javascript">
var book = <?php echo Zend Json::encode($book) ?>
</script>

This function will generate a string that looks like this:
{ title : 'Practical PHP Web 2.0 Applications', author : 'Quentin Zervaas' };

While this example serves no great purpose, it demonstrates what is possible with JSON. When
arequest is made with XMLHttpRequest, the server can return a JSON-encoded string so that
the JavaScript code can interpret the results.

To interpret the returned data, you can use the JavaScript eval() function, which will
evaluate as JavaScript code whatever is passed as its first argument. Thankfully, Prototype
simplifies this for us by providing the evalJSON() method. For example, to decode JSON data
returned from an Ajax request, you could use code similar to the following:

139

140

CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

<script type="text/javascript">
function handleSuccess(transport)

{
var json = transport.responseText.eval]JSON(true);
}
</script>

In this example, the evalJSON() is an extended method Prototype provides to all strings.
The first argument to this method tells Prototype to check for data that isn’'t well formed. If the
string is not well-formed JavaScript code, eval() is not called internally as a safety precaution.

Note When Prototype 1.6.0 is released, the responseJSON property will also be available in the response
from Ajax requests, saving us the trouble of manually decoding the JSON data as in the preceding example.

I will continue using XML in this chapter, just to give you a full taste of how Ajax solutions
can be implemented. Our first real taste of JSON will be in Chapter 6, when we add client-side
form validation to the user registration form we created in Chapter 4.

An Ajax.Request Example

Now that we have looked at defining options and callbacks for a request, we can take a look
at Ajax.Request, the primary Prototype function used for Ajax. In this example, the code will
request an XML file that resides on a web server. It will then loop over the data in the XML file
and output it to the browser. At this stage, we won't be doing anything fancy with the data—we
will save the fanciness for when we cover Scriptaculous.

Listing 5-6 shows the XML data. This is just made-up data that has no real meaning other
than demonstrating the use of Ajax.Request. This data is stored in a file called 1isting-5-6.xml.

Listing 5-6. Sample XML Data to Be Processed in the Ajax.Request Example (listing-5-6.xml)

<people>
<person name="John" age="30" />
<person name="Mary" age="25" />
</people>

The basic code outline we will use to perform the Ajax request is as follows. We will flesh it
out a bit more shortly.

<script type="text/javascript">
function handleSuccess(transport)

{
}

// todo

function handleFailure(transport)

{

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

// todo
}
function loadXml()
{
var url = 'listing-5-6.xml"';
var options = {
method : 'get’,
onSuccess : handleSuccess,
onFailure : handleFailure
15
new Ajax.Request(url, options);
}
</script>

Note Since Ajax.Request is in fact a class (as opposed to simply being a function), it must be invoked
using the new keyword. If new is omitted, the call to Ajax.Request will not work.

As you can see, the first argument to Ajax.Request is the URL being requested. In this
example, we are simply getting an XML file, but in real-world applications this is likely to be a
server-side script (such as a PHP script). The second argument is the list of request options.

Here you can also see that we've defined callbacks for both success and failure, although
they do not yet do anything.

Handling XML Data from an Ajax Request

As mentioned previously, we can access the responseXML property of the XMLHttpRequest
object passed in to the callback. This property is an XMLDocument object, which allows us to
manipulate it just as we would the DOM.

Referring back to our listing-5-6.xml file in Listing 5-6, we could call
getElementsByTagName('person') to find all of the individual people records in the returned
XML. Note that the documentElement property is the root node of the XML document, so you
can't actually call getElementsByTagName() directly on the responseXML property. In reality, it
would look more like this:

<script type="text/javascript">
var people = transport.responseXML.documentElement.getElementsByTagName('person');
</script>

This will return an array called people containing all of the person records in the XML
document. Strictly speaking, this is actually an HTMLCollection (not an array), but by using the
Prototype $A() function, we can turn it into an array and gain the extra array functionality
Prototype provides (such as each() and invoke()).

141

142

CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

So, we can modify the handleSuccess () callback to loop over each person, outputting their
name in an alert box. This functionality is still somewhat crude, but we will improve it further
shortly. We can use the DOM getAttribute() method to fetch a person’s name from the
returned person data, as follows:

<script type="text/javascript">
function handleSuccess(transport)

{
var xml = transport.responseXML;
var people = $A(xml.documentElement.getElementsByTagName('person'));
people.each(function(s) {

alert(s.getAttribute('name'));

1;

}

</script>

If we want to output a more meaningful message for each returned person, we need to
build up a string using the data associated with each user. To do this, we will use Prototype’s
Template class. This class probably isn't something you will often use with Prototype, but it is
worth knowing about (particularly since we will use it in later code listings).

The Template class allows you to define a template string with placeholders for change-
able data. You can then call the evaluate() method on the created template, passing in the
data you want to include. The following code shows an updated version of handleSuccess(),
which now uses the Template class in combination with Prototype’s each() enumerator:

<script type="text/javascript">
function handleSuccess(transport)
{
var xml = transport.responseXML;
var people = $A(xml.documentElement.getElementsByTagName('person'));

var tpl = new Template('The age of #{name} is #{age}');

people.each(function(s, idx) {
var data = {
name : s.getAttribute('name'),
age : s.getAttribute('age')
};

alert(tpl.evaluate(data));

};
}

</script>

Handling XML That Isn’t Well Formed

In all of the preceding examples of handleSuccess (), we have assumed that the XML data is well
formed. That is, we assume it is valid and that no errors are contained in the document. This is

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

not always going to be the case, especially for dynamically generated XML. Just because an Ajax
request is successful doesn't mean the returned data is correct. Additionally, if the document is
well formed but is missing properties that we require (for instance, if the age property is missing
from one or more records), this is not an error per se.

Prototype does not provide XML-handling functionality, so detecting XML errors across
different platforms is not a straightforward task. We will treat an XML parsing error in our code
the same way we treat no records being returned.

For the sake of completeness, here is code you can use to detect XML parsing errors:

<script type="text/javascript">
// detect a parse error in Internet Explorer
if (xml.parseError) {
if (xml.parseError.errorCode != 0) {
str = xml.parseError.reason
+ ' on line ' + xml.parseError.line
+ ' position ' + xml.parseError.linepos);
alert(str);

}

// detect a parse error in Mozilla

else if (xml.documentElement.nodeName == 'parsererror') {
alert(xml.documentElement.firstChild.data);

}

</script>

Completing the onFailure Error Handler

The final part of this example is the handleError () callback. In this particular example, we are
doing nothing more than showing an alert box for each person record found. To accompany
this, we will simply display an alert box containing the error if one has occurred.

<script type="text/javascript">
function handleFailure(transport)

{
alert('Error: ' + transport.statusText);
}
</script>

The Complete Ajax.Request Example

Listing 5-7 contains the complete code for the Ajax.Request example.

Listing 5-7. The Complete Ajax.Request Example (listing-5-7.html)

<html>
<head>
<title>
Listing 5-7: The complete Ajax.Request example

143

144 CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

</title>
<script type="text/javascript" src="/js/prototype.js"></script>
</head>
<body>
<div>
<input type="button" value="Load XML" id="load-xml" />
</div>

<script type="text/javascript">
function handleSuccess(transport)

{
var xml = transport.responseXML;
var people = $A(xml.documentElement.getElementsByTagName('person'));
var tpl = new Template('The age of #{name} is #{age}');
people.each(function(s, idx) {
var data = {
name : s.getAttribute('name'),
age : s.getAttribute('age')
};
alert(tpl.evaluate(data));
D;
}
function handleFailure(transport)
{
alert('Error: ' + transport.statusText);
}
function loadXml()
{
var url = 'listing-5-6.xml";
var options = {
method : 'get’,
onSuccess : handleSuccess,
onFailure : handleFailure
};
new Ajax.Request(url, options);
}
Event.observe('load-xml', 'click', loadXml);
</script>
</body>

</html>

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

When you load 1isting-5-7.html in your browser, all you will see is a form button that
says Load XML. At the end of the code, the click event handler is added to this button using
Event.observe(), which simply calls the loadXml() function when the event is triggered.

Note that we could have created the button with a line like this:

<input type="button" value="Load XML" id="load-xml" onclick="loadXml()" />

However, as noted earlier in this chapter, using the Prototype event-handling code is the pre-
ferred way to observe events.

Note If you don’t quite follow how the event-observing code works, don’t worry; we’ll cover it in the next
section.

Event Handling in Prototype

One key benefit Prototype offers developers is enhanced DOM event handling. Writing code to
handle events across different browsers can be difficult, but with Prototype these issues can
be avoided.

One difficulty when not using Prototype is that event handlers can easily be overwritten.
For example, if you have HTML code that includes <body onload="doSomething()"> and also
loads an external JavaScript file containing window.onload = doSomethingElse, which function
is called? Certainly not both of them!

Prototype solves this problem by allowing us to add to existing event observers. This
means that if you observe the same event on the same element twice, both event handlers will
be triggered when the event occurs.

Observing an Event

To observe an event with Prototype, use the Event.observe() method. This method takes three
arguments:

e The element on which the event is being observed.

» The event to observe; this is a string containing the event name. The event names are
the same ones you might already be used to in JavaScript, except they don’t begin with
on. For instance, to observe the onmouseover event, you would specify mouseover as the
second argument.

¢ The function to execute when the event is triggered.

Going back to the “body onload” example, rather than using <body onload="doSomething()">,
you would use the following to correctly observe this event:

Event.observe(window, 'load', something);

This code would appear either in an external JavaScript file or within <script> tags in
your HTML document.

145

146

CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Note This example might be slightly confusing, since you observe the window element in
Event.observe(), whereas the inline version was in the body tag. Technically speaking, when using
<body onload="">, this event is being attached to the window DOM element. Also, the reference to the
something function is a function pointer, so you don’t include the brackets; if you did, it would mean
the result of the something() function would be used as the third argument.

Note that you can also call the observe() function directly on an element. In this case, you
omit the first argument. For instance, you might add an image to your web page with the fol-
lowing HTML code:

You can observe the onclick event on this image by using Event.observe() as you saw
already:

Event.observe('my-image', 'click', something);
Or you can first retrieve the element and then call observe() on it:

$('my-image').observe('click', something);

Finding Out Which Element an Event Occurred On

When a function is triggered by an event occurring, the event object is passed in as the first
argument to the callback. This lets you find out certain things about the event, such as the ele-
ment on which the event occurred (so if the onclick event was observed on several elements,
you could find out exactly which element was clicked on).

To find the element, you call the Event.element() function. I'll use the example of clicking
on an image:

<script type="text/javascript">
$('my-image').observe('click', something);
</script>

Next I can write the something() function, which is called when the image is clicked. I
assume the first argument will be the event (which I like to simply call e). I can then pass e to
Event.element() to return the image element.

<script type="text/javascript">
function something(e)

{

var img = Event.element(e);

}

</script>

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Canceling an Event

A common technique we will use in this book when writing Ajax code is to trigger an Ajax
request when a form submit button is clicked. The problem with this is that the web browser
will perform a normal postback when the button is clicked, meaning a new page will be
loaded in the browser. To prevent this from occurring, the Event.stop() method must be
called. This is a very useful method, since it is difficult to write code to achieve this across all
browsers.

As an example, let’s say I have the following form code:

<form method="post" action="/someUrl" id="my-form">
<input type="submit" value="Submit Form" />
</form>

Rather than submitting the form data back to the server, I want to run a function called
handleFormSubmission() when the Submit Form button is clicked. First, I must observe the
onsubmit event, and then call Event.stop() when handling the event:

<script type="text/javascript">
$('my-form").observe('submit', handleFormSubmission);

function handleFormSubmission(e)

{
Event.stop(e);
// now do something here such as an Ajax request
}
</script>

The best part about using code such as this is that it allows you to prevent normal postback
when the user is running a browser capable of running JavaScript, yet it still submits the form as
normal when a non-JavaScript browser is used. This helps you provide a rich user experience
when the browser is capable of it, but it is also an accessible non-JavaScript solution.

Creating JavaScript Classes in Prototype

Yet another great thing about Prototype is its ability to easily create JavaScript classes. While
this has always been possible with JavaScript, Prototype makes the process much simpler and
helps you generate cleaner and more manageable code.

Creating a Class

The typical process for creating a class with Prototype is as follows:

1. Create the new class by calling Class.create(). Internally, this causes the class’s con-
structor function to be automatically run when the class is instantiated.

2. Define the class’s prototype object (not to be confused with the name of the library you
are using). This defines the properties and methods of the class.

147

148

CHAPTER 5 ©' INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

3. When defining the class’s prototype object, implement the class constructor. The
name of the constructor is initialize(), which can take any number of arguments
(just as when writing any other JavaScript function).

For example, to create a simple class called Book, which takes a title as its first argument,
the following code could be used:

Book = Class.create();

Book.prototype = {
initialize : function(title)
{
this.title = title;
}
};

You can implement your own functions as required. For example, you could make a func-
tion that returns the book title as follows:

Book = Class.create();

Book.prototype = {
initialize : function(title)

{

this.title = title;
b
getTitle : function()
{

return this.title;
}

};

var book = new Book('Practical PHP Web 2.0 Applications');
alert(book.getTitle());

Tip Since each function is an element of the class’s prototype object, they must be separated by com-
mas. Forgetting the comma is a very common cause of syntax errors when developing classes in JavaScript.

Binding Function Calls to Objects

A very important aspect of developing classes with Prototype is the use of the bind() and
bindAsEventListener() functions. Please ensure you understand how these functions work, as
they are used frequently in the JavaScript code in this book.

These functions bind an object’s context to a class method so that when you call this in
the method, it refers to the correct object. Because this is a difficult concept to grasp, I'll use

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

examples to explain it further. Once I have shown you how binding works, I'll show you the
difference between bind() and bindAsEventListener(), since there is only a subtle difference
between the two.

To demonstrate how binding works, I'll create a class that observes the onclick event on
an image. When the image is clicked, I will display an alert to the user notifying them that the
image was clicked.

First, I'll create the class. The initialize method accepts the image element as its only
argument, and then observes the onclick event. Also, I'll define the notifyUser () method,
which will be called by the event handler when the image is clicked.

ImageHandler = Class.create();

ImageHandler.prototype = {
initialize : function(img)
{
$(img).observe('click', handleClick);
b

notifyUser : function()
{

alert('The image was clicked');
}
};

So far so good. The image element is set as the first argument to the constructor, and the
onclick event is observed on it. But wait, I haven't implemented the handleClick() method,
which is called by the event observer. I'll add it to the class:

ImageHandler = Class.create();

ImageHandler.prototype = {
initialize : function(img)

{
$(img).observe('click', handleClick);
b
notifyUser : function()
{
alert('The image was clicked');
}
handleClick : function(e)
{
this.notifyUser();
}

};

149

150

CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

The event handler function is now there. But will it be called when the image is clicked?
No—the observer will call the global handleClick() function, not the handleClick() method
inside the ImageHandler class. I need to add this in front of the handleClick() call:

initialize : function(img)
{
$(img).observe('click', this.handleClick);

}

There’s one small problem with this. The correct function will now be called when
the image is clicked, but it will be called from the event-handling part of the system. In the
handleClick() function, I refer to this.notifyUser(). Unfortunately, calling this here will not
refer to the current instance of ImageHandler.

This is where bind() comes in. I must bind the event-handler function to the current
object. Rather than using this.handleClick as the event handler, I actually need to use
this.handleClick.bind(this), as follows:

ImageHandler = Class.create();

ImageHandler.prototype = {
initialize : function(img)

{
$(img).observe('click', this.handleClick.bind(this));
b
notifyUser : function()
{
alert('The image was clicked');
b
handleClick : function(e)
{
this.notifyUser();
}

};

By calling bind() on the function, I'm effectively saying, “when I refer to this in the
ImageHandler’s handleClick() function, it should refer to the object I'm passing to bind(),
which is an instance of ImageHandler.”

The difference between bind() and bindAsEventListener() is that when you use
bindAsEventListener() the event object will be passed in as the first argument to the bound
function. Typically, you will always use bindAsEventListener() when observing events, not
bind(). So, in actual fact, the preceding code to observe the image click needs to be as follows:

$(img).observe('click', this.handleClick.bindAsEventlListener(this));

When implementing callbacks for an Ajax response, you only use bind(), as the response
isn't triggered by an event. For example, the following code initiates an Ajax request when
the object is initialized. The Ajax request will call handleSuccess () if the request is successfully

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

performed. I will tell Prototype to bind the instance of AjaxBindExample to the handleSuccess()
function:

AjaxBindExample = Class.create();

AjaxBindExample.prototype = {
initialize : function(img)

{
var options = {
onSuccess : this.handleSuccess.bind(this)
¥
new Ajax.Request('/someUrl', options);
1
handleSuccess : function(transport)
{
this.doSomething();
}

doSomething : function()

{1}
};

From Prototype to Scriptaculous

Prototype is a very useful JavaScript framework, and we just covered a large amount of the
functionality it provides. We didn'’t cover everything available in Prototype, however, as it is
simply not all relevant to most of the code you will write in your Web 2.0 applications.

We now move on to Scriptaculous, a JavaScript library used to add special effects to web
sites. Scriptaculous is built upon Prototype, as it makes extensive use of nearly all classes pro-
vided by Prototype—even ones we haven't yet looked at, such as Position (used for element
positioning and other issues related to the complex task of cross-browser layout). We will
briefly cover exactly what Scriptaculous can do, then go over the installation of the library on
your web pages, and finally look at an extensive example, which will make use of Scriptacu-
lous effects and controls, Prototype classes, Ajax, and PHP.

Before we go any further, though, let’s look at what Scriptaculous can do for us. We won'’t
go into all features in detail, but we will cover the more important ones, and anything else that
will be required in this book.

Prebuilt Controls

Scriptaculous provides a number of prebuilt controls that can easily be included on your page.
A control is a complex element for user interaction, typically used within or in place of forms.

151

152 CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

The controls available in Scriptaculous are as follows:

e Autocompleter: A text field that automatically provides suggestions based on user-input
(somewhat similar to Google Suggest—http://www.google.com/webhp?complete=1&hl=en).

Note In Chapter 12 we will implement a JavaScript class that behaves similarly to Google Suggest rather
than using the one provided by Scriptaculous. This allows us to look at some of the nitty-gritty code involved
in developing such a class.

e InPlaceEditor: A class that allows a user to edit content on a web page directly. For
example, if you had a list of files, you could use InPlaceEditor to allow users to rename
a file by clicking on it. The filename would be replaced by a text input field, allowing the
new filename to be entered inline.

e Slider: A slider that a user can click and drag to change a value. Sliders are very cus-
tomizable, including their styles, available values, and orientation (horizontal or
vertical).

Drag and Drop

With Scriptaculous, it is easy to define draggable areas (using the Draggables class) and
droppable areas (using the Droppables class) on your HTML pages. This allows you to achieve
effects such as the following very easily:

e Sort a list of items using the Sortables class, meaning that list items can be clicked on
and dragged to their new location (and the new order can be saved in real time trans-
parently using Ajax).

¢ Drag an item from one list to another. For example, if you were managing product
images for an online store, you might have a gallery of all the unused images. You could
drag an image from this list onto a list of product images. Once again, you could save
this state change transparently using Ajax.

Visual Effects

There are five core effects in Scriptaculous:

» Effect.Opacity: Changes the opacity (transparency) of an element. This is done gradu-
ally over a specified period of time. For instance, you could fade something from 100
percent opacity to 50 percent opacity over a period of 2 seconds.

e Effect.Scale: Changes the size of an element to the specified dimensions. This allows
you to easily grow or shrink an element.

* Effect.MoveBy: Moves an element by a specified number of pixels (in both the X and Y
directions).

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

e Effect.Highlight: Highlights an element with a given color. Both a starting color and
finishing color are specified, and the element changes color from the starting color to
the finish color. This effect would typically be used to draw attention to a particular
area of the page, such as to notify the user that an Ajax request has completed.

e Effect.Parallel: Combines one or more effects into a single effect.

In addition to these core effects, there are a large number of combination effects, built
using the core effects. They include the following:

e Effect.Appear: Makes a hidden element appear, going from complete transparency to
100 percent opacity.

e Effect.Fade: Makes an element completely transparent (the opposite of
Effect.Appear). At the completion of the effect, it will also hide the element from the
document (that is, it will set the element’s CSS display property to none).

e Effect.Grow: Grows an element from a size of 0x0 to its normal size. At the start of the
effect, the element is shrunk to 0x0 and then grown gradually to normal size. Typically
the element will be hidden prior to calling this effect.

e Effect.Shrink: Scales an element gradually down to a size of 0x0 (the opposite of
Effect.Grow).

There are many more effects available, and you can write your own. The Scriptaculous
web site (http://script.aculo.us) has more examples of the effects you can use.

DOM Element Builder

Scriptaculous provides a class called Builder, which is used to dynamically create new ele-
ments in the DOM. It is effectively a replacement for the document.createElement() available
in modern browsers.

Tip The upcoming release of Prototype (version 1.6.0) will include a built-in DOM element builder. This
means you can use Prototype to create new DOM elements rather than using Scriptaculous. Throughout this
book, however, we will be using the Scriptaculous Builder class when we need to dynamically create new
DOM elements. You can still create DOM elements using the browser’s built-in functions, but the solution
provided by Scriptaculous is much cleaner and simpler.

JavaScript Unit Testing

The final class provided by Scriptaculous is called Test, which provides unit testing capabili-
ties for JavaScript. The idea is to write a series of test cases alongside your code as you are
developing it. This allows you to assert that your code still works correctly in the future even
after making changes. It is useful for discovering bugs early on that you might not have discov-
ered until later.

153

154

CHAPTER 5 ©' INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

To use this class, you must manually include the unittest. js file in your HTML docu-
ment. We will not be using this class in this book.

Downloading and Installing Scriptaculous

You can download Scriptaculous from http://script.aculo.us. The version used in this book
is 1.7.1b3, and it requires Prototype 1.5.1.1 (typically when a new version of Prototype is
released, a corresponding version of Scriptaculous is also released).

After extracting the downloaded archive, all you need are the files in the src directory; I
like to put these files in a directory called scriptaculous. Note that Prototype is also included
in the archive (inside the 1ib directory), but you may already have the file installed. If not, this
is the same file that you would download from http://www.prototypejs.org.

Assuming you created the scriptaculous directory within a directory called /js (just as
you did for Prototype), you would load Scriptaculous in your HTML pages using code similar
to the following:

<html>

<head>
<title>Loading the Scriptaculous library</title>
<script type="text/javascript" src="/js/prototype.js"></script>
<script type="text/javascript"

src="/js/scriptaculous/scriptaculous.js"></script>
</head>
<body>

</body>
</html>

As you can see, Prototype is loaded prior to Scriptaculous. If you do not do this, an excep-
tion will be thrown by Scriptaculous.

Tip If you do not need to use Scriptaculous on a particular page, you should avoid loading it to improve
download speeds of the page and slightly reduce system overhead when loading the page. In addition to the
main scriptaculous. js file, there are six JavaScript files that are automatically loaded. This totals seven
HTTP requests and about 150KB just for Scriptaculous (the unit testing library, unittest. js, isn’t automati-
cally loaded). In addition to this, Prototype is another 94KB.

Combining Prototype, Scriptaculous, Ajax, and
PHP in a Useful Example

In order to demonstrate how to actually use Scriptaculous, we are going to write a script that
utilizes it and makes use of the Prototype features we have covered so far in this chapter.

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

We will create a script that allows a user to sort a list of items using drag and drop. The
script will do the following:

1.

2.
3.
4,

Once the user loads the page, use Ajax to fetch the list of items to be sorted and display
them to the user

Allow the user to click and drag items to new locations to change the list order
Save the new order of the list after the user releases an item in a new location

Notify the user when the new order has been saved

We will look at everything that is involved, including these functions:

Fetching the list of items using Ajax and using the DOM to create an unordered list
() in which to display the items.

Making the list of items into a drag-and-drop list using the Scriptaculous Sortable
class.

Styling the list of items in a manner that makes it easy for the user to drag items.
Handling Ajax events, including errors that may occur.

Using PHP in the background to save the list order. The list will be saved in a MySQL
database.

The code will be structured as follows:

index.php: A simple HTML page containing placeholders in which to show the sortable
list and to show status messages.

styles.css: An external CSS file used to style the HTML page.

items.php: A PHP utility script used to manage the list of items, including connecting to
the database, retrieving the list of items, and updating the order of the items.

processor.php: A PHP script to respond to the two different Ajax requests.

scripts.js: An external JavaScript file (in addition to Prototype and Scriptaculous) to
handle the client-side application logic. This will be responsible for making the two
Ajax requests required (fetching the list of items, and saving its new order).

Note These files should be kept separate from the main web application we began in earlier chapters,
since these files will not form part of the final application. This code will work just fine from a subdirectory.

Figure 5-1 shows how the page will look once the example is complete. This is an action
shot of the “Door” item being dragged to the bottom of the list.

155

156 CHAPTER 5 ©' INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

& Manage items order - Mozilla Firefox |ﬂli_hJ
File Edit View History Bookmarks Tools Help
- & [
€ (e

|| Manage items order 8 i
Status: (nothing to report)

Manage items order

Bicycle

Car

Door <‘.%E'|>

Chair

House

Table

Window
[~ Done o0 .

Figure 5-1. Dragging an item in the list to a new location

Creating the Main HTML Page: index.php

First we need to create the main index HTML page, as shown in Listing 5-8. This is the page
users will load in the browser.

Listing 5-8. The HTML Code Used to Display the List to the User (index.php)

<html>
<head>

<title>Manage items order</title>

<script type="text/javascript" src="/js/prototype.js"></script>

<script type="text/javascript"
src="/js/scriptaculous/scriptaculous.js"></script>

<script type="text/javascript" src="scripts.js"></script>

<link type="text/css" rel="stylesheet" href="styles.css" />

</head>
<body>
<div id="status-container">
Status:

(nothing to report)
</div>

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

<div id="content">
<h1>Manage items order</h1>

<div id="container">
(items not yet loaded)
</div>
</div>
</body>
</html>

In this code we first load the Prototype and Scriptaculous libraries, followed by our own
JavaScript file (scripts. js). The files must be loaded in this order, as Scriptaculous relies on
Prototype, and our script relies on both. Then the external CSS file is loaded.

Next, we include a container called #status-container to show a status message. When a
new status message is set, it will be displayed inside of #status. The text inside of #status is
the default text, meaning that after a new status message is shown, #status will revert back to
this text.

We then define a div called #content. This is only used because of how we will style
#status-container. Inside of this is a div called #container—this is where the sortable list
will appear. Note that we could define the tag here, and then add elements to it
later, but instead of doing that I've included a message saying the items aren’t yet loaded.
This message will be replaced by the list after it is loaded.

That is all that is required in this file. If you're wondering how the script is initiated, we
will actually define the onload event inside of scripts. js; after everything is loaded, the list
will be fetched using Ajax.

Note This file could just as easily be called index.html as it doesn’t contain any PHP code; however, |
like to keep all files consistently named, rather than have a mix of . php and . html files.

Styling the Application: styles.css

Now let’s look at the CSS file for our application, styles.css. Listing 5-9 shows the code for
this file. It should be stored in the same directory as the index. php file.

Listing 5-9. The CSS Code Used to Style the Example Application (styles.css)

body {
margin : 0;
font-family : sans-serif;
font-size : 12px;

}

ul.sortable {
list-style-type : none; width : 300px; margin : 0; padding : 0;

}

157

158

CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

ul.sortable 1i {
margin : 2px; padding : 5px; background : #eee; cursor : move;

}

#status-container {
color : #333; background : #f7f7f7; font-weight : bold; font-size : 11px;
border-bottom : 1px solid #666; padding : 3px;

}
#status {
font-weight : normal;
}
#content {
margin : 10px;
}

The main things to be aware of in this file are the ul.sortable and ul.sortable 1i selec-
tors. These give the list items the look and feel of items that can be moved. We also change the
mouse pointer to move to indicate that the elements can be dragged when the cursor is above
them.

Creating and Populating the Database: schema.sql

As mentioned previously, we will be using a MySQL database in this example to store the list
items. The database is called cho5_example. Assuming you already have permissions set up
correctly in your MySQL server, use the following query to create your database:

mysql> create database ch05_example;

You may need to grant the correct permissions so that the database can be accessed. To
use the same username and password as we used in Chapter 2, you can use the following
command:

mysql> grant all on cho5 example.* to phpweb20@localhost identified by 'myPassword';
You can then populate this database using the SQL queries inside schema.sql, as shown in

Listing 5-10.

Listing 5-10. The SQL Queries Used to Populate the Database (schema.sql)

create table items (

item_id serial not null,
title varchar(255) not null,
ranking int,

primary key (item id)
);

insert into items (title) values ('Bicycle');

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

insert into items (title) values ('Car');
insert into items (title) values ('Chair');
insert into items (title) values ('Door');
insert into items (title) values ('House');
insert into items (title) values ('Table');
insert into items (title) values ('Window');

Note The SQL code in schema. sql will also work just fine in PostgreSQL (although the commands to
create the database and user will be different).

You can either paste these commands directly into the MySQL console, or you could run
the following command (from the Linux or Windows command prompt):

$ mysql -u phpweb20 -p cho5 example < schema.sql

In the preceding table schema, the ranking column is used to store the order of the list
items. This is the value that is manipulated by clicking and dragging items using the Scriptac-
ulous Sortable class.

Note At this stage we aren’t storing any value for the ranking column. This will only be saved when the
list order is updated. In the PHP code, you will see that if two or more rows have the same ranking value,
they will then be sorted alphabetically.

Managing the List Items on the Server Side: items.php

We must now write the server-side code required to manage the list items. Essentially, we need
a function to load the list of items, and another to save the order of the list. (We will look at
how these functions are utilized shortly.)

In addition to these two functions, we also need to include a basic wrapper function to
connect to the database. In larger applications you would typically use some kind of database
abstraction (such as the Zend_Db class we integrated in Chapter 2).

All of the code in this section belongs in the items.php file.

Connecting to the Database
Listing 5-11 shows the code used to connect to the MySQL database.

Listing 5-11. The dbConnect() Function, Which Connects to a MySQL Database Called
ch05_example (items.php)

<?php
function dbConnect()

{

159

160 CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

$1link = mysql connect('localhost', 'phpweb20', 'myPassword');
if (!1$link)
return false;

if (!'mysql select db('cho5 _example')) {
mysql close($link);
return false;

return true;

}

If the connection cannot be made (either to the server, or to the database after connect-
ing to the server) then false is returned; otherwise true is returned. Since selecting the
database in MySQL is a separate step from connecting to the server, we include a call to close
the connection if the database cannot be selected.

Retrieving the List ltems

The getItems() function returns an array of all the items in the list. Items are returned in an
associative array, with the item ID as the key and the item title as the array value. Listing 5-12
shows the code for getItems().

Listing 5-12. The getitems() Function, Which Returns an Associative Array of the Rows from the
Table Items (items.php)

function getItems()

{
$query = 'select item id, title from items order by ranking, lower(title)';
$result = mysql query($query);
$items = array();
while ($row = mysql fetch object($result)) {
$items[$row->item id] = $row->title;
}
return $items;
}

In this function, we sort the list by each item’s ranking value. This is the value that is
updated when the list order is changed. Initially, there is no ranking value for items, so we use
the title column as the secondary ordering field.

Processing and Saving the List Order

Finally, we must save the new list order to the database after a user drags a list item to a new
location. In the processItemsOrder () function, we retrieve the new order from the post data
(using PHP’s $ POST superglobal), and then update the database. If this action fails, false is
returned; this will occur if the new ordering data isn’t found in $_POST. If the new list order is
saved, true is returned.

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Listing 5-13 shows the processItemsOrder() function.

Listing 5-13. The processitemsOrder() Function, Which Takes the New List Order from the Post
Data and Saves It to the Database (items.php)

function processItemsOrder($key)
{
if (lisset($ POST[$key]) || !is array($ POST[$key]))
return false;

$items = getItems();

$ranking = 1;
foreach ($ POST[$key] as $id) {
if (larray key exists($id, $items))
continue;

$query = sprintf('update items set ranking = %d where item_ id = %d',
$ranking,

$id);

mysql query($query);
$ranking++;

}

return true;

>

Processing Ajax Requests on the Server Side: processor.php

In the previous section, we covered the code used to manage the list of items. We will now look
at processor.php, the script responsible for handling Ajax requests and interfacing with the
functions in items. php.

As mentioned earlier, there are two different Ajax requests to handle. The first is the load
action, which returns the list of items as XML. This action is handled by calling the getItems()
function, and then looping over the returned items and generating XML based on the data.

The second action is save, which is triggered after the user changes the order of the
sortable list. This action results in a call to the processItemsOrder () function we just looked at.

Listing 5-14 shows the contents of the processor. php file.

Listing 5-14. Loading and Saving Ajax Requests (processor.php)
<?php

require once('items.php');

if (!dbConnect())
exit;

161

162 CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

$action = isset($ POST['action']) ? $ POST['action'] : '';

switch ($action) {
case 'load':

$items = getItems();

$xmlItems = array();

foreach ($items as $id => $title)

$xmlItems[] = sprintf('<item id="%d" title="%s" />',

$id,
htmlSpecialChars($title));

$xml = sprintf('<items>%s</items>"',
join("\n", $xmlItems));

header('Content-type: text/xml");
echo $xml;
exit;

case 'save':
echo (int) processItemsOrder('items');
exit;

>

The first thing we do in this code is include the items.php file and call dbConnect (). If this
function call fails, there’s no way the Ajax requests can succeed, so we exit right away. The
JavaScript code we will look at in the next section will handle this situation.

We then use a switch statement to determine which action to perform, based on the value
of the action element in the $_POST array. This allows for easy expansion if another Ajax
request type needs to be added. If the action isn't recognized in the switch, nothing happens
and the script execution simply ends.

Handling the Load Action

To handle the load action, we first retrieve the array of items. We then loop over them and
generate XML for the list. We use htmlSpecialChars() to escape the data so that valid XML is
produced. Technically speaking, this wouldn’t be sufficient in all cases, but for this example it
will suffice.

The resulting XML will look like the following:

<items>
<item id="1" title="Bicycle" />
<item id="2" title="Car" />
<item id="3" title="Chair" />
<item id="4" title="Door" />
<item id="5" title="House" />
<item id="6" title="Table" />
<item id="7" title="Window" />

</items>

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Finally, we send this XML data. To tell the requester what kind of data is being returned,
the content-type header is sent with text/xml as its value.

Handling the Save Action

All processing for the save action is taken care of by the processItemsOrder() function, so it is
relatively simple to handle this request. The items value is passed as the first argument, as this
corresponds to the value in the post data holding the item order.

The processItemsOrder () function returns true if the list order was successfully updated.
To indicate this to the JavaScript, we return 1 for success. Any other value will be treated as
failure. As such, we can simply cast the return value of processItemsOrder() using (int) to
return a 1 on success.

Creating the Client-Side Application Logic: scripts.js

We will now look at the JavaScript code used to make and handle all Ajax requests, including
loading the items list initially, making it sortable with Scriptaculous, and handling any changes
in the order of the list. All the code listed in this section is from the scripts. js file in this chap-
ter’s source code.

Application Settings

We first define a few settings that are used in multiple areas. Using a hash to store options at
the start of the script makes altering code behavior very simple. Listing 5-15 shows the hash
used to store settings.

Listing 5-15. The JavaScript Hash That Stores Application Settings (scripts.js)

var settings = {

containerId : 'container',
statusId : 'status’',
processUrl 1 'processor.php’,
statusSuccessColor : '#99ff99",
statusErrorColor : '#ff9999"

};

The containerId value specifies the ID of the element that holds the list items (that is,
where the of list items will go). The statusId value specifies the element where
status messages will appear.

The value for processUrl is the URL where Ajax requests are sent. statusSuccessColor
is the color used to highlight the status box when an Ajax request is successful, while
statusErrorColor is used when an Ajax request fails.

Initializing the Application with init()

To begin this simple Ajax application, we call the init() function. Listing 5-16 shows the code
for init().

163

164

CHAPTER 5 ©' INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Listing 5-16. The init() Function, Which Begins this Example Ajax Application (scripts.js)

function init()

{
$(settings.statusId).defaultContent = $(settings.statusId).innerHTML;
loadItems();

You might find the first line of this function to be slightly confusing. Essentially,
what it does is save the initial content from the status container in a new property called
defaultContent (remember that in index.php we had the string (nothing to report) in the
status container). This allows us to change the contents of the status container back to this
value after showing a new status message.

Next, we call the loadItems () function, which fetches the list of items from the server and
displays them to the user. We will look at this function shortly.

In order to call this function, we use the onload event. Using Prototype’s Event.observe()
method, we set the init() function to run once the page has finished loading. This is shown in
Listing 5-17.

Listing 5-17. Setting init() to Run once the Page Finishes Loading—Triggered by the
window.onload Event (scripts.js)

Event.observe(window, 'load', init);

Note As we saw earlier in this chapter, using Event.observe() to handle the page onload event is
preferred over using <body onload= "init()">.

Updating the Status Container with setStatus()

Before we go over the main function calls in this example, we will look at the setStatus() util-
ity function. This function is used to update the status message, and it uses Scriptaculous to
highlight the status box (with green for success, or red for error).

Listing 5-18 shows the code for setStatus (). The first argument to this function specifies
the text to appear in the status box. Note that there is also an optional second argument that
indicates whether or not an error occurred. If setStatus() is called with this second argument
(with a value of true), the message is treated as though it occurred as a result of an error.
Essentially, this means the status box will be highlighted with red.

Listing 5-18. The setStatus() Function, Which Displays a Status Message to the User (scripts.js)

function setStatus(msg)
{

var iskError = typeof arguments[1] == 'boolean’ &8 arguments[1];
var status = $(settings.statusId);

var options = {

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

startcolor : isError ?
settings.statusErrorColor :
settings.statusSuccessColor,
afterFinish : function() {
this.update(this.defaultContent);
}.bind(status)

};

status.update(msg);
new Effect.Highlight(status, options);

The options hash holds the options for the Scriptaculous effect we will be using
(Effect.Highlight). First, we specify the starting color based on whether or not an error
occurred, and then we specify code to run after the effect has completed.

In the init() function, we stored the initial content of the status container in the
defaultContent property. Here we change the status content back to this value after the effect
completes.

Notice that we are making use of bind(), which was explained earlier in this chapter. Even
though we haven't created this code in a class, we can bind a function to an arbitrary element,
allowing us to use this within that function to refer to that element.

Next, we call the Prototype update() method to set the status message. We then create a
new instance of the Effect.Highlight class to begin the highlight effect on the status box.
Once again, because this is a class, it must be instantiated using the new keyword.

Loading the List of Items with loadltems()

The loadItems() function initiates the load Ajax request. This function is somewhat straight-
forward—it is the onSuccess callback loadItemsSuccess that is more complicated.

Listing 5-19 shows the code for loadItems(), including a call to the setStatus() function
we just covered.

Listing 5-19. The loadItems() Function, Which Initiates the Load Ajax Request (scripts.js)

function loadItems()

{
var options = {
method : 'post’,
parameters : 'action=load',
onSuccess : loadItemsSuccess,
onFailure : loadItemsFailure
};
setStatus('Loading items');
new Ajax.Request(settings.processUrl, options);
}

In this code, we specify the action=1oad string as the parameters value. This action value
is used in processor.php to determine which Ajax request to handle.

165

166

CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Handling the Response from the Ajax Request in loadltems()

We will now look at the onSuccess and onFailure callbacks for the Ajax request in the previous
section. The onFailure callback is handled by the loadItemsFailure() function shown in List-
ing 5-20, while the onSuccess callback is handled by the loadItemsSuccess() function shown
in Listing 5-21.

Listing 5-20. The onFailure Callback Handler (scripts.js)

function loadItemsFailure(transport)

{

setStatus('Error loading items', true);

}

In this function, we simply set an error status message by passing true as the second
parameter to setStatus().

Listing 5-21. The onSuccess Callback Handler (scripts.js)

function loadItemsSuccess(transport)
{
// Find all <item></item> tags in the return XML, then cast it into
// a Prototype Array
var xml = transport.responseXML;
var items = $A(xml.documentElement.getElementsByTagName('item'));

// If no items were found there's nothing to do
if (items.size() == 0) {

setStatus('No items found', true);

return;

}

// Create an array to hold items in. These will become the </1i> tags.
// By storing them in an array, we can pass this array to Builder when

// creating the surrounding . This will automatically take care
// of adding the items to the list

var listItems = $A();

// Use Builder to create an element for each item in the list, then
// add it to the listItems array
items.each(function(s) {
var elt = Builder.node('1i',
{ id : 'item ' + s.getAttribute('id") },
s.getAttribute('title'));

listItems.push(elt);
D;

// Finally, create the surrounding element, giving it the className

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

// property (for styling purposes), and the 'items' values as an Id (for
// form processing - Scriptaculous uses this as the form item name).
// The final parameter is the element we just created
var list = Builder.node('ul’,
{ className : 'sortable', id : 'items' },
listItems);

// Get the item container and clear its content
var container = $(settings.containerld);
container.update();

// Add the to the empty container
container.appendChild(1list);

// Finally, make the list into a Sortable list. All we need to pass here
// is the callback function to use after an item has been dropped in a
// new position.

Sortable.create(list, { onUpdate : saveltemOrder.bind(list) });

The preceding code has been documented inline to show you how it works. The only
new things in this code we haven't yet covered are the calls to the Scriptaculous functions
Builder.node() and Sortable.create().

The following code shows the HTML equivalent of the elements created using the
Builder.node() function:

<ul id="items" class="sortable">
<li id="item 1">Bicycle</1i>
<li id="item 2">Car
<1i id="item_3">Chair
<li id="item 4">Door</1i>
<li id="item 5">House</1li>
<li id="item 6">Table</1i>
<1i id="item 7">Window</1i>

This list is then made into a sortable list by passing it as the first parameter to
Sortable.create(). Additionally, the saveItemOrder () function is specified as the function to
be called after the user moves a list item to a new location. Once again, we use bind(), allow-
ing us to use this inside of saveItemOrder () to refer to the #items list.

Handling a Change to the List Order with saveltemOrder()

A call to the saveItemOrder() function will initiate the second Ajax request, save. This function
shouldn’t be called directly, but only as the callback function on the sortable list, to be trig-
gered after the list order is changed. Listing 5-22 shows the code for saveItemOrder().

167

168

CHAPTER 5 " INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

Listing 5-22. The saveltemOrder Callback, Triggered After the Sortable List Order is Changed
(scripts.js)

function saveItemOrder()

{
var options = {
method : 'post’,
parameters : 'action=saved' + Sortable.serialize(this),
onSuccess : saveltemOrderSuccess,
onFailure : saveltemOrderFailure
b
new Ajax.Request(settings.processUrl, options);
}

In this code, we once again create an options hash to pass to Ajax.Request(). This time, we
set the action value inside of parameters to save. Additionally, we use Sortable.serialize() to
create appropriate form data for the order of the list. This is the data that is processed in the PHP
function processItemsOrder () from items.php.

The value of parameters will look something like the following:

action=saveditems[]=18items[]=28items[]=38items[]=48items[]=58items[]=68items[]=7

Each value for items[] corresponds to a value in the items database table (with the item
part automatically removed).

Handling the Response from the Ajax Request in saveltemOrder()

Finally, we must handle the onSuccess and onFailure events for the save Ajax request. Listing
5-23 shows the code for the onFailure callback saveItemOrderFailure(), while Listing 5-24
shows the code for the onSuccess callback saveItemOrderSuccess().

Listing 5-23. The saveltemOrderFailure() Callback, Used for the onFailure Event (scripts.js)

function saveItemOrderFailure(transport)

{
}

setStatus('Error saving order', true);

If saving the order of the list fails, we simply call setStatus() to indicate this, marking the
status message as an error by passing true as the second parameter.

Handling the onSuccess event is also fairly straightforward. To determine whether the
request was successful, we simply check to see if the response contains 1. If so, the request was
successful. Once again we call setStatus() to notify the user. If the request wasn’t successful,
we call saveItemOrderFailure() to handle the error.

Listing 5-24. The saveltemOrderSuccess() Callback, Used for the onSuccess Event (scripts.js)

function saveItemOrderSuccess(transport)

{

CHAPTER 5 ©" INTRODUCTION TO PROTOTYPE AND SCRIPTACULOUS

if (transport.responseText != '1')
return saveltemOrderFailure(transport);

setStatus('Order saved');

If you now load the index.php file created in Listing 5-8 in your web browser you will be
shown a list of items that you can now drag and drop. When you drop an item to a new loca-
tion an Ajax request will be performed, updating the order saved in the database.

Summary

As you have seen in this chapter, the Prototype JavaScript library is a very powerful library that
provides a lot of useful functionality, as well as making cross-browser scripting simpler. We
also looked at the Scriptaculous library and created a simple Ajax application that made use of
its highlight effect and sortable control.

In the next chapter, we will build on the HTML code we created in Chapter 2 by using
some powerful CSS techniques to style our web application. Once we have the HTML and CSS
in place, we can add new functionality that makes use of the JavaScript techniques we have
learned in this chapter.

169

CHAPTER 6

Styling the Web Application

At this stage in the development of our Web 2.0 application, we have created some basic
templates and a few different forms (for user registration and login), but we haven't applied
any customized styling to these forms. In this chapter we are going to start sprucing up our
site. In addition to making the forms we have already created look much better, we are also
going to put styles and layout in place to help with development in following chapters.

We will be covering a number of topics in this chapter, including the following:

* Adding navigation and search engine optimization elements, such as the document
title, page headings, and breadcrumb trails

» Creating a set of generic global styles that can easily be applied throughout all tem-
plates (such as forms and headings) using Cascading Style Sheets (CSS)

* Allowing for viewing on devices other than a desktop computer (such as creating a
print-only style sheet for “printer-friendly” pages)

e Integrating the HTML and CSS into the existing Smarty templates, and using Smarty
templates to easily generate maintainable HTML

* Creating an Ajax-based form validator for the user registration form created in Chapter 4

Adding Page Titles and Breadcrumbs

Visually indicating to users where they are in the structure of a web site is very important for
the site’s usability, and many web sites overlook this. A user should easily be able to identify
where they are and how they got there without having to retrace their steps.

To do this, we must assign a title to every page in our application. Once we have the titles,
we can set up a breadcrumb system. A breadcrumb trail is a navigational tool that shows users
the hierarchy of pages from the home page to where they currently are. Note that this differs
from how the web browser’s history works—the breadcrumb system essentially shows all of
the parent sections the current page is in, not the trail of specific pages the user visited to get
to the current page.

A breadcrumb system might look like this:

Home > Products > XYZ Widget

In this example, the current page would be XYZ Widget, while Home would be hyperlinked to

the web site’s home page, and Products would link to the appropriate page.
m

172

CHAPTER 6 STYLING THE WEB APPLICATION

To name the pages, we need to define a title in each action handler of each controller (for
example, to add a title to the account login page we will add it to the loginAction() method of
the AccountController PHP class). Some titles will be dynamically generated based on the pur-
pose of the action (such as using the headline of a news article as the page title when displaying
that article), while others will be static. You could argue about whether the title of a page should
be determined by the application logic (that is, in the controller file) or by the display logic
(determined by the template). In some special cases titles will need to be determined in the
template, but it is important to always define a page title in the controller actions to build up a
correct breadcrumb trail. If the page titles were defined within templates, it would be very diffi-
cult to construct the breadcrumb trail.

Note In larger web applications, where the target audience includes people not only from your country
but also other countries, you need to consider internationalization and localization (also known as i18n and
L10n, with the numbers indicating the number of letters between the starting and finishing letters). Interna-
tionalization and localization take into account a number of international differences, including languages
and formatting of numbers, currencies, and dates. In the case of page titles, you would fetch the appropriate
page title for the given language based on the user’s settings, rather than hard-coding the title in the PHP
code. The Zend_Translate component of the Zend Framework can help with implementation of i18n
and L10n.

To implement the title and breadcrumb system, we need to make two changes to the way
we create application controllers:

1. We must implement the Breadcrumbs class, which is used to hold each of the bread-
crumb steps. The Breadcrumbs object will be assigned to the template, so we can easily
output the trail in the header. tpl file.

2. We must build a trail in each controller action with the steps that lead up to the action.
The steps (and number of steps) will be different for each action, depending on its spe-
cific purpose.

The Breadcrumbs Class

This is a class that simply holds an array of the steps leading up to the current page. Each element
of the array has a title and a link associated with it. Listing 6-1 shows the code for Breadcrumbs,
which we will store in Breadcrumbs. php in the /var/www/phpweb20/include directory.

Listing 6-1. Tracking the Trail to the Current Page with the Breadcrumbs Class
(Breadcrumbs.php)

<?php
class Breadcrumbs

{

private $ trail = array();

CHAPTER 6 © STYLING THE WEB APPLICATION

public function addStep($title, $link = '")

{

$this-> trail[] = array('title' => $title,

"link' => $link);

}
public function getTrail()
{

return $this-> trail;
}
public function getTitle()
{

if (count($this-> trail) == 0)

return null;

return $this-> trail[count($this-> trail) - 1]['title'];

}

>

This class is very short and straightforward, consisting of just three methods: one to add a
step to the breadcrumbs trail (addStep()), one to retrieve the trail (getTrail()), and one to
determine the page title using the final step of the trail (getTitle()).

To use Breadcrumbs, we instantiate it in the init() method of the CustomControllerAction
class. This makes it available to all classes that extend from this class. Additionally, we will
add a link to the web site home page by calling addStep('Home', '/") after we instantiate
Breadcrumbs.

Note This object is freshly created for every action that is dispatched. This means that even if you
forward from one action to another in the same request, the breadcrumbs trail is recreated (since the
controller object is reinstantiated).

Next, we need to add the postDispatch() function to CustomControllerAction. This func-
tion will be executed once a controller action has completed. We will use this function to
assign the breadcrumbs trail and the page title to the template, since postDispatch() is called
prior to the automatic view renderer displaying the template.

Listing 6-2 shows the updated version of CustomControllerAction.php, which now instan-
tiates Breadcrumbs and assigns it to the template.

Listing 6-2. Instantiating and Assigning the Breadcrumbs Class (CustomControllerAction.php)

<?php
class CustomControllerAction extends Zend_Controller Action

{

173

174

CHAPTER 6 "' STYLING THE WEB APPLICATION

public $db;
public $breadcrumbs;

public function init()

{
$this->db = Zend Registry::get('db");
$this->breadcrumbs = new Breadcrumbs();
$this-s>breadcrumbs->addStep('Home', '/');
}

// ... other code

public function postDispatch()
{

$this->view->breadcrumbs = $this->breadcrumbs;
$this->view->title = $this->breadcrumbs->getTitle();

>

Note When we add the title of the current page to the trail, we don’t need to add its URL, since the user
is already on this page and doesn’t need to navigate to it.

Generating URLSs

Before we go any further, we need to consider how to generate URLs for each step we add to
the breadcrumbs. For example, if we wanted to link to the account login page, the URL would
be /account/login. In this instance, the controller name is account and the action name is
login.

The simplest solution is to hard-code this URL both in the PHP code (when creating the
breadcrumbs) and in the template (when creating hyperlinks). However, hard-coding URLs
doesn'’t give you any flexibility to change the format of the URL. For example, if you decide to
move your web application to a subdirectory of your server instead of the root directory, all of
your hard-coded URLs would be incorrect.

Tip Ifyou did decide to use a subdirectory, you would call $controller->setBaseUrl (' /path/to/base")
in the index. php bootstrap file. This could then be retrieved by calling $request->getBaseUr1() when
inside a controller action, as you will see shortly.

CHAPTER 6 © STYLING THE WEB APPLICATION

Generating URLs in Controller Actions

We now need to write a function that generates a URL based on the controller and action
names passed to it. To help us with URL generation, we will use the Ur1 helper that comes with
Zend_Controller. The only thing to be aware of is that this helper will not prefix the generated
URL with a slash, or even with the base URL (as mentioned in the preceding tip). Because of
this, we must make a slight modification by extending this helper—we will create a new func-
tion called getUr1().

Listing 6-3 shows the getUr1() function we will add to CustomControllerAction.php. This
code uses the Url helper to generate the URL, and then prepends the base URL and a slash at
the start. The other change made in this file modifies the home link that is generated so it calls
the new getUr1() function, rather than hard-coding the slash.

Listing 6-3. Creating a Function to Generate Application URLs (CustomControllerAction.php)

<?php
class CustomControllerAction extends Zend Controller Action
{
// ... other code
public function init()
{
// ... other code
$this-s>breadcrumbs->addStep('Home', $this->getUrl(null, 'index'));
}
public function getUrl($action = null, $controller = null)
{
$url = rtrim($this->getRequest()->getBaseUrl(), '/') . '/';
$url .= $this->_helper->url->simple($action, $controller);
return $url;
}
// ... other code
}
>

Note The call to rtrim() is included because the base URL may end with a slash, in which case the URL
would have // at the end.

Now within each controller action we can call $this->getUr1() directly. For example,
if we wanted to generate the URL for the login page, we would call $this->getUrl('login’,
'account').

175

176

CHAPTER 6 STYLING THE WEB APPLICATION

Note This code uses the simple() method on the Ur1 helper, which is used to generate a URL from an
action and a controller. In later chapters we will define custom routes, which means the format of URLS is
more complex. This helper also provides a method called ur1(), which is used to generate URLs based on
the defined routes.

Generating URLs in Smarty Templates

Before we go any further, we must also cater for URL generation within our templates. To
achieve this, we will implement a Smarty plug-in called geturl. Doing so will allow us to
generate URLs by using {geturl} in templates. For instance, we could generate a URL for
the login page like this:

{geturl action="login' controller="account'}

Additionally, we will allow the user to omit the controller argument, meaning that the current
controller would be used.

Tip The preceding code is an example of a Smarty function call. The three main types of plug-ins are
functions, modifiers, and blocks. Modifiers are functions that are applied to strings that are being output
(making a string uppercase with {$myString|upper}, for example) while blocks are used to define output
that wraps whatever is between the opening and closing tags (such as {rounded_box} Inner content.
{/rounded_box}). In the case of geturl, we will use a Smarty function in order to perform a specific oper-
ation based on the provided arguments; that function isn’t being applied to an existing string, so it is not a
modifier.

A Smarty plug-in is created by defining a PHP function called smarty type name(), where
type is either function, modifier, or block. In our case, since the plug-in is called geturl, the
function is called smarty function geturl().

Tip There are other plug-in types available, such as output filters (which modify template output after it
has been generated), compiler functions (which change the behavior of the template compiler), pre and post
filters (which modify template source prior to or immediately after compilation), and resources (which load
templates from a source other than the defined template directory). These could be the subject of their own
book, so | can’t cover them all here, but this section will at least give you a good idea of how to implement
your own function plug-ins.

All plug-ins should be stored in one of the registered Smarty plug-in directories. Smarty
comes with its own set of plug-ins, and in Chapter 2 we created our own directory in which to
store custom plug-ins (./include/Templater/plugins). The filename of plug-ins follows the

CHAPTER 6 " STYLING THE WEB APPLICATION

format type.name.php, so in our case the file is named function.geturl.php. Smarty will
automatically load the plug-in as soon as we try to access it in a template.

The code for the geturl plug-in is shown in Listing 6-4. It should be written to
./include/Templater/plugins/function.geturl.php.

Listing 6-4. The Smarty geturl Plug-In That Uses the Zend_Controller URL Helper
(function.geturl.php)

<?php
function smarty function geturl($params, $smarty)
{
$action = isset($params['action']) ? $params['action'] : null;
$controller = isset($params['controller']) ? $params['controller'] : null;
$helper = Zend Controller Action HelperBroker::getStaticHelper('url');
$request = Zend Controller Front::getInstance()->getRequest();
$url = rtrim($request->getBaseUrl(), '/') . '/';
$url .= $helper->simple($action, $controller);
return $url;
}
>

All function plug-ins in Smarty retrieve an array of parameters as the first argument and
the Smarty object as the second argument. The array of parameters is generated using the
arguments specified when calling the function. In other words, calling the geturl function
using {geturl action='login' controller="account'} will result in the $params array being
the same as if you used the following PHP code:

<?php
$params = array(
"action’ => 'login’',
‘controller' => 'account'
)5
?>

The function must do its own initialization and checking of the specified parameters. This
is why the code in Listing 6-4 checks for the existence of the action and controller parame-
ters in the first two lines of the function.

Next the Url helper and the current request are retrieved using the provided functions.
You will notice that the code we use to generate the actual URL is almost identical to that in
the CustomControllerAction class.

Finally, the URL is returned to the template, meaning it is output directly. This allows us to
use it inside forms and hyperlinks (such as <form action="{geturl ..}">).

177

178

CHAPTER 6 STYLING THE WEB APPLICATION

Tip The function in Listing 6-4 returns the generated URL so it is output directly to the template. You
may prefer to write it to a variable in your template so you can reuse the URL as required. The convention
for this in Smarty is to pass an argument called assign, whose value is then used as the variable name.
For instance, you could call the function using {geturl action="login' controller="account’
assign="myUrl'}. By including $smarty->assign($params['assign'], $url) in the plug-in instead
of returning the value, you can then access $myUr1 from within your template. Typically you would check for
the existence of assign and output the value normally if it is not specified.

Now, if you need to link to another controller action within a template, you should be
using the {geturl} plug-in. This may be a normal hyperlink, or it may be a form action.

Note At this point | make the assumption that existing templates have been updated to use the
{geturl} plug-in. Try updating the existing templates for registration, login, and updating details (located
in the . /templates/account directory) that we created in Chapter 4 so the forms and any other links in
the page use {geturl}. Alternatively, the downloadable source code for this and remaining chapters will
use {geturl} wherever it should.

Setting the Title and Trail for Each Controller Action

We now have the ability to set the page title and breadcrumb trail for all pages in our web
application, so we must update the AccountController class we created in Chapter 3 to use
these features.

First, we want all action handlers in this controller to have a base breadcrumb trail of
“Home: Account”, with additional steps depending on the action. To add the “Account” bread-
crumb step automatically, we will define the init() method in this class, which calls the
Breadcrumbs: :addStep() method.

We must also call parent::init(), because the init() method in CustomControllerAction
sets up other important data. In fact, this parent method instantiates Breadcrumbs, so it must
be called before adding the breadcrumbs step.

By automatically adding the “Account” step for all actions in this controller, we are effec-
tively naming the index action for this controller Account. This means that in the indexAction()
function we don't need to set a title, as Breadcrumbs: :getTitle() will work this out for us auto-
matically.

Listing 6-5 shows the changes we must make to the AccountController class to set up the
trail for the register and registercomplete actions. No change is required for the index
action. Note that we also set the base URL for the controller in the init() method and change
the redirect URL upon successful registration.

Listing 6-5. Defining the Page Titles and Trails for the Index and Registration Actions
(AccountController.php)

<?php

>

CHAPTER 6 " STYLING THE WEB APPLICATION

class AccountController extends CustomControllerAction

{

public function init()

{
parent::init();
$this-s>breadcrumbs->addStep('Account', $this->getUrl(null, 'account'));
}
public function indexAction()
{
// nothing to do here, index.tpl will be displayed
}
public function registerAction()
{
$request = $this->getRequest();
$fp = new FormProcessor UserRegistration($this->db);
if ($request->isPost()) {
if ($fp->process($request)) {
$session = new Zend Session Namespace('registration');
$session->user_id = $fp->user->getId();
$this->_redirect($this->getUrl('registercomplete'));
}
}
$this->breadcrumbs->addStep('Create an Account');
$this->view->fp = $fp;
}
public function registercompleteAction()
{
// ... other code here
$this->breadcrumbs->addStep('Create an Account',
$this->getUrl('register'));
$this->breadcrumbs->addStep('Account Created');
$this->view->user = $user;
¥
// ... other code here

179

180

CHAPTER 6 STYLING THE WEB APPLICATION

Note You can try adding titles to each of the other actions in this controller (although the logout action
will not require it), or you can simply download the source for this chapter, which will be fully updated to use
the breadcrumbs system.

Because we define the title of the section in the controller’s init() method, we typically
don’t need to define a title in indexAction(), since the title added in init() will be adequate.
Next, we specify the title as “Create an Account” in the registerAction() function. This
string is added to the trail as well as being assigned to the template as $title (this is done
in CustomControllerAction’s postDispatch() method, as we saw in Listing 6-2).

Creating a Smarty Plug-In to Output Breadcrumbs

The breadcrumb trail has been assigned to templates as is, meaning that we can call the
getTrail() method to return an array of all of the trail steps. The problem with this is that it
clutters the template, especially when you consider some of the options that can be used.

Instead, we will create another Smarty plug-in: a function called breadcrumbs. With this
function, we will be able to output the trail based on a number of different options. This func-
tion is reusable, and you'll be able to use it for other sites you create with Smarty. This should
always be a goal when developing code such as this.

Listing 6-6 shows the contents of function.breadcrumbs.php, which is stored in the
./include/Templater/plugins directory. This code basically loops over each step in the bread-
crumb trail and generates a hyperlink and a displayable title. Since it is optional for steps to
have alink, a title is only generated if no link is included. The same class and file naming con-
ventions apply as in the geturl plug-in discussed previously (in the “Generating URLs in
Smarty Templates” section), and as before it is best to initialize all parameters at the beginning
of the function.

Listing 6-6. A Custom Smarty Plug-In Used to Output the Breadcrumb Trail
(function.breadcrumbs.php)

<?php
function smarty function_breadcrumbs($params, $smarty)

{

$defaultParams = array('trail’ => array(),

'separator' => ' > ',
"truncate' => 40);

// initialize the parameters
foreach ($defaultParams as $k => $v) {
if (lisset($params[$k]))
$params[$k] = $v;
}

// load the truncate modifier
if ($params['truncate'] > 0)

CHAPTER 6 " STYLING THE WEB APPLICATION

require_once $smarty-> get plugin filepath('modifier', 'truncate');

$links = array();

$numSteps = count($params['trail']);

for ($i = 0; $i < $numSteps; $i++) {
$step = $params['trail'][$i];

// truncate the title if required
f ($params['truncate'] > 0)
$step['title'] = smarty modifier truncate($step['title'],
$params['truncate']);

// build the link if it's set and isn't the last step
if (strlen($step['link']) > 0 & $i < $numSteps - 1) {
$links[] = sprintf('%s",
htmlSpecialChars($step['link']),
htmlSpecialChars($step['title']),
htmlSpecialChars($step['title']));

}

else {
// either the link isn't set, or it's the last step
$links[] = htmlSpecialChars($step['title']);

}

}

// join the links using the specified separator
return join($params['separator'], $links);

>

After the array of links has been built in this function, we create a single string to be
returned by joining on the separator option. The default value for the separator is >, which we
preescape. It is preescaped because some characters you might prefer to use aren’t typable, so
you can specify the preescaped version when calling the plug-in. An example of this is the »
symbol, which we can use by calling {breadcrumbs separator=' » '}.

When we generate the displayable title for each link, we make use of the Smarty truncate
modifier. This allows us to restrict the total length of each breadcrumb link by specifying the
maximum number of characters in a given string. If the string is longer than that number, it is
chopped off at the end of the previous word and “. ..” is appended. For instance, if you were
to truncate “The Quick Brown Fox Jumped over the Lazy Dog” to 13 characters, it would
become “The Quick...”. This is an improvement over the PHP substr () function, since
substr () will simply perform a hard break in the middle of a word (so the example string
would become “The Quick Bro”).

181

182

CHAPTER 6 STYLING THE WEB APPLICATION

Tip In a Smarty template, you would use {$string|truncate}, but we can use the truncate modifier
directly in our PHP code by first loading the modifier (using $smarty-> get plugin filepath() to
retrieve the full path of the plug-in and then passing the plug-in type and name as the arguments) and then
calling smarty modifier truncate() on the string.

The final thing to note in this function is that the URLs and titles are escaped as required
when adding elements to the $1inks array. This ensures that valid HTML is generated and also
prevents cross-site scripting (XSS) and cross-site request forgery (CSRF). This is explained in
more detail in Chapter 7.

Displaying the Page Title

The final step is to display the title and breadcrumbs in the site templates, and to update the
links to use the geturl plug-in. Listing 6-7 shows the changes to be made to header.tpl, where
we now display the page title within the <title> tag as well as within an <h1> tag. Additionally,
we use the new {breadcrumbs} plug-in to easily output the breadcrumb trail.

Listing 6-7. Outputting the Title and Breadcrumbs in the Header Template (header.tpl)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>{$title|escape}</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
</head>
<body>
<div>
Home
{if $authenticated}
| Your Account
| <a href="{geturl controller='account’
action="details'}">Update Your Details
| <a href="{geturl controller='account’
action="logout'}">Logout
{else}
| <a href="{geturl controller='account’
action='register'}">Register</as
| Login
{/if}

<hr />

{breadcrumbs trail=$breadcrumbs->getTrail()}

CHAPTER 6 © STYLING THE WEB APPLICATION

{if $authenticated}
<hr />
<div>
Logged in as
{$identity->first name|escape} {$identity->last name|escape}
(<a href="{geturl controller='account'
action="logout'}">logout)
</div>
{/if}

<hr />

<h1>{$title|escape}</h1>

Figure 6-1 shows the page, now that it includes the page title and breadcrumbs.

' Account Created - Mozilla Fircfos

File Edit View History Bookmarks Tools Help

\g - - %‘—l ﬁ O http://phpweb20/account/registercomplete I'| B |
|| Account Created 8 .

Home | Register | Login

Home > Account > Create an Account > Account Created

Thank vou Quentin, your registration is now complete.

Your password has been emailed to you at quentin@example com.

ﬁ Done 6@*

Figure 6-1. The Account Created page, showing the page title as well as the full trail of how the
page was reached

Integrating the Design into the Application

We are now at the stage where we can create the application layout by using a more formal
design in the header and footer templates and styling it using Cascading Style Sheets (CSS). In
this section, we will first determine which elements we want to include on pages, and then
create a static HTML file (allowing us to see a single complete page), which we will break up
into various parts that can be integrated into the site templates.

183

184

CHAPTER 6 "' STYLING THE WEB APPLICATION

Creating the Static HTML

Figure 6-2 shows the design we will use for the web application (including CSS, which we will
integrate in the next section), as viewed in Firefox. The layout developed in this chapter has
been tested with Firefox 2, Internet Explorer 6 and 7, and Safari.

Note It is worth mentioning here that this book is devoted to the development side of web applications,
not the design side. As such, the look and feel we use for the web application will be straightforward in com-
parison to what a professional web designer would come up with. Hopefully, though, the techniques here
can help you in marking up a professional design into HTML and CSS.

[& +ome - Mozills firefo e e
File Edit View History Bockmarks Tools Help
G- @ 2% [hutpei/phpuwebz0/ =[]
|| Home 8

Practical PHP Web 2.0 Applications

By Quentin Zervaas

Left column placehalder You are not logaed in. Loq in or register
now.

Home

Web site home

[Fa Done

0|

Figure 6-2. The web page design we will use for the web application: a cross-browser, fluid,
table-free layout
The key elements of this layout include:
* Three columns with a fluid middle column and fixed-size left and right columns
* No tables to set the columns

* Aheader area (for alogo), which can also be expanded to include other elements (such
as advertising)

A tabbed navigation system that allows users to see which section of the site they are in

¢ A breadcrumb trail and page title

CHAPTER 6 © STYLING THE WEB APPLICATION

It is actually somewhat difficult to get a multiple-column layout with a single fluid central
column without using tables. This cross-browser solution is adapted from Matthew Levine’s
Holy Grail technique from “A List Apart” (http://www.alistapart.com/articles/holygrail).

The following HTML code shows the basic structure of how our main site template will be
structured. We will integrate this into our templates shortly.

<html>
<head>
</head>
<body>
<div id="header">
</div>

<div id="nav">
</div>

<div id="content-container" class="column">
</div>

<div id="left-container" class="column">
</div>

<div id="right-container" class="column">
</div>

<div id="footer">
</div>
</body>
</html>

As you can see in this HTML code, the center column (#content-container) appears
before the other columns. This helps with search engine optimization, as the core page con-
tent is earlier in the file, and is therefore treated as being of greater priority in the document.

Note Placing the center column first is also an accessibility feature, since users who rely on screen read-
ers will reach the relevant content sooner.

The preceding code simply demonstrates at the most basic level how the elements of the
page piece together. Let’s now take a look at the full markup before we integrate it into the
templates. Listing 6-8 shows the HTML code that we will be splitting up for use in the tem-
plates. We must also include calls to the Smarty plug-ins we created in order to generate links
and for displaying breadcrumbs. For now though, we just include placeholders for these,
which we will replace with Smarty code in Listing 6-9.

185

186 CHAPTER 6 STYLING THE WEB APPLICATION

Note If you're anything like me—a programmer rather than a designer—it can be useful to see a site
design statically before it is integrated into the application. Typically when | build a new web site or web
application, | work from either prebuilt HTML templates such as this or from a Photoshop design which |
then convert into static HTML with corresponding CSS.

Listing 6-8. The Complete HTML Code Used in Figure 6-2 (listing-6.8.html)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>Sample HTML Layout</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" href="/css/styles.css" type="text/css" media="all" />
</head>
<body>
<div id="header">
</div>

<div id="nav">

<li class="active">Home</1i>
Menu Item 1
Menu Item 2
Menu Item 3

</div>

<div id="content-container" class="column">
<div id="content">

<div id="breadcrumbs">
Home »
Sample HTML Layout

</div>

<h1>Sample HTML Layout</h1>

<p>
Center column
</p>
</div>
</div>

CHAPTER 6 © STYLING THE WEB APPLICATION

<div id="left-container" class="column">
<div class="box">
Left column box 1
</div>

<div class="box">
Left column box 2
</div>
</div>

<div id="right-container" class="column">
<div class="box">
Right column box
</div>
</div>

<div id="footer">
Practical Web 2.0 Application Development With PHP, by Quentin Zervaas.
</div>
</body>
</html>

In this code, we first create the #header block, which is left empty. We will display the logo
in this block by using a CSS background image. Of course, you could choose to include the
logo here using an tag—I have left it blank here because we will be using this block to
include a “print-only” logo (which we will cover in the “Creating a Print-Only Style Sheet”
section in this chapter).

Next, we use an unordered list () to display the web site navigation. You could argue
that this list is in fact in order, so the tag may be used instead. In any case, the correct
semantics involve using an HTML list.

Tip Using an unordered (or ordered) list lends itself to scalability very well. For example, if you were
using JavaScript and CSS to build a drop-down navigation system (one that expands the navigation on
mouseover), using nested tags would work perfectly. Additionally, if the user’s web browser doesn’t
render a JavaScript menu solution, they could easily navigate the site because the links would be structured
for them.

After defining the main content area, we populate the left and right columns. The content
that appears in these columns will be split up into separate boxes, so we give the divs within
these columns a class of .box to easily define that structure. We will define this style shortly in
the style sheet.

Let’s now take a look at how this markup is rendered in Firefox with no styles defined.
Figure 6-3 demonstrates how everything gets rendered from top to bottom exactly as it is
defined in the HTML. Additionally, you can see how the navigation is displayed horizontally,
which we will also fix in the CSS.

187

188

CHAPTER 6 "' STYLING THE WEB APPLICATION

& sample HTML Layout - Mozilla Firerox

File Edit View History Bookmarks Tools Help

@ - € al (=

[} Sample HTML Layout le]

+ Home

* Menu Jtem 1
¢ Menu [tem 2
Menu [tem 3

Home » Sample HTML Layout

Sample HTML Layout

Center column

Left colimn box 1
Left column box 2
Right column box
Practical PHP Web 2.0 Applications. by Quentin Zervaas.

Al

2|
1<)
(5]

Figure 6-3. The web page design we will use for the web application before it has had styles
applied to it

Moving the HTML Markup into Smarty Templates

The next step in styling our web application is to integrate the HTML from Listing 6-8 into our
existing templates. This primarily involves modifying the header.tpl and footer.tpl files, but
there are also some minor changes that need to be made to other templates.

In this section, we will go over all of the changes required to integrate this design. The
steps are as follows:

* Copy the top half of the HTML file into header. tpl.
¢ Copy the bottom half of the HTML file into footer.tpl.

* Keep the dynamic variables in place in the header (namely the browser title, page title,
and breadcrumbs).

» Highlight the active section in the navigation based on a variable passed in from the
action templates, and modify the action templates to tell header.tpl which section to
highlight in the navigation.

Note The “top half” of the design referred to in the preceding list is all markup prior to the content for the
body of each controller action, while the “bottom half” is all markup after the end of the controller action
content. In Listing 6-8, the top half is all code from the start of the file until the breadcrumbs (including the
breadcrumbs). Everything else inside the #content element will be defined in each action’s template.

CHAPTER 6 " STYLING THE WEB APPLICATION

One other thing to note is that we don't yet have content to place in either of the side
columns, so we will use the right column to display the details of the currently logged-in user,
and we will simply leave a place marker in the left column until these columns are populated.

If you haven't done so already, copy the logo.gif and logo-print.gif files into the images
directory from the book’s source code. We will create the styles.css file that is loaded in the
header later in this chapter.

Modifying header.tpl

To make the necessary changes to header.tpl, we can just copy some of the HTML in Listing
6-8 into this file—from the beginning of the listing down to where the page heading is dis-
played. We then include the calls to {breadcrumbs} and {geturl} where appropriate.

Listing 6-9 shows the new version of header.tpl (in the . /templates directory). This ver-
sion loads the external style sheet and uses variables for the breadcrumbs and title unlike the
static values in Listing 6-8. This code should replace the code previously in the header. tpl file.

Listing 6-9. Integrating the Design into the Header Template (header.tpl)

<!DOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>{$title|escape}</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" href="/css/styles.css" type="text/css" media="all" />
</head>
<body>
<div id="header">
</div>

<div id="nav">

<li{if $section == 'home'} class="active"{/if}>
Home
</1i>
{if $authenticated}
<li{if $section == 'account'} class="active"{/if}>
Your Account
</1i>
Logout</1i>
{else}
<li{if $section == 'register'} class="active"{/if}>
Register
</1i>
<li{if $section == 'login'} class="active"{/if}>

Login

189

190 CHAPTER 6 = STYLING THE WEB APPLICATION

</1i>
{7if}

</div>

<div id="content-container" class="column">

<div id="content">
<div id="breadcrumbs">
{breadcrumbs trail=$breadcrumbs->getTrail() separator=' 8raquo; '}
</div>

<h1>{$title|escape}</h1>

There are a few things to notice in this template:

The site navigation has been modified so the geturl plug-in is used to generate the
links, while the “Update Details” link has been removed (we will include this in the right
column in footer.tpl).

The value of the $section variable is checked to determine which navigation item
should be highlighted. To highlight the item, the CSS class .active is applied. We must
define the $section variable when we load the header.tpl template.

The breadcrumbs separator is specified as » (which has the entity name ») for a
slightly fancier look. Spaces must also be included on either side of this character.

The “Logged in as...” information is removed. This will also move to the right column
(in footer.tpl).

We no longer bother to check the $section variable for the logout link because after log-
ging out a user is directed right back to the login page.

Modifying footer.tpl

In order to finish integrating this template, we must add the corresponding section of markup
from Listing 6-8 to the site footer. Listing 6-10 shows the code that will replace the code in the
footer.tpl file (in the . /templates directory). Note that this code includes details about the

currently logged-in user in a box in the right column, and it includes a link to “Update details”.

Listing 6-10. Integrating the Design into the Site Footer (footer.tpl)

</div>

</div>

<div id="left-container" class="column">

<div class="box">
Left column placeholder
</div>

</div>

CHAPTER 6 © STYLING THE WEB APPLICATION

<div id="right-container" class="column">
<div class="box">
{if $authenticated}
Logged in as
{$identity->first name|escape} {$identity->last name|escape}
(logout).
Update details.
{else}
You are not logged in.
Log in or
register now.
{/if}
</div>
</div>

<div id="footer">
Practical PHP Web 2.0 Applications, by Quentin Zervaas.
</div>
</body>
</html>

Tip If you haven't yet tried, you should be able to validate the generated markup with no warnings or errors
using the W3C validator at http://validator.w3.org. In fact, you could have done so prior to this chapter,
as we are developing standards-compliant code. It is important when developing your CSS and templates to
check the validity of both your HTML/XHTML and your CSS (using http://jigsaw.w3.org/css-validator),
as it is easy to accidentally put something in your code that breaks the validation. Chris Pederick’s Web Devel-
oper toolbar for Firefox (http://chrispederick.com/work/web-developer) has quick-access links to
validate HTML and CSS code.

Highlighting the Active Navigation Section

The new header. tpl in Listing 6-9 includes code to check the value of the $section variable to
determine which section to highlight. We must now update each of the controller action tem-
plates so each one defines the $section variable. This is done when including the header
template.

For example, to highlight the “Home” link, the following code would be used to include
header.tpl

{include file="header.tpl' section="home'}

Note that we don't use $ in front of section when using a variable name as the attribute value
in Smarty, but we do use it when referring to the variable in header.tpl.

Listing 6-11 shows the updated version of index.tpl, which now highlights the correspond-
ing entry in the main navigation. Note that there may be situations where no item is selected.

191

192

CHAPTER 6 STYLING THE WEB APPLICATION

Listing 6-11. Highlighting the “Home” Link in the Header Template (index.tpl)

{include file="header.tpl' section="home'}
Web site home

{include file='footer.tpl'}

Note Try updating each of the other controller action templates so the correct section is highlighted.
You can check what the value needs to be by checking the header. tpl file. Specifically, you will need to
update each of the files in the . /templates/account directory to use {include file='header.tpl’
section="account'} rather than {include file="header.tpl"}.This s fairly simple to test, since you
only need to visit each page and check that the navigation is highlighted properly. Alternatively, you can
download the source code for this chapter.

Constructing the CSS

Now that we've integrated the HTML markup into our Smarty templates, we can incorporate
the CSS so the page displays nicely as the three-column layout we discussed. All styles will
be stored in a file called styles.css, which will reside in the css directory of the web site
(/var/www/phpweb20/htdocs/css).

Note There’s no particular reason for choosing this directory, other than that it keeps the files organized.
You may find that an internal section of your web site may require its own CSS file—for example, it might
require a large number of custom styles that you don’t want to include in the main site’s CSS file (why slow
down the loading of the home page with extra styles that aren’t required?). Creating a separate directory for
your CSS files will help you keep the files organized, just as you might organize images.

Specifying Media Types and Loading the CSS File

Later in this chapter we will look at creating a print-only style sheet, so we must keep in mind
that we need to provide styles for different media types. There are two different ways of telling
the browser which media type is being used: the @media rule and the media attribute (used
when loading the CSS file with a <link> tag). For our application, we will use the @media CSS
rule, but we will look at them both here first.

Note I'm not necessarily advocating using @media over loading a separate style sheet with <1ink>;
however, using @media is my personal preference in most cases, since it means fewer files are loaded when
a user visits the site, reducing page-load time and server overhead.

CHAPTER 6 © STYLING THE WEB APPLICATION

To load separate style sheets for the screen and for printing, you could use the following
HTML code:

<link rel="stylesheet" href="screen.css" type="text/css" media="screen" />
<link rel="stylesheet" href="print.css" type="text/css" media="print" />

Alternatively, if you wanted to use the @media rule, you could load a single style sheet and
separate the media types within that file. First, you would load the file specifying media="all"
so this style sheet would be used regardless of what type of device is viewing the page:

<link rel="stylesheet" href="styles.css" type="text/css" media="all" />

Next, you would use the @media rule to separate the media types. Within styles.css, you
would use the following:

.some-css-item { color : #000; }

@media screen {
.some-css-item { color : #f00; }

}

@media print {
.some-css-item { color : #oof; }

}

In this example, the global styles for . some-css-item would use the color black, while red
(#f00) would be used for screen, and blue (#00f) would be used when printing.

Other media types you might use include aural (for screen-reading software) and hand-
held (for handheld devices, such as a phone with a small screen and limited capabilities).

Tip According to the Apple Developer Connection web site at http://developer.apple.com/iphone
/designingcontent.html, you can specify a style sheet specifically for the Apple iPhone by using the
only keyword in combination with the screen media type. Other devices will ignore the only keyword and
therefore not use the style sheet. For example, to load the iphone.css file only for people viewing on an
iPhone you can use <1ink rel="stylesheet" href="iphone.css" type="text/css" media="only
screen and (max-device-width: 480px)" />.

Creating the Application CSS

The next step is to create the first CSS code in our web application. In this section I will briefly
describe the custom CSS that is used. The Holy Grail technique mentioned earlier is explained
by Matthew Levine at http://www.alistapart.com/articles/holygrail. The entire CSS file is
listed at the end of this section so you can see how it all fits together.

Creating the Three-Column Layout

Since the Holy Grail article describes how the fluid three-column layout works, I will not
describe those techniques here. The important thing to note is that we are setting both of the

193

194

CHAPTER 6 "' STYLING THE WEB APPLICATION

side columns to be 300 pixels wide. If you want to use a different size, you will need to modify
the values in the code accordingly.

body { margin : 0; padding : 0 300px; min-width : 600px; }
#theader, #footer, #nav { margin : 0 -300px O -300px; }

.column { float : left; position : relative; }
#content-container { width : 100%; padding : 0; }

#left-container { width : 300px; margin-left : -100%; right : 300px; }
#right-container { width : 300px; margin-right : -300px; }

#footer { clear : both; }

* html #left-container { left : 300px; }

If you were to view the HTML code from Listing 6-8 using only the preceding CSS, the
display in Firefox would be similar to the screen in Figure 6-4. The bottom half of this figure
shows the Firebug console as it integrates into Firefox.

Tip Firebug is arguably the most powerful web development plug-in available for Firefox. While the Web
Developer toolbar has been around for longer and is also very useful, the CSS and DOM inspection capabili-
ties, as well as the ability to debug subrequests made with XMLHttpRequest, make it a must-have plug-in.
You can download Firebug from http://www.getfirebug.com.

PG o
| Fle Ede Yoew Halery Bockmads Jeck Help
& - A i

L1 Sampla WML Lapout]

= Home

* Memi Jiemm 1
* Mewi limm 2
* Mem liem 3

it cokemn bax | Heene » Sample HTML Layout Right colenn bax
eft cokenn bax 2

Sample HTML Layout
Center column

Practical PHP Web 20 Applicasions, by Quentin Zervass.

@ lpest TSt dubss o dhEleR-contsiasrc_ « bedy o himd . ag

WML | CN el DOM Met Optiens | Wtyie | Liyout | DOM Optians =

Figure 6-4. Using Firebug to see the layout properties of the three-column layout

CHAPTER 6 " STYLING THE WEB APPLICATION

Styling the Page Header

In Figure 6-2, there was a logo displayed in a header block that hasn’t appeared in subsequent
figures. To include this logo, we must set the background to use an image in the CSS. This
allows us to include other code in #header as we need. For instance, when we implement
printer-friendly styles later in this chapter, we will include a printer-friendly logo in this area,
since CSS backgrounds typically aren’t included when people print web pages.

Here is the code used to style the #header div:

#header {
background 1 url(../images/logo.gif) no-repeat 5px center #f22;
height T 45px;

border-bottom : 1px solid #922;

WEe first set the background properties. The path used in url() is relative to the CSS file,
not to the HTML document that loads the CSS file. By using no-repeat, we tell the browser to
include the background image only once. The image is also positioned 5 pixels from the left of
the div and centered vertically. Finally, the background color is set to a shade of red (to match
the background color of 1logo.gif).

Next, we set the height of the div to 45 pixels, which is slightly taller than the image. Since
#header is empty, we must give it a height so the browser will make it big enough for the back-
ground image to appear.

Finally, we add a dark red border to the bottom of the div. We will also be using this color
when we join the navigation to the header.

Styling the Tabbed Navigation Bar

The navigation bar consists of horizontal tabs created as an unordered list. In order to make
the unordered list horizontal, we set the display property of list items (<1i>) to be inline. Addi-
tionally, we need to consider browser defaults for unordered lists: Internet Explorer uses a
margin, and Firefox uses padding on the left of each element. We remove this by setting both
the padding and margin to 0. Additionally, each list item will display a bullet point, which we
can remove by using 1ist-style : none.

Tip A useful way to deal with browsers that have different default styles is to use a “reset” style shest.
This is an extra style sheet that you load in your pages to give all elements the same style across all
browsers (where relevant). The Yahoo Developer Network provides a reset style sheet that you can use
(http://developer.yahoo.com/yui/reset), although Eric Meyer has developed his own, which he
based on Yahoo’s. You can find his latest reset style sheet at http://meyerweb.com/eric/thoughts/
2007/05/01/reset-reloaded, or his original article at http://meyerweb.com/eric/thoughts/2007/
04/12/reset-styles. One thing to be aware of is that using an extra style sheet may result in extra page-
load time. You may prefer to just include your own reset styles as you need them to keep your CSS file
smaller.

195

196 CHAPTER 6 = STYLING THE WEB APPLICATION

The following code styles the navigation bar. This code defines not only the layout of
the navigation (making the list horizontal), but also the style of links in the navigation. The
.active class highlights the navigation item that represents the section of the user’s current
page. We use this style when we check for the $section variable in header.tpl.

#nav {
margin-top T -1px;
margin-bottom : 20px;
font-size : 0.9em;
text-transform : uppercase;

}

#nav ul {
margin 1 0;
padding : 4px 0;
text-align : center;

}

#nav 1i {
list-style : none;
padding 1 0;
margin 1 0;
display : inline;

}

#nav a {
background 1 #922;
color : #aaa;
text-decoration : none;
padding 1 4px 8px;
text-align : center;
border : 1px solid #922;
border-top : none;
margin 1 0 3px;

}

#nav a:hover {
color T A
text-decoration : underline;

}

#nav li.active a {
color T A,
background : #f22;
font-weight : bold;

CHAPTER 6 © STYLING THE WEB APPLICATION

Setting the Global Styles

In addition to setting styles for specific containers or areas on a page, we must also define a set
of global styles. They are called global styles because each selector applies to every occurrence
in a page of its respective element(s).

The following code sets the heading style, the text font and size, and the style for links.
Take the img style as an example. Every time an image is used in the page, it will have no bor-
der—even if it is hyperlinked. Each global style can be overridden on a case-by-case basis.

body {
color : #333;
background : #fafafa;
font-family : Verdana, Arial, Helvetica, sans-serif;
font-size : 0.75em;

}

hi { font-size : 1.7em; margin-top : 0; }

h2 { font-size : 1.5em; }

h3 { font-size : 1.3em; }

ha { font-size : 1.1em; }

hs { font-size : 1.0em; }

h1, h2, h3, h4, hs { font-family : Georgia, serif; color : #f22; }

img { border : 0; }
form { margin : 0; }

a { color : #f22; background : none; text-decoration : underline; }
athover { color : #fff; background : #f22; text-decoration : none; }

In this code, we set the base font size to 0.75em. While the specific value used here isn’t
important, the fact that we use ems is. A single unit of em (1 em) is the width of the “m”
character in the current font family and size. In other words, you could interpret a font-size
directive inside the body as saying “set the font size to 75 percent of the browser’s default size.”
Using ems allows the browser to scale fonts as required (most noticeably when a user selects
“increase font size” or “decrease font size” in their browser).

Note We could also use ems instead of pixels for other measurements in the style sheet, such as for the
column widths or border sizes. However, | have chosen not to in order to have more precise control over
the on-screen layout.

Styling the Page Content

The remaining page areas to be styled are the content areas of the three columns. This
includes creating the .box class, since all side-column content will appear inside various
divs using this style.

197

198

CHAPTER 6 = STYLING THE WEB APPLICATION

The following styles format the various content areas of the page, including the page
footer and the breadcrumb trail:

#content-container { background : #fff; }

#content {
border 1 1px solid #eee;
padding 1 10px;

line-height : 1.8em;

}

#breadcrumbs {
font-size : 0.8em;
color : #ccc;

}

#breadcrumbs a { color : #aaa; }
#breadcrumbs a:hover { background : #aaa; color : #fff; }

#left-container .box, #right-container .box {

margin : 0 10px 10px 10px;
padding 1 10px;
border 1 1px solid #eee;
background : #fff;
font-size : 0.9em;
line-height : 1.6em;
}
#footer {
color 1 #999;
font-size : 0.8em;
padding 1 10px;
text-align : center;
}

This concludes the selectors for setting up global styles and styling the screen media
type according to the design in Figure 6-2. We will add further elements as we require them
throughout the book (including later in this chapter for styling forms), but the base styles
defined here will suffice in most situations.

Creating a Print-Only Style Sheet

Many web sites offer a “print this page” link on their pages. Traditionally, this will link to
another page on the site that repeats the content while stripping out all of the elements that
have no relevance when printed (such as site navigation or a search form). By using print-only
style sheets, we can mimic this behavior without the need for a secondary page of the same
content. All we need to do is define styles for the print media type, as we saw earlier.

CHAPTER 6 " STYLING THE WEB APPLICATION

Before we do this, we should at least compare the two methods: using a secondary page as
opposed to using a print style sheet. The advantages of using a print style sheet are as follows:

e The user doesn’t need to navigate to another page in order to print content.

* You, as the developer, don't need to code in extra functionality to serve a stripped-down
page (you will have to create a style sheet for this page anyway).

¢ The server does not have to serve an extra page, reducing server load and bandwidth use.

* Your web site statistics will be more accurate (although this isn’t much of a problem,
since you could always filter these extra entries out).

On the other hand, the advantages of using a secondary print page instead of a print style
sheets are as follows:

It will make more sense to users, as they will be able to see that the content is indeed
stripped down.

e Users are more used to this method.

e Users might want to print the page exactly as it appears on screen, but a print style
sheet won't allow them to do this (unless they use an advanced tool, which will allow
them to block certain style sheets).

e Users probably won't rely on there being a print style sheet, because most developers
don’t provide one.

Note that the advantages of using secondary print pages stem from the fact that people
are more used to using them. Ultimately, you must decide how you want to do this; since this
is a book on Web 2.0 development, we will follow the CSS standard and implement code as it
was intended. After all, adhering to standards was one of the aspects of Web 2.0 I defined in
Chapter 1.

Modifying the Screen Style Sheet

There are essentially two key things we want to do in creating a print style sheet for our web
application. The first is to hide elements that don’t need to be printed, which in this case
means the navigation and left and right columns. The second is to add a header that will be
printed on all pages.

Typically, web browsers will strip out background colors and images when printing pages
(users can generally change this setting, but most won't). To deal with this, we will place a
printer-friendly image in our HTML. This forces the browser to print the logo; however, we
must then alter the screen style sheet so this image isn’'t normally displayed on the screen.

Listing 6-12 shows how we can add the printer-friendly logo to the header.tpl template.

Listing 6-12. Including a Printer-Friendly Logo in the Header Template (header.tpl)

<!--// ... other code -->

<div id="header">

199

200

CHAPTER 6 "' STYLING THE WEB APPLICATION

</div>

<l--// ... other code -->

We then just need to add a rule to the screen media-type section of the style sheet that hides
this logo when the user views the page in their browser.

We also need to add rules to the print media-type section of the style sheet to hide the
elements that we don’t want to print (the side columns and the navigation). The following
code shows how this is achieved (ignoring the remainder of the style sheet for now).

@media screen {
#theader img { display : none; }

@media print {
#nav, #left-container, #right-container { display : none; }

Figure 6-5 shows how the page will look if you use the print preview tool in Firefox, com-
pared to how the page normally looks in the browser. As an exercise, you may want to add
extra styles to the print style sheet so the printable page has a nicer layout.

@ Semple HTML Layout - Mozis Firefox = E "
| Bile Eoe View Higiery Scolmarks Tools Help
- Fat =
€ i A
| Ssemphe HIML Layout

] .
Practical PHP Web 2.0 Applications
By Quentin Zervais
WOME

et calumn bax 4 Right column box
Sample HTML Layout

&t calumn bex 2
Center column

@ Sampie HIML Layaut - Masila Faefax =] B

Prot. | |PageSenup.| Page W 4 [L of Lo w| feae shokTofs [=)] |[[5] Pomes] =) Landseope | | gase |

Sampile MTML Layou

Practical PHP Web 2.0 Applications
By Quentin Zervaas
Home » Sample HTML Layout

Sample HTML Layout

Center colamn

[%% Dene

Practical PHP Web 2.0 Applications, by Quentin Zervaas

Figure 6-5. Comparing the screen and print styles of the same page

CHAPTER 6 " STYLING THE WEB APPLICATION

As a final note on this topic, you can easily add sections you want to include when print-
ing, yet don’t want to include when viewed on screen. This is just the opposite of how we hid
the navigation and side columns; simply include them in the HTML markup, and then hide
them in the screen section of the style sheet. This is effectively the same thing we did with the
print-only logo.

The Full Application Style Sheet

Now that we have looked at all of the sections that make up the style sheet (including global
styles, screen-only styles, and print-only styles), we can see how it all pieces together. Listing
6-13 shows the full CSS file with all the styles we have looked at in this chapter. This code
should be written to the styles.css file in . /htdocs/css.

Listing 6-13. The CSS Used to Implement the Three-Column Layout (styles.css)

@media screen {

/**

* Global elements
*/

body {
color 1 #333;
background : #fafafa;
font-family : Verdana, Arial, Helvetica, sans-serif;
font-size : 0.75em;

}

hi { font-size : 1.7em; margin-top : 0; }

h2 { font-size : 1.5em; }

h3 { font-size : 1.3em; }

hg { font-size : 1.1em; }

hs { font-size : 1.0em; }

hi, h2, h3, h4, hs { font-family : Georgia, serif; color : #f22; }

img { border : o; }
form { margin : 0; }

a { color : #f22; background : none; text-decoration : underline; }
athover { color : #fff; background : #f22; text-decoration : none; }

/**

* Setup the 3 column layout
*/

201

202 CHAPTER 6 = STYLING THE WEB APPLICATION

body { margin : 0; padding : 0 300px; min-width : 300px; }

#theader, #footer, #nav { margin : 0 -300px O -300px; }

.column { float : left; position : relative; }
#content-container { width : 100%; padding : 0; }

#left-container { width : 300px; margin-left : -100%; right : 300px; }
#firight-container { width : 300px; margin-right : -300px; }

#footer { clear : both; }

* html #left-container { left : 300px; }

/**

* Style the main page areas

*/

#header {
background 1 url(../images/logo.gif) no-repeat 5px center #f22;
height T 45px;

border-bottom : 1px solid #922;

}
#theader img { display : none; }

#content-container { background : #fff; }

#content {
border : 1px solid #eee;
padding 1 10px;

line-height : 1.8em;

}

#breadcrumbs {
font-size : 0.8em;
color : #cec;
margin-bottom : 10px;

}

#breadcrumbs a { color : #aaa; }
#breadcrumbs a:hover { background : #aaa; color : #fff; }

#left-container .box, #right-container .box {

margin : 0 10px 10px 10px;
padding 1 10px;
border 1 1px solid #eee;

background : #fff;

font-size : 0.9em;
line-height : 1.6em;

}

#footer {
color : #999;
font-size : 0.8em;
padding 1 10px;
text-align : center;

}

/**

* Tabbed navigation

*/

#nav {
margin-top T o-1px;
margin-bottom : 20px;
font-size 1 0.9em;
text-transform : uppercase;

}

#nav ul {
margin : 0;
padding 1 4px 0;
text-align : center;

}

#nav 11 {
list-style 1 none;
padding 1 0;
margin 1 05
display : inline;

}

#nav a {
background 1 #922;
color : #aaa;
text-decoration : none;
padding 1 4px 8px;
text-align : center;
border : 1px solid #922;
border-top : none;
margin : 0 3px;

CHAPTER 6

STYLING THE WEB APPLICATION

203

204

CHAPTER 6 = STYLING THE WEB APPLICATION

#nav a:hover {
color S b o i
text-decoration : underline;

}

#nav li.active a {
color S b o i
background : #f22;
font-weight : bold;

}
@media print {

/%K
* Elements to hide

*/

#nav, #left-container, #right-container { display : none; }

Styling the Application Web Forms

In Chapter 4 we created three forms for the user system: a registration form, a login form, and
a fetch-password form. Since forms play such an important part in interactive web sites, we
must make our forms easy for users to understand and use. Let’s look at how to style these
forms. Each form should meet the following requirements:

¢ Elements must be clearly labeled.
e Errors that occur should be highlighted.
A submit button must be included.

In Chapter 4 we used a Smarty template called error.tpl to output errors. This template
outputs a div regardless of whether an error has occurred, since this allows us to use it as a
placeholder for JavaScript-generated errors. As such, we must hide this div if no error has
occurred.

First, we style the .error div. This div will have a red background with white text so it
stands out. Additionally, we will add a rule so that if the error div occurs inside the .row class
(the container we use to hold each form element), we will shrink the font slightly.

div.error {
background : #a00;

padding T 5pX;
margin : 5px 0;
color L #HfAfAf;

CHAPTER 6 " STYLING THE WEB APPLICATION

form .row div.error {
font-size : 0.8em;
line-height : 1em;

Next, we will style the .row class, which holds each element. We will add a margin to the
top and bottom of each . row, and then float the label left (allowing us to set its display type to
block instead of the default of inline) and give it a width of 150px. If you set the width when its
display type is inline, this will be ignored.

form .row { margin : 10px 0; clear : both; }
form .row label {

width 1 150px;
float : left;
display : block;

font-weight : bold;

Next, we set the default widths of text inputs, using the following CSS:

form .row input[type=text] { width : 230px; }
form .row input[type=password] { width : 230px; }

Be aware that Internet Explorer 6 does not understand CSS selectors based on element
attribute values (although Internet Explorer 7 does). An alternative would be to simply use
.row input, but this would affect check boxes and radio buttons (and any other type of
<input>). The other alternative is to explicitly set a class name on the input, and then style
that class accordingly.

Finally, we will set the CAPTCHA image to align with the other input elements by setting
its left margin, and then we’ll create a simple style to hold submit buttons.

form .captcha { margin-left : 150px; }
form .submit {

padding : 5px;

margin-top : 10px;

background : #eee;

Listing 6-14 shows how this new CSS code fits into the styles.css file. I have omitted the
parts not relevant to display forms.

Listing 6-14. The Application Style Sheet Including Styling of Forms and Errors (styles.css)

@media screen {

/* ... other code */
/**
* Forms

*/

205

206 CHAPTER 6 = STYLING THE WEB APPLICATION

div.error {
background : #a00;
padding : 5px;
margin ¢ 5px 0;
color T B
}

form .row div.error {
font-size : 0.8em;
line-height : 1em;

}

form .row { margin : 10px 0; clear : both; }

form .row label {
width ¢ 150px;
float : left;
display : block;
font-weight : bold;
}

form .row input[type=text] { width : 230px; }
form .row input[type=password] { width : 230px; }

form .captcha { margin-left : 150px; }

form .submit {
padding : 5px;
margin-top : 10px;
background : #eee;

}

/* ... other code */

Note that these are all somewhat generic styles, and while they will work fine for most
situations, they may not suit every type of form you create—you may need to create new form
styles in some situations. However, these styles do work well for the registration form, the
login form, and the fetch-password form, as you can see in Figure 6-6.

CHAPTER 6 © STYLING THE WEB APPLICATION 207

& an Accaunt - Mozilin Firefoxs
File Edit Wiew History Bookmarks Took Help
& - & O [ity phpwebdsccount reguter [=[&

|| Create an Account a

Practical PHP Web 2.0 Applications

By Quentin Zervaas

Left calumn placehalder You are not logged in Lyg o or regisle
naw.

Create an Account

~Creats an Account -

First Name: Cuentin

Last Nama: Zivnas

Fnter Above Phrase: ceab

| Register |

[Done o

Figure 6-6. The registration form, now styled and showing errors usefully

Loading Prototype and Scriptaculous

In Chapter 5 we took a look at the Prototype and Scriptaculous JavaScript libraries, which we
will make heavy use of in later chapters. Since the examples used in that chapter were inde-
pendent of the application we are developing, we did not actually load these libraries for our
application. We will now update the header.tpl template to automatically load these libraries
in the <head> section of the template. For more discussion on loading each of these libraries,
refer to Chapter 5.

Listing 6-15 shows the lines we will add to header . tpl to load Prototype and Scriptaculous.
The lines not listed here that we added earlier in this chapter remain the same.

Listing 6-15. Loading Prototype and Scriptaculous Automatically (header.tpl)

<IDOCTYPE html
PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
"http://www.w3.0rg/TR/xhtml1/DTD/xhtml1-strict.dtd">

<html xmlns="http://www.w3.0rg/1999/xhtml" lang="en" xml:lang="en">
<head>
<title>{$title|escape}</title>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1" />
<link rel="stylesheet" href="/css/styles.css" type="text/css" media="all" />

208

CHAPTER 6 "' STYLING THE WEB APPLICATION

<script type="text/javascript" src="/js/prototype.js"></script>
<script type="text/javascript"”
src="/js/scriptaculous/scriptaculous.js"></script>

<!--// ... other code -->

Implementing Client-Side Form Validation

Now that we have looked at how Prototype and Scriptaculous work and have added styles to
the site, we can revisit the user registration form. In this section, we will add client-side form
validation to the user registration form using JavaScript and Ajax. Adding client-side valida-
tion improves usability since the user will receive feedback about any invalid form values
more quickly.

Specifically, we will check that each of the form fields contain valid values when the user
clicks the submit button to register. If everything appears correct, we will allow the form to be
sent to the server. Note that we will still have our server-side validation in place (as imple-
mented in Chapter 4), so even if the user doesn’'t have JavaScript enabled, they cannot
circumvent any of the data checks.

Rather than duplicating the server-side validation we already have in place, we will make
some small changes to the existing code so it can be used for Ajax validation in addition to the
normal registration. The changes we will implement include the following:

* Modifying the FormProcessor UserRegistration class so we have the option of validat-
ing form data without actually creating the user if no errors occur

¢ Changing the way the registerAction() method of AccountController works so that if
the action is requested via Ajax, a JSON response is sent containing any errors that
occurred

e Creating a JavaScript class to trigger the form validation, as well as submitting the form
once all values have been verified

In actual fact, the form validation we are implementing here still uses the server in that it
submits the data to the server for validation. We could add simple validation (such as checking
for empty fields) without communicating with the server, but more complicated checks such
as determining whether or not a username is already in use require server interaction.
Although the client-side validation still uses the server for validation, it is quicker than doing a
normal post-back since the page doesn’t need to be reloaded.

Note In this particular example, all validation is done using the FormProcessor UserRegistration
class. The client-side code we will implement is really just a proxy to this class. This means we can easily
expand the form-processing capabilities in the future by modifying FormProcessor UserRegistration—
the JavaScript we develop in this section will scale automatically.

CHAPTER 6 " STYLING THE WEB APPLICATION

Adding JSON Support to CustomControllerAction

In Chapter 5 we briefly looked at JSON (JavaScript Object Notation), which can be used to
easily send data between client and server in Ajax requests. Implementing this form validator
gives us our first chance of using JSON in this application.

In order to return JSON data from controller actions, we will add a new method to the
CustomControllerAction class. Since we need to send a certain content type HTTP header for
JSON data, it is much simpler to add this method once rather than sending the header manu-
ally each time we need to send JSON data.

Listing 6-16 shows the sendJson() method we will add to the CustomControllerAction.php
file in ./include.

Listing 6-16. A Utility Method to Send JSON Data from Controller Actions
(CustomControllerAction.php)

<?php
class CustomControllerAction extends Zend_Controller Action
{
// ... other code
public function sendJson($data)
{
$this->_helper->viewRenderer->setNoRender();
$this->getResponse()->setHeader('content-type', 'application/json');
echo Zend_Json::encode($data);
}
}
>

The first thing that we do here is disable autorendering of the view, since we're not
outputting with a template. For more discussion of how the automatic view rendering in
Zend_Controller works, refer to Chapter 2.

Next, we must send the appropriate content-type header. By default, PHP will send a con-
tent type of text/html, which will work in this case, but it is not technically correct. According
to RFC 4627 (which can be found at http://www.ietf.org/rfc/rfc4627.txt), the official MIME
type for JSON data is application/json.

Finally, we can call Zend_Json::encode() to encode the $data array.

Modifying the Form Processor

The next step in implementing client-side form validation is to add an extra option to the
FormProcessor UserRegistration class so form data can be checked without actually creating
anew user account. We do this so the JavaScript code can determine whether the form data is
correct before submitting the actual form.

To achieve this, we will add a new method to this class called validateOnly(). If this
method is called with an argument value of true, the form will be processed, but even if there
are no errors, the new user database row will not be created.

209

210 CHAPTER 6 = STYLING THE WEB APPLICATION

Listing 6-17 shows the changes we need to make to the UserRegistration.php file in the
./include/FormProcessor directory.

Listing 6-17. Adding the Ability to Only Validate the Registration Form (UserRegistration.php)

<?php
class FormProcessor UserRegistration extends FormProcessor

>

{

protected $db = null;
public $user = null;
protected $_validateOnly = false;

public function _ construct($db)

{
// ... other code
}
public function validateOnly($flag)
{
$this->_validateOnly = (bool) $flag;
}

public function process(Zend Controller Request Abstract $request)

{
// ... other code

// if no errors have occurred, save the user

if (!$this->_validateOnly && !$this->haskError()) {
$this->user->save();
unset($session->phrase);

}

// return true if no errors have occurred
return !$this->hasError();

Modifying the Registration Controller Action

In order to make use of the validation-only mode of the form processor, as well as to return

a JSON response of any errors, we must now make some changes to the registerAction()
method of the AccountController class. If the request was submitted using Ajax, we want the
method just to validate the form and return any errors by calling the sendJson() method we
just created. Conversely, if the request wasn't submitted using Ajax, we want this method to
behave as normal—that is, to process the user registration and then redirect the confirmation
page once complete.

CHAPTER 6 " STYLING THE WEB APPLICATION

Detecting Ajax Requests

Using Zend_Controller we can easily determine whether a request came from an Ajax subre-
quest by calling the isXmlHttpRequest() method on the request object that is available inside
controller actions. Internally, this method looks for the presence of the X-Requested-With
HTTP header. If the value of this header is XMLHttpRequest, this method returns true.

This header is not automatically set when using XMLHttpRequest to initiate HTTP
subrequests, but Prototype will set this header automatically. This means the Prototype
Ajax.Request class is compatible with the isXmlHttpRequest() method from the Zend
Controller Request Http class.

Returning Form Errors Using JSON

Now that you know how to detect Ajax requests, we can make the necessary changes to the
registerAction() method in the AccountController class. If the request was initiated using
XMLHttpRequest, we will call the validateOnly() method we just implemented and send back
any errors using JSON. Note that we can call the getErrors() method on the form processor to
retrieve an array of all errors (this will be an empty array if there are no errors).

Listing 6-18 shows the changes to the AccountController.php file in ./include/Controllers.

Listing 6-18. Adding Form Validation for Ajax Requests (AccountController.php)

<?php
class AccountController extends CustomControllerAction

{

// ... other code

public function registerAction()

{
$request = $this->getRequest();

$fp = new FormProcessor UserRegistration($this->db);
$validate = $request->isXmlHttpRequest();

if ($request->isPost()) {

if ($validate) {
$fp->validateOnly(true);
$fp->process($request);

}

else if ($fp->process($request)) {
$session = new Zend Session Namespace('registration');
$session->user id = $fp->user->getId();
$this-> redirect($this->getUrl('registercomplete'));

}

if ($validate) {
$json = array(

211

212

CHAPTER 6 = STYLING THE WEB APPLICATION

"errors' => $fp->getErrors()

);
$this->sendJson($json);
}
else {
$this->breadcrumbs->addStep('Create an Account');
$this->view->fp = $fp;
}

}

// ... other code

>

To gain an understanding of what the return JSON data may look like, let’s look at a quick
example. According to the FormProcessor UserRegistration class, if the user enters a user-
name that is already in use, the following line is executed:

$this->addError('username', 'The selected username already exists');

If this were the only error to occur, the following JSON data would be generated:

non

"errors":{"username":"The selected username already exists"}}

This means that if you assigned this JSON data to a JavaScript variable called json, you
could access the error using json.errors.username, like this:

var json = {
"errors" : {
"username" : "The selected username already exists"

}

alert(json.errors.username);

Creating the JavaScript Form Validator

Now that we have added the necessary PHP code to implement client-side validation, we can
implement the client-side portion of code. To do this, we will create a JavaScript class called
UserRegistrationForm to trigger validation of the form and to display errors. Then we will
attach this class to the existing HTML form.

This class essentially performs the following steps:

1. Observes the existing HTML form so that when it is submitted, the JavaScript valida-
tion is triggered.

2. Clears any existing errors that are being displayed (just in case the user already sub-
mitted the form).

3. Submits the form data to the server for validation using Ajax.

CHAPTER 6 " STYLING THE WEB APPLICATION

4. Accepts the response, which contains any errors that occurred.
e If there are no errors, tells the browser to submit the form normally.
e If there are errors, loops over them and displays each one on the form.

Because all of the error containers are already in place on the form, it is a simple matter to
write the error message to the error container and then call the show() method on it (this is a
method Prototype adds to all HTML elements, as we saw in Chapter 5). For more discussion of
how to create JavaScript classes using Prototype, refer to Chapter 5.

Initializing the UserRegistrationForm JavaScript Class

To begin this class, we will first declare the class and then implement its constructor (the
initialize() method). In this constructor, we will store the form as a property of the class,
and then observe the onsubmit event on it. We'll complete the constructor by calling the
resetErrors() method (which we will look at next) to ensure no errors are being shown.

Listing 6-19 shows the declaration and constructor of the UserRegistrationForm class.
This code should be written to a file called UserRegistrationForm.class.js in the ./htdocs/js
directory.

Listing 6-19. Initializing the Registration Form Validation Class (UserRegistrationForm.class.js)

UserRegistrationForm = Class.create();
UserRegistrationForm.prototype = {
form : null,

initialize : function(form)

{
this.form = $(form);
this.form.observe('submit', this.onSubmit.bindAsEventListener(this));
this.resetErrors();

b

Hiding Form Errors

Next, we will implement a utility method to help us clear any error messages. Whenever the
form is submitted, we want to call this method to clear errors from any previous attempt—if a
user attempts to submit the form multiple times, a different set of errors may occur. Since all
errors on the form are contained within elements that have the .error class, we can simply
find all of those elements and hide them.

Listing 6-20 shows the code we need to add to UserRegistrationForm.class.js to clear
all errors. This code first uses the Prototype getElementsBySelector() method to find the
elements and then calls the invoke() enumerator method to hide each of them.

213

214

CHAPTER 6 = STYLING THE WEB APPLICATION

Listing 6-20. Clearing All Form Errors with resetErrors() (UserRegistrationForm.class.js)

resetErrors : function()

{

this.form.getElementsBySelector('.error').invoke(hide");

1

Displaying Form Errors

To complement the hiding of form errors, we also need the ability to show errors. We will
implement the showError () method, which takes the name of the error’s form field as the first
argument and the error message as the second argument.

The biggest challenge in this method is to locate the error container that corresponds to
the given form field. To find this element, we use the Prototype DOM traversal functions (up()
and down()) to locate the element. We make the assumption that the error container is within
the same parent element as the form input. Therefore, we can find the parent element of the
form element and look within that parent for an element with the class name .error.

Listing 6-21 shows the code for the showError() method, which also goes in
UserRegistrationForm.class.js.

Listing 6-21. Writing the Error Message to a Form Element’s Error Container
(UserRegistrationForm.class.js)

showError : function(key, val)

{
var formElement = this.form[key];
var container = formElement.up().down('.error");
if (container) {
container.update(val);
container.show();
}
})

Handling the Form Submission

In Listing 6-19 we observed the onsubmit event on the user registration form. This means that
when the form is submitted, the onSubmit() method in the UserRegistrationForm class is
called.

The goal of onSubmit() is to initiate an Ajax request that submits the form data to the
registerAction() method of the AccountController class. Since this request will be initiated
using Ajax, the changes we made in Listing 6-18 will come into play (that is, processing the
form but not creating the user if there are no errors).

The onSubmit () method begins by calling Event. stop(). This means that the browser
won't submit the form as usual once this method has been called. This allows us to control
the submission of the form (we will submit it once we ensure no errors have occurred in the
form). Additionally, we make a call to resetErrors() so that any errors from a previous sub-
mission attempt are removed.

CHAPTER 6 " STYLING THE WEB APPLICATION

Listing 6-22 shows the code for the onSubmit() method in the
UserRegistrationForm.class. js file.

Listing 6-22. Submitting the Form Data for Validation via Ajax (UserRegistrationForm.class.js)

onSubmit : function(e)

{
Event.stop(e);
var options = {
parameters : this.form.serialize(),
method : this.form.method,
onSuccess : this.onFormSuccess.bind(this)
};
this.resetErrors();
new Ajax.Request(this.form.action, options);
b

We make use of the original form method and action based on the values in the HTML
code. This means that if we ever change the URL for the registration form, we don't need to
make any changes to this JavaScript code.

Additionally, we can easily scale the form, since we call the serialize() method on it to
retrieve all form values. This method is provided by Prototype.

Handling the Form Validation Response

In Listing 6-22 we specified that a method called onFormSuccess() would be used to handle the
response from the form validation. In this JSON data, we are expecting an array called errors
that holds all of the errors that occurred in the form validation. We can decode this data using
the evalJSON() method.

If this array contains one or more values, then an error has occurred. In that case, we
must loop over each of these errors and call showError () for each error. Note that we also must
look for the first element within the form with the class .error, since we have a global error
message container at the top of the form (as discussed in Chapter 4). This line of code in our
JavaScript makes this global error message appear.

If the errors array is empty, we can assume the form values were all valid and tell the
browser to submit the form by calling the submit() method on the form element.

Listing 6-23 shows the code for the onFormSuccess () method, and the closing of the
UserRegistrationForm class.

Listing 6-23. Handling the Form Validation Response (UserRegistrationForm.class.js)

onFormSuccess : function(transport)

{

var json = transport.responseText.evalJSON(true);
var errors = $H(json.errors);

if (errors.size() > 0) {

215

216

CHAPTER 6 STYLING THE WEB APPLICATION

this.form.down("'.error").show();
errors.each(function(pair) {

this.showError(pair.key, pair.value);
}.bind(this));

}

else {
this.form.submit();

}

};

Note When calling each() on the errors array, we call bind() on the function so this refers to the
UserRegistrationForm object. For further discussion on binding JavaScript class methods using Proto-
type, refer to Chapter 5.

Loading the UserRegistrationForm Class

Finally, we must make use of the JavaScript class we just implemented. To do so, we will load
the JavaScript file in the registration form template and then instantiate the class. Since this
class relies on Prototype, make sure you have added the code to load prototype. js as
instructed earlier in this chapter.

Listing 6-24 shows the changes to register.tplin ./templates/account. In addition to
loading the JavaScript, we also give an ID to the form so we can refer to it when instantiating
the UserRegistrationForm class.

Listing 6-24. Loading and Instantiating the Form Validation Class (register.tpl)
{include file="header.tpl' section='register'}
<form method="post"
action="{geturl action='register'}"
id="registration-form">
<!--// form elements go here -->
</form>
<script type="text/javascript" src="/js/UserRegistrationForm.class.js"></script>
<script type="text/javascript">
new UserRegistrationForm('registration-form');

</script>

{include file='footer.tpl'}

CHAPTER 6 " STYLING THE WEB APPLICATION

This completes the client-side form validation. If you now try to submit a form with
invalid values, you will be shown the error messages as before; however, the page isn't
reloaded and the response is displayed much more quickly.

Summary

In this chapter we created a basic web design for our Web 2.0 application and integrated it into
the existing Smarty templates. This included creating a fluid table-free layout that works well
in all major browsers. We then revisited the forms we created in Chapter 2 and set up styles for
them so they would be formatted nicely and display errors in a way that is easy to understand.

Following this, we changed the site header template so Prototype and Scriptaculous
would be automatically loaded. We immediately made use of Prototype by adding client-side
form validation to the user registration form. We implemented this using Ajax and JSON.

While the content in this chapter didn't include much Web 2.0 content, it was still very
important, as we started to bring together the look and feel of the site, while keeping the
HTML markup to a minimum. This sets a solid base for integrating JavaScript code that will
run efficiently, as well as being accessible and easy to maintain. This will also help in the load-
ing speed of the site, which in turn improves the experience of users while keeping the load of
your server (and the bandwidth it uses) to a minimum.

In Chapter 7 we will start to build the blogging system of our web application. This will set
the basis for the remainder of the book, as all features following on from here tie into this sys-
tem. It also means we can really start to look at the features that define a Web 2.0 application.

217

CHAPTER 7

Building the Blogging System

Now that users can register and log in to the web application, it is time to allow them to
create their own blogs. In this chapter, we will begin to build the blogging functionality for
our Web 2.0 application. We will implement the tools that will permit each user to create and
manage their own blog posts.

In this chapter, we will be adding the following functionality to our web application:

* Enable users to create new blog posts. A blog post will consist of a title, the date sub-
mitted, and the content (text or HTML) relating to the post. We will implement the form
(and corresponding processing code) that allows users to enter this content, and that
correctly filters submitted HTML code so JavaScript-based attacks cannot occur. This
form will also be used for editing existing posts.

¢ Permit users to preview new posts. This simple workflow system will allow users to
double-check a post before sending it live. When a user creates a new post, they will
h